1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092
//! Symmetric encryption algorithms
//!
//! Symmetric encryption algorithms uses the same key (the shared-secret) to encrypt and decrypt the
//! data. It is usually more performant and secure to use this type of encryption than using
//! asymmetric encryption algorithms.
//!
//! # Usage
//!
//! The first step is to create an instance of the algorithm needed. All the block ciphers
//! algorithms supported are defined in the [`SymmetricAlgorithmId`] enum. Since they encrypt per
//! block, a chaining mode is also needed. All the supported chaining modes are defined in the
//! [`ChainingMode`] enum.
//!
//! The creation of an algorithm can be relatively time-intensive. Therefore, it is advised to cache
//! and reuse the created algorithms.
//!
//! Once the algorithm is created, multiple keys can be created. Each key is initialized with a
//! secret of a specific size. To check what key sizes are supported, see
//! [`SymmetricAlgorithm.valid_key_sizes`].
//!
//! With the key in hand, it is then possible to encrypt or decrypt data. Padding is always added
//! to fit a whole block. If the data fits exactly in a block, an extra block of padding is added.
//! When encrypting or decrypting, an initialization vector (IV) may be required.
//!
//! The following example encrypts then decrypts a message using AES with CBC chaining mode:
//! ```
//! use win_crypto_ng::symmetric::{ChainingMode, SymmetricAlgorithm, SymmetricAlgorithmId};
//! use win_crypto_ng::symmetric::Padding;
//!
//! const KEY: &'static str = "0123456789ABCDEF";
//! const IV: &'static str = "asdfqwerasdfqwer";
//! const DATA: &'static str = "This is a test.";
//!
//! let iv = IV.as_bytes().to_owned();
//!
//! let algo = SymmetricAlgorithm::open(SymmetricAlgorithmId::Aes, ChainingMode::Cbc).unwrap();
//! let key = algo.new_key(KEY.as_bytes()).unwrap();
//! let ciphertext = key.encrypt(Some(&mut iv.clone()), DATA.as_bytes(), Some(Padding::Block)).unwrap();
//! let plaintext = key.decrypt(Some(&mut iv.clone()), ciphertext.as_slice(), Some(Padding::Block)).unwrap();
//!
//! assert_eq!(std::str::from_utf8(&plaintext.as_slice()[..DATA.len()]).unwrap(), DATA);
//! ```
//!
//! [`SymmetricAlgorithmId`]: enum.SymmetricAlgorithmId.html
//! [`ChainingMode`]: enum.ChainingMode.html
//! [`SymmetricAlgorithm.valid_key_sizes`]: struct.SymmetricAlgorithm.html#method.valid_key_sizes
use crate::buffer::Buffer;
use crate::helpers::{AlgoHandle, Handle, KeyHandle, WindowsString};
use crate::property::{self, BlockLength, KeyLength, KeyLengths, MessageBlockLength, ObjectLength};
use crate::{Error, Result};
use std::fmt;
use std::marker::PhantomData;
use std::mem::MaybeUninit;
use std::ptr::null_mut;
use winapi::shared::bcrypt::*;
use winapi::shared::minwindef::{PUCHAR, ULONG};
/// Symmetric algorithm identifiers
#[derive(Debug, Clone, Copy, PartialOrd, PartialEq)]
pub enum SymmetricAlgorithmId {
/// The advanced encryption standard symmetric encryption algorithm.
///
/// Standard: FIPS 197.
Aes,
/// The data encryption standard symmetric encryption algorithm.
///
/// Standard: FIPS 46-3, FIPS 81.
Des,
/// The extended data encryption standard symmetric encryption algorithm.
///
/// Standard: None.
DesX,
/// The RC2 block symmetric encryption algorithm.
///
/// Standard: RFC 2268.
Rc2,
// The RC4 symmetric encryption algorithm.
//
// Standard: Various.
//Rc4,
/// The triple data encryption standard symmetric encryption algorithm.
///
/// Standard: SP800-67, SP800-38A.
TripleDes,
/// The 112-bit triple data encryption standard symmetric encryption algorithm.
///
/// Standard: SP800-67, SP800-38A.
TripleDes112,
// The advanced encryption standard symmetric encryption algorithm in XTS mode.
//
// Standard: SP-800-38E, IEEE Std 1619-2007.
//
// **Windows 10**: Support for this algorithm begins.
//XtsAes,
}
impl SymmetricAlgorithmId {
fn to_str(self) -> &'static str {
match self {
Self::Aes => BCRYPT_AES_ALGORITHM,
Self::Des => BCRYPT_DES_ALGORITHM,
Self::DesX => BCRYPT_DESX_ALGORITHM,
Self::Rc2 => BCRYPT_RC2_ALGORITHM,
//Self::Rc4 => BCRYPT_RC4_ALGORITHM,
Self::TripleDes => BCRYPT_3DES_ALGORITHM,
Self::TripleDes112 => BCRYPT_3DES_112_ALGORITHM,
//Self::XtsAes => BCRYPT_XTS_AES_ALGORITHM,
}
}
}
/// Symmetric algorithm chaining modes
#[derive(Debug, Clone, Copy, PartialOrd, PartialEq)]
pub enum ChainingMode {
/// Electronic Codebook
///
/// Standard: SP800-38A
Ecb,
/// Cipher Block Chaining
///
/// Standard: SP800-38A
Cbc,
/// Cipher Feedback
///
/// Standard: SP800-38A
Cfb,
// Counter with CBC. Only available on AES algorithm.
