1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
//! Trampoline implementation for Winch.
//!
//! This module contains all the necessary pieces to emit the various
//! trampolines required by Wasmtime to call JIT code.
//
// TODO
//
// * Remove the usage of hardcoded operand sizes (`OperandSize::S64`) when
// loading/storing the VM context pointer. The real value of the operand size
// and VM context type should be derived from the ABI's pointer size. This is
// going to be relevant once 32-bit architectures are supported.
use crate::{
    abi::{ABIOperand, ABIParams, ABISig, RetArea, ABI},
    codegen::ptr_type_from_ptr_size,
    isa::CallingConvention,
    masm::{CalleeKind, MacroAssembler, OperandSize, RegImm, SPOffset},
    reg::Reg,
};
use anyhow::{anyhow, Result};
use smallvec::SmallVec;
use std::mem;
use wasmtime_environ::{FuncIndex, PtrSize, WasmFuncType, WasmValType};

/// The supported trampoline kinds.
/// See <https://github.com/bytecodealliance/rfcs/blob/main/accepted/tail-calls.md#new-trampolines-and-vmcallercheckedanyfunc-changes>
/// for more details.
pub enum TrampolineKind {
    /// Calling from native to Wasm, using the array calling convention.
    ArrayToWasm(FuncIndex),
    /// Calling from native to Wasm.
    NativeToWasm(FuncIndex),
    /// Calling from Wasm to native.
    WasmToNative,
}

/// The max value size of an element in the array calling convention.
const VALUE_SIZE: usize = mem::size_of::<u128>();

/// The main trampoline abstraction.
pub(crate) struct Trampoline<'a, M>
where
    M: MacroAssembler,
{
    /// The macro assembler.
    masm: &'a mut M,
    /// The main scratch register for the current architecture. It is
    /// not allocatable for the callee.
    scratch_reg: Reg,
    /// A second scratch register. This will be allocatable for the
    /// callee, so it can only be used after the callee-saved
    /// registers are on the stack.
    alloc_scratch_reg: Reg,
    /// Registers to be saved as part of the trampoline's prologue
    /// and to be restored as part of the trampoline's epilogue.
    callee_saved_regs: SmallVec<[(Reg, OperandSize); 18]>,
    /// The calling convention used by the trampoline,
    /// which is the Wasmtime variant of the system ABI's
    /// calling convention.
    call_conv: &'a CallingConvention,
    /// The pointer size of the current ISA.
    pointer_size: M::Ptr,
    /// WasmType representation of the pointer size.
    pointer_type: WasmValType,
}

impl<'a, M> Trampoline<'a, M>
where
    M: MacroAssembler,
{
    /// Create a new trampoline.
    pub fn new(
        masm: &'a mut M,
        scratch_reg: Reg,
        alloc_scratch_reg: Reg,
        call_conv: &'a CallingConvention,
        pointer_size: M::Ptr,
    ) -> Self {
        let size = pointer_size.size();
        Self {
            masm,
            scratch_reg,
            alloc_scratch_reg,
            callee_saved_regs: <M::ABI as ABI>::callee_saved_regs(call_conv),
            call_conv,
            pointer_size,
            pointer_type: ptr_type_from_ptr_size(size),
        }
    }

    /// Emit an array-to-wasm trampoline.
    pub fn emit_array_to_wasm(&mut self, ty: &WasmFuncType, callee_index: FuncIndex) -> Result<()> {
        let array_sig = self.array_sig();
        let wasm_sig = self.wasm_sig(ty);

        let val_ptr = array_sig
            .params
            .get(2)
            .map(|operand| RegImm::reg(operand.unwrap_reg()))
            .ok_or_else(|| anyhow!("Expected value pointer to be in a register"))?;

        self.prologue_with_callee_saved();

        // Get the VM context pointer and move it to the designated pinned
        // register.
        let (vmctx, caller_vmctx) = Self::callee_and_caller_vmctx(&array_sig.params)?;

        self.masm.mov(
            vmctx.into(),
            <M::ABI as ABI>::vmctx_reg().into(),
            OperandSize::S64,
        );

        let ret_area = self.make_ret_area(&wasm_sig);
        let vmctx_runtime_limits_addr = self.vmctx_runtime_limits_addr(caller_vmctx);
        let (offsets, spill_size) = self.spill(array_sig.params());