//
// Standard: SP800-38C
//
// **Windows Vista**: This value is supported beginning with Windows Vista with SP1.
//Ccm,
// Galois/Counter Mode. Only available on AES algorithm.
//
// Standard: SP800-38D
//
// **Windows Vista**: This value is supported beginning with Windows Vista with SP1.
//Gcm,
}
impl ChainingMode {
fn to_str(self) -> &'static str {
match self {
Self::Ecb => BCRYPT_CHAIN_MODE_ECB,
Self::Cbc => BCRYPT_CHAIN_MODE_CBC,
Self::Cfb => BCRYPT_CHAIN_MODE_CFB,
//Self::Ccm => BCRYPT_CHAIN_MODE_CCM,
//Self::Gcm => BCRYPT_CHAIN_MODE_GCM,
}
}
}
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
/// Padding to be used together with symmetric algorithms
pub enum Padding {
/// Pad the data to the next block size.
///
/// N.B. Data equal in length to the block size will be padded to the *next*
/// block size.
Block,
}
/// Marker trait for a symmetric algorithm.
pub trait Algorithm {
const ID: Option<SymmetricAlgorithmId>;
fn id(&self) -> SymmetricAlgorithmId;
}
impl Algorithm for SymmetricAlgorithmId {
const ID: Option<SymmetricAlgorithmId> = None;
fn id(&self) -> SymmetricAlgorithmId {
*self
}
}
/// The advanced encryption standard symmetric encryption algorithm.
///
/// Standard: FIPS 197
#[derive(Default, Clone, Copy, PartialEq, Eq)]
pub struct Aes;
impl Algorithm for Aes {
const ID: Option<SymmetricAlgorithmId> = Some(SymmetricAlgorithmId::Aes);
fn id(&self) -> SymmetricAlgorithmId {
SymmetricAlgorithmId::Aes
}
}
/// The data encryption standard symmetric encryption algorithm.
///
/// Standard: FIPS 46-3, FIPS 81.
#[derive(Default, Clone, Copy, PartialEq, Eq)]
pub struct Des;
impl Algorithm for Des {
const ID: Option<SymmetricAlgorithmId> = Some(SymmetricAlgorithmId::Des);
fn id(&self) -> SymmetricAlgorithmId {
SymmetricAlgorithmId::Des
}
}
/// The extended data encryption standard symmetric encryption algorithm.
///
/// Standard: None.
#[derive(Default, Clone, Copy, PartialEq, Eq)]
pub struct DesX;
impl Algorithm for DesX {
const ID: Option<SymmetricAlgorithmId> = Some(SymmetricAlgorithmId::DesX);
fn id(&self) -> SymmetricAlgorithmId {
SymmetricAlgorithmId::DesX
}
}
/// The RC2 block symmetric encryption algorithm.
///
/// Standard: RFC 2268.
#[derive(Default, Clone, Copy, PartialEq, Eq)]
pub struct Rc2;
impl Algorithm for Rc2 {
const ID: Option<SymmetricAlgorithmId> = Some(SymmetricAlgorithmId::Rc2);
fn id(&self) -> SymmetricAlgorithmId {
SymmetricAlgorithmId::Rc2
}
}
/// The triple data encryption standard symmetric encryption algorithm.
///
/// Standard: SP800-67, SP800-38A.
#[derive(Default, Clone, Copy, PartialEq, Eq)]
pub struct TripleDes;
impl Algorithm for TripleDes {
const ID: Option<SymmetricAlgorithmId> = Some(SymmetricAlgorithmId::TripleDes);
fn id(&self) -> SymmetricAlgorithmId {
SymmetricAlgorithmId::TripleDes
}
}
/// The 112-bit triple data encryption standard symmetric encryption algorithm.
///
/// Standard: SP800-67, SP800-38A.
#[derive(Default, Clone, Copy, PartialEq, Eq)]
pub struct TripleDes112;
impl Algorithm for TripleDes112 {
const ID: Option<SymmetricAlgorithmId> = Some(SymmetricAlgorithmId::TripleDes112);
fn id(&self) -> SymmetricAlgorithmId {
SymmetricAlgorithmId::TripleDes112
}
}
/// Marker trait denoting key size in bits.
pub trait KeyBits {
/// Value known at compile-time, `None` if only known at run-time.
const VALUE: Option<usize> = None;
}
/// Key length known at run-time.
pub struct DynamicKeyBits;
impl KeyBits for DynamicKeyBits {
const VALUE: Option<usize> = None;
}
/// Handle to a symmetric key.
pub struct Key<A: Algorithm, B: KeyBits = DynamicKeyBits> {
inner: SymmetricAlgorithmKey,
_algo: PhantomData<A>,
_bits: PhantomData<B>,
}
impl<A: Algorithm, B: KeyBits> fmt::Debug for Key<A, B> {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(
f,
"Key<{}> {{ ... }}",
A::ID.map(|x| x.to_str()).unwrap_or_default()
)
}
}
impl<A: Algorithm, B: KeyBits> core::convert::TryFrom<SymmetricAlgorithmKey> for Key<A, B> {
type Error = SymmetricAlgorithmKey;
fn try_from(value: SymmetricAlgorithmKey) -> Result<Self, Self::Error> {
let name = value
.handle
.get_property_unsized::<property::AlgorithmName>()
.expect("Key to always know its algorithm name");
let name = WindowsString::from_bytes_with_nul(Vec::from(name).into()).unwrap();
let id = A::ID
.map(SymmetricAlgorithmId::to_str)
.map(WindowsString::from)
.unwrap_or_else(WindowsString::new);
let key_size = value.key_size().expect("Key to know its length");
if name == id && B::VALUE.map_or(true, |len| len == key_size) {
Ok(Self {
inner: value,
_algo: PhantomData,
_bits: PhantomData,
})
} else {
Err(value)
}
}
}
impl<A: Algorithm, B: KeyBits> AsRef<SymmetricAlgorithmKey> for Key<A, B> {
fn as_ref(&self) -> &SymmetricAlgorithmKey {
&self.inner
}
}
impl<A: Algorithm, B: KeyBits> Key<A, B> {
/// Discards type-level information and returns a dynamic key handle.
pub fn into_erased(self) -> SymmetricAlgorithmKey {
self.inner
}
}
impl<A: Algorithm, B: KeyBits> Clone for Key<A, B> {
fn clone(&self) -> Self {
let mut handle = KeyHandle::new();
let mut _object = Vec::with_capacity(self.inner._object.len());
unsafe {
Error::check(BCryptDuplicateKey(
self.inner.handle.as_ptr(),
handle.as_mut_ptr(),
_object.as_mut_slice().as_mut_ptr(),
_object.capacity() as u32,
0,
))
}
.expect(
"CNG to succesfully duplicate a previously successfully created key
object",
);
Self {
inner: SymmetricAlgorithmKey {
handle,
_object: Buffer::from_vec(_object),
},
_algo: PhantomData,
_bits: PhantomData,
}
}
}
/// Symmetric algorithm
pub struct SymmetricAlgorithm {
handle: AlgoHandle,
chaining_mode: ChainingMode,
}
impl SymmetricAlgorithm {
/// Open a symmetric algorithm provider
///
/// # Examples
///
/// ```
/// # use win_crypto_ng::symmetric::{ChainingMode, SymmetricAlgorithm, SymmetricAlgorithmId};
/// let algo = SymmetricAlgorithm::open(SymmetricAlgorithmId::Aes, ChainingMode::Cbc);
///
/// assert!(algo.is_ok());
/// ```
pub fn open(id: SymmetricAlgorithmId, chaining_mode: ChainingMode) -> Result<Self> {
let handle = AlgoHandle::open(id.to_str())?;
let value = WindowsString::from(chaining_mode.to_str());
handle.set_property::<property::ChainingMode>(value.as_slice_with_nul())?;
Ok(Self {
handle,
chaining_mode,
})
}
/// Returns the chaining mode of the algorithm.
///
/// # Examples
///
/// ```
/// # use win_crypto_ng::symmetric::{ChainingMode, SymmetricAlgorithm, SymmetricAlgorithmId};
/// let algo = SymmetricAlgorithm::open(SymmetricAlgorithmId::Aes, ChainingMode::Cbc).unwrap();
/// let chaining_mode = algo.chaining_mode();
///
/// assert_eq!(ChainingMode::Cbc, chaining_mode);
/// ```
pub fn chaining_mode(&self) -> ChainingMode {
self.chaining_mode
}
/// Returns a list of all the valid key sizes for an algorithm.
///
/// The key sizes are defined in bits.
///
/// # Examples
///
/// ```
/// # use win_crypto_ng::symmetric::{ChainingMode, SymmetricAlgorithm, SymmetricAlgorithmId};
/// let algo = SymmetricAlgorithm::open(SymmetricAlgorithmId::Aes, ChainingMode::Cbc).unwrap();
/// let valid_key_sizes = algo.valid_key_sizes().unwrap();
///
/// assert_eq!([128, 192, 256], valid_key_sizes.as_slice());
/// ```
pub fn valid_key_sizes(&self) -> Result<Vec<usize>> {
let key_sizes = self.handle.get_property::<KeyLengths>()?;
if key_sizes.dwIncrement != 0 {
Ok(
(key_sizes.dwMinLength as usize..=key_sizes.dwMaxLength as usize)
.step_by(key_sizes.dwIncrement as usize)
.collect(),
)
} else {
Ok(vec![key_sizes.dwMinLength as usize])
}
}
/// Creates a new key from the algorithm
///
/// The secret value is the shared-secret between the two parties.
/// For example, it may be a hash of a password or some other reproducible data.
/// The size of the secret must fit with one of the valid key sizes (see [`valid_key_sizes`]).