        // Call the function that was passed into the trampoline.
        let allocated_stack = self.masm.call(wasm_sig.params_stack_size(), |masm| {
            // Save the SP when entering Wasm.
            // TODO: Once Winch supports comparison operators,
            // check that the caller VM context is what we expect.
            // See [`wasmtime_environ::MAGIC`].
            Self::save_last_wasm_entry_sp(
                masm,
                vmctx_runtime_limits_addr,
                self.scratch_reg,
                &self.pointer_size,
            );

            // Move the values register to the scratch
            // register for argument assignment.
            masm.mov(val_ptr, self.scratch_reg.into(), OperandSize::S64);
            Self::load_values_from_array(
                masm,
                &wasm_sig,
                ret_area.as_ref(),
                self.scratch_reg,
                self.alloc_scratch_reg,
            );
            CalleeKind::Direct(callee_index.as_u32())
        });

        self.masm.free_stack(allocated_stack);

        // Move the val ptr back into the scratch register so we can
        // load the return values.
        let val_ptr_offset = offsets[2];
        self.masm.load(
            self.masm.address_from_sp(val_ptr_offset),
            self.scratch_reg,
            OperandSize::S64,
        );

        self.store_results_to_array(&wasm_sig, ret_area.as_ref());

        if wasm_sig.has_stack_results() {
            self.masm.free_stack(wasm_sig.results.size());
        }

        self.epilogue_with_callee_saved_restore(spill_size);
        Ok(())
    }

    /// Stores the results into the values array used by the array calling
    /// convention.
    fn store_results_to_array(&mut self, sig: &ABISig, ret_area: Option<&RetArea>) {
        for (i, operand) in sig.results().iter().enumerate() {
            let value_offset = (i * VALUE_SIZE) as u32;
            match operand {
                ABIOperand::Reg { ty, reg, .. } => self.masm.store(
                    (*reg).into(),
                    self.masm.address_at_reg(self.scratch_reg, value_offset),
                    (*ty).into(),
                ),
                ABIOperand::Stack { ty, offset, .. } => {
                    let addr = match ret_area.unwrap() {
                        RetArea::SP(sp_offset) => {
                            let elem_offs = SPOffset::from_u32(sp_offset.as_u32() - offset);
                            self.masm.address_from_sp(elem_offs)
                        }
                        _ => unreachable!(),
                    };
                    self.masm.load(addr, self.alloc_scratch_reg, (*ty).into());
                    self.masm.store(
                        self.alloc_scratch_reg.into(),
                        self.masm.address_at_reg(self.scratch_reg, value_offset),
                        (*ty).into(),
                    );
                }
            }
        }
    }

    /// Emit a native-to-wasm trampoline.
    pub fn emit_native_to_wasm(
        &mut self,
        ty: &WasmFuncType,
        callee_index: FuncIndex,
    ) -> Result<()> {
        let native_sig = self.native_sig(&ty);
        let wasm_sig = self.wasm_sig(&ty);
        let (vmctx, caller_vmctx) = Self::callee_and_caller_vmctx(&native_sig.params)?;

        self.prologue_with_callee_saved();
        // Move the VM context pointer to the designated pinned register.
        self.masm.mov(
            vmctx.into(),
            <M::ABI as ABI>::vmctx_reg().into(),
            OperandSize::S64,
        );

        let vmctx_runtime_limits_addr = self.vmctx_runtime_limits_addr(caller_vmctx);
        let ret_area = self.make_ret_area(&wasm_sig);
        let (offsets, spill_size) = self.spill(native_sig.params());

        let reserved_stack = self.masm.call(wasm_sig.params_stack_size(), |masm| {
            // Save the SP when entering Wasm.
            // TODO: Once Winch supports comparison operators,
            // check that the caller VM context is what we expect.
            // See [`wasmtime_environ::MAGIC`].
            Self::save_last_wasm_entry_sp(
                masm,
                vmctx_runtime_limits_addr,
                self.scratch_reg,
                &self.pointer_size,
            );
            Self::assign_args(
                masm,
                &wasm_sig.params_without_retptr(),
                &native_sig.params_without_retptr()[2..],
                &offsets[2..],
                self.scratch_reg,
            );
            Self::load_retptr(masm, ret_area.as_ref(), &wasm_sig);
            CalleeKind::Direct(callee_index.as_u32())
        });

        self.masm.free_stack(reserved_stack);
        self.forward_results(&wasm_sig, &native_sig, ret_area.as_ref(), offsets.last());
        if wasm_sig.has_stack_results() {
            self.masm.free_stack(wasm_sig.results.size());
        }
        self.epilogue_with_callee_saved_restore(spill_size);