///
/// [`valid_key_sizes`]: #method.valid_key_sizes
pub fn new_key(&self, secret: &[u8]) -> Result<SymmetricAlgorithmKey> {
let object_size = self.handle.get_property::<ObjectLength>()?;
let mut key_handle = KeyHandle::new();
let mut object = Buffer::new(object_size as usize);
unsafe {
Error::check(BCryptGenerateSymmetricKey(
self.handle.as_ptr(),
key_handle.as_mut_ptr(),
object.as_mut_ptr(),
object.len() as ULONG,
secret.as_ptr() as PUCHAR,
secret.len() as ULONG,
0,
))
.map(|_| SymmetricAlgorithmKey {
handle: key_handle,
_object: object,
})
}
}
}
/// Symmetric algorithm key
pub struct SymmetricAlgorithmKey {
handle: KeyHandle,
_object: Buffer,
}
impl fmt::Debug for SymmetricAlgorithmKey {
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
write!(f, "SymmetricAlgorithmKey {{ ... }}")
}
}
impl SymmetricAlgorithmKey {
/// Returns the key value size in bits.
///
/// # Examples
///
/// ```
/// # use win_crypto_ng::symmetric::{ChainingMode, SymmetricAlgorithm, SymmetricAlgorithmId};
/// # let algo = SymmetricAlgorithm::open(SymmetricAlgorithmId::Aes, ChainingMode::Cbc).unwrap();
/// let key = algo.new_key("0123456789ABCDEF".as_bytes()).unwrap();
/// let key_size = key.key_size().unwrap();
///
/// assert_eq!(128, key_size);
/// ```
pub fn key_size(&self) -> Result<usize> {
self.handle
.get_property::<KeyLength>()
.map(|key_size| key_size as usize)
}
/// Returns the block size in bytes.
///
/// This can be useful to find what size the IV should be.
///
/// # Examples
///
/// ```
/// # use win_crypto_ng::symmetric::{ChainingMode, SymmetricAlgorithm, SymmetricAlgorithmId};
/// # let algo = SymmetricAlgorithm::open(SymmetricAlgorithmId::Aes, ChainingMode::Cbc).unwrap();
/// let key = algo.new_key("0123456789ABCDEF".as_bytes()).unwrap();
/// let key_size = key.block_size().unwrap();
///
/// assert_eq!(16, key_size);
/// ```
pub fn block_size(&self) -> Result<usize> {
self.handle
.get_property::<BlockLength>()
.map(|block_size| block_size as usize)
}
/// Sets the message block length.
///
/// This can be set on any key handle that has the CFB chaining mode set. By
/// default, it is set to 1 for 8-bit CFB. Setting it to the block
/// size in bytes causes full-block CFB to be used. For XTS keys it is used to
/// set the size, in bytes, of the XTS Data Unit (commonly 512 or 4096).
///
/// See [here](https://docs.microsoft.com/windows/win32/seccng/cng-property-identifiers#BCRYPT_MESSAGE_BLOCK_LENGTH)
/// for more info.
pub fn set_msg_block_len(&mut self, len: usize) -> Result<()> {
self.handle
.set_property::<MessageBlockLength>(&(len as u32))
}
/// Encrypts data using the symmetric key
///
/// The IV is not needed for [`ChainingMode::Ecb`], so `None` should be used
/// in this case.
///
/// For chaining modes needing an IV, `None` can be used and a default IV will be used.
/// This is not documented on Microsoft's website and is therefore not recommended.
///
/// The data is padded with zeroes to a multiple of the block size of the cipher. If
/// the data length equals the block size of the cipher, one additional block of
/// padding is appended to the data.
///
/// # Examples
///
/// ```
/// # use win_crypto_ng::symmetric::{ChainingMode, SymmetricAlgorithm, SymmetricAlgorithmId};
/// # use win_crypto_ng::symmetric::Padding;
/// # let algo = SymmetricAlgorithm::open(SymmetricAlgorithmId::Aes, ChainingMode::Cbc).unwrap();
/// let key = algo.new_key("0123456789ABCDEF".as_bytes()).unwrap();
/// let mut iv = b"_THIS_IS_THE_IV_".to_vec();
/// let plaintext = "THIS_IS_THE_DATA".as_bytes();
/// let ciphertext = key.encrypt(Some(&mut iv), plaintext, Some(Padding::Block)).unwrap();
///
/// assert_eq!(ciphertext.as_slice(), [
/// 0xE4, 0xD9, 0x90, 0x64, 0xA6, 0xA6, 0x5F, 0x7E,
/// 0x70, 0xDB, 0xF9, 0xDD, 0xE7, 0x0D, 0x6F, 0x6A,
/// 0x0C, 0xEC, 0xDB, 0xAD, 0x01, 0xB4, 0xB1, 0xDE,
/// 0xB4, 0x4A, 0xB8, 0xA0, 0xEA, 0x0E, 0x8F, 0x31]);
/// ```
pub fn encrypt(
&self,
iv: Option<&mut [u8]>,
data: &[u8],
padding: Option<Padding>,
) -> Result<Buffer> {
let (iv_ptr, iv_len) = iv
.map(|iv| (iv.as_mut_ptr(), iv.len() as ULONG))
.unwrap_or((null_mut(), 0));
let flags = match padding {
Some(Padding::Block) => BCRYPT_BLOCK_PADDING,
_ => 0,
};
let mut encrypted_len = MaybeUninit::<ULONG>::uninit();
unsafe {
Error::check(BCryptEncrypt(
self.handle.as_ptr(),
data.as_ptr() as PUCHAR,
data.len() as ULONG,
null_mut(),
iv_ptr,
iv_len,
null_mut(),
0,
encrypted_len.as_mut_ptr(),
flags,
))?;
let mut output = Buffer::new(encrypted_len.assume_init() as usize);
Error::check(BCryptEncrypt(
self.handle.as_ptr(),
data.as_ptr() as PUCHAR,
data.len() as ULONG,
null_mut(),
iv_ptr,
iv_len,
output.as_mut_ptr(),
output.len() as ULONG,
encrypted_len.as_mut_ptr(),
flags,
))
.map(|_| output)
}
}
/// Decrypts data using the symmetric key
///
/// The IV is not needed for [`ChainingMode::Ecb`], so `None` should be used
/// in this case.
///
/// For chaining modes needing an IV, `None` can be used and a default IV will be used.
/// This is not documented on Microsoft's website and is therefore not recommended.
///
/// # Examples
///
/// ```
/// # use win_crypto_ng::symmetric::{ChainingMode, SymmetricAlgorithm, SymmetricAlgorithmId};
/// # use win_crypto_ng::symmetric::Padding;
/// # let algo = SymmetricAlgorithm::open(SymmetricAlgorithmId::Aes, ChainingMode::Cbc).unwrap();
/// let key = algo.new_key("0123456789ABCDEF".as_bytes()).unwrap();
/// let mut iv = b"_THIS_IS_THE_IV_".to_vec();
/// let ciphertext = [
/// 0xE4, 0xD9, 0x90, 0x64, 0xA6, 0xA6, 0x5F, 0x7E,
/// 0x70, 0xDB, 0xF9, 0xDD, 0xE7, 0x0D, 0x6F, 0x6A,
/// 0x0C, 0xEC, 0xDB, 0xAD, 0x01, 0xB4, 0xB1, 0xDE,
/// 0xB4, 0x4A, 0xB8, 0xA0, 0xEA, 0x0E, 0x8F, 0x31
/// ];
/// let plaintext = key.decrypt(Some(&mut iv), &ciphertext, Some(Padding::Block)).unwrap();
///
/// assert_eq!(&plaintext.as_slice()[..16], "THIS_IS_THE_DATA".as_bytes());
/// ```
pub fn decrypt(
&self,
iv: Option<&mut [u8]>,
data: &[u8],
padding: Option<Padding>,
) -> Result<Buffer> {
let (iv_ptr, iv_len) = iv
.map(|iv| (iv.as_mut_ptr(), iv.len() as ULONG))
.unwrap_or((null_mut(), 0));
let flags = match padding {
Some(Padding::Block) => BCRYPT_BLOCK_PADDING,
_ => 0,
};
let mut plaintext_len = MaybeUninit::<ULONG>::uninit();
unsafe {
Error::check(BCryptDecrypt(
self.handle.as_ptr(),
data.as_ptr() as PUCHAR,
data.len() as ULONG,
null_mut(),
iv_ptr,
iv_len,
null_mut(),
0,
plaintext_len.as_mut_ptr(),
flags,
))?;
let mut output = Buffer::new(plaintext_len.assume_init() as usize);
Error::check(BCryptDecrypt(
self.handle.as_ptr(),
data.as_ptr() as PUCHAR,
data.len() as ULONG,
null_mut(),
iv_ptr,
iv_len,
output.as_mut_ptr(),
output.len() as ULONG,
plaintext_len.as_mut_ptr(),
flags,
))
.map(|_| output)
}
}
}
#[cfg(feature = "block-cipher")]
pub use block_cipher_trait::BlockCipherKey;
#[cfg(feature = "block-cipher")]
mod block_cipher_trait {
use super::*;
use core::convert::TryFrom;
/// Helper struct that implements [`KeyInit`] + [`BlockCipher`] + [`BlockEncrypt`] + [`BlockDecrypt`] traits.
///
/// Windows CNG API allows to create symmetric cipher keys with chaining
/// modes predefined. Because `BlockEncrypt` and `BlockDecrypt` traits are
/// only concerned with the underlying cipher op (and which can be further
/// used to compose chaining mode on top of), we need to make sure that
/// the inherent chaining mode is set to ECB (which can be thought of as
/// having no chaining mode).
pub struct BlockCipherKey<A: Algorithm, B: KeyBits> {
key: super::Key<A, B>,
_algo: PhantomData<A>,
_bits: PhantomData<B>,
}
impl<A: Algorithm, B: KeyBits> Clone for BlockCipherKey<A, B> {
fn clone(&self) -> Self {
BlockCipherKey {
key: self.key.clone(),
_algo: PhantomData,
_bits: PhantomData,
}
}
}
impl<A: Algorithm, B: KeyBits> BlockCipherKey<A, B> {
pub fn into_key(self) -> super::Key<A, B> {
self.key
}
}
impl<A: Algorithm, B: KeyBits> super::Key<A, B> {
/// Returns a helper type that implements [`KeyInit`] + [`BlockCipher`] + [`BlockEncrypt`] + [`BlockDecrypt`] traits.