        Ok(())
    }

    /// Creates the return area in the caller's frame.
    fn make_ret_area(&mut self, sig: &ABISig) -> Option<RetArea> {
        sig.has_stack_results().then(|| {
            self.masm.reserve_stack(sig.results.size());
            let offs = self.masm.sp_offset();
            RetArea::sp(offs)
        })
    }

    /// Loads the return area pointer into its [ABIOperand] destination.
    fn load_retptr(masm: &mut M, ret_area: Option<&RetArea>, callee: &ABISig) {
        if let Some(area) = ret_area {
            match (area, callee.params.unwrap_results_area_operand()) {
                (RetArea::SP(sp_offset), ABIOperand::Reg { ty, reg, .. }) => {
                    let addr = masm.address_from_sp(*sp_offset);
                    masm.load_addr(addr, *reg, (*ty).into());
                }
                (RetArea::SP(sp_offset), ABIOperand::Stack { ty, offset, .. }) => {
                    let retptr = masm.address_from_sp(*sp_offset);
                    let scratch = <M::ABI as ABI>::scratch_reg();
                    masm.load_addr(retptr, scratch, (*ty).into());
                    let retptr_slot = masm.address_from_sp(SPOffset::from_u32(*offset));
                    masm.store(scratch.into(), retptr_slot, (*ty).into());
                }
                _ => unreachable!(),
            }
        }
    }

    /// Forwards results from callee to caller; it loads results from the
    /// callee's return area and stores them into the caller's return area.
    fn forward_results(
        &mut self,
        callee_sig: &ABISig,
        caller_sig: &ABISig,
        callee_ret_area: Option<&RetArea>,
        caller_retptr_offset: Option<&SPOffset>,
    ) {
        // Spill any result registers used by the callee to avoid
        // use-assign issues when forwarding the results.
        let results_spill = self.spill(callee_sig.results());
        let mut spill_offsets_iter = results_spill.0.iter();

        let caller_retptr = caller_sig.has_stack_results().then(|| {
            let fp = <M::ABI as ABI>::fp_reg();
            let arg_base: u32 = <M::ABI as ABI>::arg_base_offset().into();
            match caller_sig.params.unwrap_results_area_operand() {
                ABIOperand::Reg { ty, .. } => {
                    let addr = self.masm.address_from_sp(*caller_retptr_offset.unwrap());
                    self.masm.load(addr, self.scratch_reg, (*ty).into());
                    self.scratch_reg
                }
                ABIOperand::Stack { ty, offset, .. } => {
                    let addr = self.masm.address_at_reg(fp, arg_base + offset);
                    self.masm.load(addr, self.scratch_reg, (*ty).into());
                    self.scratch_reg
                }
            }
        });

        for (callee_operand, caller_operand) in
            callee_sig.results().iter().zip(caller_sig.results())
        {
            match (callee_operand, caller_operand) {
                (ABIOperand::Reg { ty, .. }, ABIOperand::Stack { offset, .. }) => {
                    let reg_offset = spill_offsets_iter.next().unwrap();
                    self.masm.load(
                        self.masm.address_from_sp(*reg_offset),
                        self.alloc_scratch_reg,
                        (*ty).into(),
                    );
                    self.masm.store(
                        self.alloc_scratch_reg.into(),
                        self.masm.address_at_reg(caller_retptr.unwrap(), *offset),
                        (*ty).into(),
                    );
                }
                (
                    ABIOperand::Stack { ty, offset, .. },
                    ABIOperand::Stack {
                        offset: caller_offset,
                        ..
                    },
                ) => {
                    let addr = {
                        let base = callee_ret_area.unwrap().unwrap_sp();
                        let slot_offset = base.as_u32() - *offset;
                        self.masm.address_from_sp(SPOffset::from_u32(slot_offset))
                    };