///
/// Returns `Ok` if and only if the underlying key is set to ECB
/// chaining mode, see [`BlockCipherKey`] for more details.
///
/// [`BlockCipherKey`]: struct.BlockCipherKey.html
pub fn try_into_block_cipher(self) -> Result<BlockCipherKey<A, B>, Self> {
let name = self
.inner
.handle
.get_property_unsized::<property::ChainingMode>()
.expect("Key to always know its algorithm name");
// Unfortunately Windows sometimes insists on returning concatenated
// identifiers with \0 in between (so we decode it manually),
// for example: "ChainingModeECB\u{0}ChainingModeCBC\u{0}".
let mode: String = std::char::decode_utf16(name.iter().cloned())
.map(|c| c.unwrap_or(std::char::REPLACEMENT_CHARACTER))
.collect();
if mode.starts_with(ChainingMode::Ecb.to_str()) {
Ok(BlockCipherKey {
key: self,
_algo: PhantomData,
_bits: PhantomData,
})
} else {
Err(self)
}
}
}
use cipher::generic_array::{typenum, ArrayLength};
use cipher::inout::InOut;
use cipher::{
Block, BlockBackend, BlockCipher, BlockClosure, BlockDecrypt, BlockEncrypt, BlockSizeUser,
Key, KeyInit, KeySizeUser, ParBlocksSizeUser,
};
impl<T: typenum::Unsigned> KeyBits for T {
const VALUE: Option<usize> = Some(Self::USIZE);
}
macro_rules! impl_block_cipher {
($(
($algo: ty, block: $block_size: ty, par: $par_blocks: ty, KeyBits: $($tt:tt)*)
),* $(,)*
) => {
$(
impl<B: KeyBits> KeySizeUser for BlockCipherKey<$algo, B>
where
B: typenum::Unsigned,
// Fancy way of allowing only {128, 192, 256}
B: $($tt)*,
// Help the trait solver see that it's also divisible by 8
B: typenum::PartialDiv<typenum::U8>,
<B as typenum::PartialDiv<typenum::U8>>::Output: ArrayLength<u8>,
{
/// Key size in bytes with which cipher guaranteed to be initialized.
type KeySize = <B as typenum::PartialDiv<typenum::U8>>::Output;
}
impl<B: KeyBits> KeyInit for BlockCipherKey<$algo, B>
where
Self: KeySizeUser
{
/// Create new block cipher instance from key with fixed size.
fn new(key: &Key<Self>) -> Self {
// NOTE: We specifically use ECB chaining mode coupled with empty IV
// (in subsequent `{encrypt, decrypt}_block` impls) to provide a
// transparent block cipher provided by the CNG API.
let algo = <$algo>::default();
let prov = SymmetricAlgorithm::open(algo.id(), ChainingMode::Ecb).unwrap();
let key = prov.new_key(key).unwrap();
match super::Key::try_from(key) {
Ok(key) => Self {
key,
_algo: PhantomData,
_bits: PhantomData,
},
Err(..) => panic!(),
}
}
}
impl<B: KeyBits> BlockCipher for BlockCipherKey<$algo, B> {}
impl<B: KeyBits> BlockSizeUser for BlockCipherKey<$algo, B> {
/// Size of the block in bytes
type BlockSize = $block_size;
}
impl<B: KeyBits> ParBlocksSizeUser for BlockCipherKey<$algo, B> {
/// Number of blocks which can be processed in parallel.
type ParBlocksSize = $par_blocks;
}
// BlockEncrypt and BlockDecrypt impls are manual expansions of the
// `cipher::impl_simple_block_encdec` macro. We cannot use the macro
// directly as it cannot parse the `$algo` token.
impl<B: KeyBits> BlockEncrypt for BlockCipherKey<$algo, B> {
fn encrypt_with_backend(&self, f: impl BlockClosure<BlockSize = $block_size>) {
struct EncBack<'a, B: KeyBits>(&'a BlockCipherKey<$algo, B>);
impl<'a, B: KeyBits> BlockSizeUser for EncBack<'a, B> {
type BlockSize = $block_size;
}
impl<'a, B: KeyBits> ParBlocksSizeUser for EncBack<'a, B> {
type ParBlocksSize = $par_blocks;
}
impl<'a, B: KeyBits> BlockBackend for EncBack<'a, B> {
#[inline(always)]
fn proc_block(&mut self, mut block: InOut<'_, '_, Block<Self>>) {
// NOTE: We check that chaining mode is already ECB in
// either `KeyInit` or `try_into_block_cipher`.
// FIXME: Adapt the implementation to use the in-place one
let key = self.0.key.as_ref();
let buf = key.encrypt(None, block.get_in().as_slice(), None).unwrap();
let mut buf = buf.into_inner();
block.get_out()[..].copy_from_slice(buf.as_mut_slice());
}
}
f.call(&mut EncBack(self))
}
}
impl<B: KeyBits> BlockDecrypt for BlockCipherKey<$algo, B> {
fn decrypt_with_backend(&self, f: impl BlockClosure<BlockSize = $block_size>) {
struct DecBack<'a, B: KeyBits>(&'a BlockCipherKey<$algo, B>);
impl<'a, B: KeyBits> BlockSizeUser for DecBack<'a, B> {
type BlockSize = $block_size;
}
impl<'a, B: KeyBits> ParBlocksSizeUser for DecBack<'a, B> {
type ParBlocksSize = $par_blocks;
}
impl<'a, B: KeyBits> BlockBackend for DecBack<'a, B> {
#[inline(always)]
fn proc_block(&mut self, mut block: InOut<'_, '_, Block<Self>>) {
// NOTE: We check that chaining mode is already ECB in
// either `KeyInit` or `try_into_block_cipher`.
// FIXME: Adapt the implementation to use the in-place one
let key = self.0.key.as_ref();
let buf = key.decrypt(None, block.get_in().as_slice(), None).unwrap();
let mut buf = buf.into_inner();
block.get_out()[..].copy_from_slice(buf.as_mut_slice());
}
}
f.call(&mut DecBack(self))
}
}
)*
}
}
use typenum::consts::{B1, U1, U128, U16, U192, U256, U64, U8};
use typenum::type_operators::{IsEqual, IsGreaterOrEqual, IsLessOrEqual, PartialDiv};
// NOTE: These are values as supported by CNG (tested on Windows 10 2004).
impl_block_cipher!(
(Aes, block: U16, par: U1, KeyBits:
// {128, 192, 256}
IsGreaterOrEqual<U128, Output = B1> +
IsLessOrEqual<U256, Output = B1> +
PartialDiv<U64>
),
(Rc2, block: U8, par: U1, KeyBits:
// {16, 24, .., 128}
IsGreaterOrEqual<U16, Output = B1> +
IsLessOrEqual<U128, Output = B1> +
PartialDiv<U8>
),
(Des, block: U8, par: U1, KeyBits: IsEqual<U64, Output = B1>),
(DesX, block: U8, par: U1, KeyBits: IsEqual<U192, Output = B1>),
(TripleDes, block: U8, par: U1, KeyBits: IsEqual<U192, Output = B1>),
(TripleDes112, block: U8, par: U1, KeyBits:
// {128, 192}
IsGreaterOrEqual<U128, Output = B1> +
IsLessOrEqual<U192, Output = B1> +
PartialDiv<U64>
)
);
}
#[cfg(test)]
mod tests {
use super::*;
const SECRET: &'static str = "0123456789ABCDEF0123456789ABCDEF";
const IV: &'static str = "0123456789ABCDEF0123456789ABCDEF";
const DATA: &'static str = "0123456789ABCDEF0123456789ABCDEF";
#[test]
fn aes() {
check_common_chaining_modes(SymmetricAlgorithmId::Aes, 16, 16);
check_common_chaining_modes(SymmetricAlgorithmId::Aes, 24, 16);
check_common_chaining_modes(SymmetricAlgorithmId::Aes, 32, 16);
}
#[test]
fn des() {
check_common_chaining_modes(SymmetricAlgorithmId::Des, 8, 8);
}
#[test]
fn des_x() {
check_common_chaining_modes(SymmetricAlgorithmId::DesX, 24, 8);
}
#[test]
fn rc2() {
check_common_chaining_modes(SymmetricAlgorithmId::Rc2, 2, 8);
check_common_chaining_modes(SymmetricAlgorithmId::Rc2, 3, 8);
check_common_chaining_modes(SymmetricAlgorithmId::Rc2, 4, 8);
check_common_chaining_modes(SymmetricAlgorithmId::Rc2, 5, 8);
check_common_chaining_modes(SymmetricAlgorithmId::Rc2, 6, 8);
check_common_chaining_modes(SymmetricAlgorithmId::Rc2, 7, 8);
check_common_chaining_modes(SymmetricAlgorithmId::Rc2, 8, 8);
check_common_chaining_modes(SymmetricAlgorithmId::Rc2, 9, 8);
check_common_chaining_modes(SymmetricAlgorithmId::Rc2, 10, 8);
check_common_chaining_modes(SymmetricAlgorithmId::Rc2, 11, 8);
check_common_chaining_modes(SymmetricAlgorithmId::Rc2, 12, 8);
check_common_chaining_modes(SymmetricAlgorithmId::Rc2, 13, 8);
check_common_chaining_modes(SymmetricAlgorithmId::Rc2, 14, 8);
check_common_chaining_modes(SymmetricAlgorithmId::Rc2, 15, 8);
check_common_chaining_modes(SymmetricAlgorithmId::Rc2, 16, 8);
}
#[test]
fn triple_des() {
check_common_chaining_modes(SymmetricAlgorithmId::TripleDes, 24, 8);
}
#[test]
fn triple_des_112() {
check_common_chaining_modes(SymmetricAlgorithmId::TripleDes112, 16, 8);
}
fn check_common_chaining_modes(
algo_id: SymmetricAlgorithmId,
key_size: usize,
block_size: usize,
) {
check_encryption_decryption(
algo_id,
ChainingMode::Ecb,
&SECRET.as_bytes()[..key_size],
None,
&DATA.as_bytes()[..block_size],
block_size,
);
check_encryption_decryption(
algo_id,
ChainingMode::Cbc,
&SECRET.as_bytes()[..key_size],
Some(IV.as_bytes()[..block_size].to_vec().as_mut()),
&DATA.as_bytes(),
block_size,
);
check_encryption_decryption(
algo_id,
ChainingMode::Cfb,
&SECRET.as_bytes()[..key_size],
Some(IV.as_bytes()[..block_size].to_vec().as_mut()),
&DATA.as_bytes(),
block_size,
);
}
fn check_encryption_decryption(
algo_id: SymmetricAlgorithmId,
chaining_mode: ChainingMode,
secret: &[u8],
iv: Option<&mut [u8]>,
data: &[u8],
expected_block_size: usize,
) {
let iv_cloned = || iv.as_ref().map(|x| x.to_vec());
let algo = SymmetricAlgorithm::open(algo_id, chaining_mode).unwrap();
let key = algo.new_key(secret).unwrap();
let ciphertext = key
.encrypt(iv_cloned().as_mut().map(|x| x.as_mut()), data, None)
.unwrap();
let plaintext = key
.decrypt(
iv_cloned().as_mut().map(|x| x.as_mut()),
ciphertext.as_slice(),
None,
)
.unwrap();
assert_eq!(data, &plaintext.as_slice()[..data.len()]);
assert_eq!(secret.len() * 8, key.key_size().unwrap());
assert_eq!(expected_block_size, key.block_size().unwrap());
}
#[cfg(feature = "block-cipher")]
fn _assert_aes_keysize_valid() {
use cipher::{generic_array::typenum, KeyInit};
fn _assert_trait_impl<T: KeyInit>() {}
_assert_trait_impl::<BlockCipherKey<Aes, typenum::U128>>();
_assert_trait_impl::<BlockCipherKey<Aes, typenum::U192>>();
_assert_trait_impl::<BlockCipherKey<Aes, typenum::U256>>();
}
#[cfg(feature = "block-cipher")]
#[test]
fn cipher_trait() {
use cipher::generic_array::{typenum::Unsigned, GenericArray};
use cipher::{BlockDecrypt, BlockEncrypt, BlockSizeUser};
use core::convert::TryFrom;
macro_rules! run_tests {
($(($algo: ty, key: $key: literal)),* $(,)*) => {
$({
let algo = <$algo>::default();
let provider = SymmetricAlgorithm::open(algo.id(), ChainingMode::Ecb).unwrap();
let key: Vec<u8> = (0..$key).collect();
let key = provider.new_key(&key).unwrap();
let typed = Key::<$algo>::try_from(key).unwrap();
let typed = typed.try_into_block_cipher().unwrap();
let block_size = <BlockCipherKey<$algo, DynamicKeyBits> as BlockSizeUser>::BlockSize::USIZE;
let block_size = u8::try_from(block_size).unwrap();
let plaintext: Vec<u8> = (0..block_size).collect();
let mut data = plaintext.clone();
typed.encrypt_block(GenericArray::from_mut_slice(data.as_mut()));
assert_ne!(data, plaintext);
typed.decrypt_block(GenericArray::from_mut_slice(data.as_mut()));
assert_eq!(data, plaintext)
})*
};
}
run_tests!(
(Aes, key: 16),
(Aes, key: 24),
(Aes, key: 32),
(Rc2, key: 2),
(Rc2, key: 8),
(Rc2, key: 128),
(Des, key: 8),
(DesX, key: 24),
(TripleDes, key: 24),
(TripleDes112, key: 16),
(TripleDes112, key: 24),
);
}
#[cfg(feature = "block-cipher")]
#[test]
fn marker_bits() {
use cipher::generic_array::typenum;
use core::convert::TryFrom;
let algo = SymmetricAlgorithm::open(SymmetricAlgorithmId::Aes, ChainingMode::Ecb).unwrap();
let key = algo.new_key(b"123456789012345678901234").unwrap();
if let Ok(..) = Key::<Aes, typenum::U128>::try_from(key) {
panic!();
}
let key = algo.new_key(b"123456789012345678901234").unwrap();
if let Ok(..) = Key::<Aes, typenum::U256>::try_from(key) {
panic!();
}
let key = algo.new_key(b"123456789012345678901234").unwrap();
if let Err(..) = Key::<Aes, typenum::U192>::try_from(key) {
panic!();
}
// Test 256 bit keys
let key = algo.new_key(b"12345678901234567890123456789012").unwrap();
if let Ok(..) = Key::<Aes, typenum::U128>::try_from(key) {
panic!();
}
let key = algo.new_key(b"12345678901234567890123456789012").unwrap();
if let Ok(..) = Key::<Aes, typenum::U192>::try_from(key) {
panic!();
}
let key = algo.new_key(b"12345678901234567890123456789012").unwrap();
if let Err(..) = Key::<Aes, typenum::U256>::try_from(key) {
panic!();
}
}
#[test]
fn send() {
use crate::helpers::assert_send;
assert_send::<SymmetricAlgorithm>();
assert_send::<SymmetricAlgorithmKey>();
assert_send::<Key<SymmetricAlgorithmId>>();
assert_send::<Key<Aes>>();
}
}