                    self.masm.load(addr, self.alloc_scratch_reg, (*ty).into());
                    self.masm.store(
                        self.alloc_scratch_reg.into(),
                        self.masm
                            .address_at_reg(caller_retptr.unwrap(), *caller_offset),
                        (*ty).into(),
                    );
                }
                (ABIOperand::Stack { ty, offset, .. }, ABIOperand::Reg { reg, .. }) => {
                    let addr = {
                        let base = callee_ret_area.unwrap().unwrap_sp();
                        let slot_offset = base.as_u32() - *offset;
                        self.masm.address_from_sp(SPOffset::from_u32(slot_offset))
                    };

                    self.masm.load(addr, *reg, (*ty).into());
                }
                (ABIOperand::Reg { ty, .. }, ABIOperand::Reg { reg: dst, .. }) => {
                    let spill_offset = spill_offsets_iter.next().unwrap();
                    self.masm.load(
                        self.masm.address_from_sp(*spill_offset),
                        (*dst).into(),
                        (*ty).into(),
                    );
                }
            }
        }
        self.masm.free_stack(results_spill.1);
    }

    /// Emit a wasm-to-native trampoline.
    pub fn emit_wasm_to_native(&mut self, ty: &WasmFuncType) -> Result<()> {
        let mut params = self.callee_and_caller_vmctx_types();
        params.extend_from_slice(ty.params());

        let wasm_ty = WasmFuncType::new(params.into_boxed_slice(), ty.returns().into());
        let wasm_sig = self.wasm_sig(&wasm_ty);
        let native_sig = self.native_sig(ty);

        let (vmctx, caller_vmctx) = Self::callee_and_caller_vmctx(&wasm_sig.params).unwrap();
        let vmctx_runtime_limits_addr = self.vmctx_runtime_limits_addr(caller_vmctx);

        self.prologue();

        // Save the FP and return address when exiting Wasm.
        // TODO: Once Winch supports comparison operators,
        // check that the caller VM context is what we expect.
        // See [`wasmtime_environ::MAGIC`].
        Self::save_last_wasm_exit_fp_and_pc(
            self.masm,
            vmctx_runtime_limits_addr,
            self.scratch_reg,
            self.alloc_scratch_reg,
            &self.pointer_size,
        );

        let ret_area = self.make_ret_area(&native_sig);
        let (offsets, spill_size) = self.spill(wasm_sig.params());

        let reserved_stack = self.masm.call(native_sig.params_stack_size(), |masm| {
            // Move the VM context into one of the scratch registers.
            masm.mov(
                vmctx.into(),
                self.alloc_scratch_reg.into(),
                OperandSize::S64,
            );

            Self::assign_args(
                masm,
                &native_sig.params_without_retptr(),
                &wasm_sig.params_without_retptr(),
                &offsets,
                self.scratch_reg,
            );

            Self::load_retptr(masm, ret_area.as_ref(), &native_sig);

            let body_offset = self.pointer_size.vmnative_call_host_func_context_func_ref()
                + self.pointer_size.vm_func_ref_native_call();
            let callee_addr = masm.address_at_reg(self.alloc_scratch_reg, body_offset.into());
            masm.load(callee_addr, self.scratch_reg, OperandSize::S64);

            CalleeKind::Indirect(self.scratch_reg)
        });

        self.masm.free_stack(reserved_stack);
        self.forward_results(&native_sig, &wasm_sig, ret_area.as_ref(), offsets.last());

        if native_sig.has_stack_results() {
            self.masm.free_stack(native_sig.results.size());
        }

        self.epilogue(spill_size);

        Ok(())
    }

    /// Perfom argument assignment, translating between
    /// caller and callee calling conventions.
    fn assign_args(
        masm: &mut M,
        callee_params: &[ABIOperand],
        caller_params: &[ABIOperand],
        caller_stack_offsets: &[SPOffset],
        scratch: Reg,
    ) {
        assert!(callee_params.len() == caller_params.len());
        let arg_base_offset: u32 = <M::ABI as ABI>::arg_base_offset().into();
        let fp = <M::ABI as ABI>::fp_reg();
        let mut offset_index = 0;

        callee_params
            .iter()
            .zip(caller_params)
            .for_each(
                |(callee_param, caller_param)| match (callee_param, caller_param) {
                    (ABIOperand::Reg { ty, reg: dst, .. }, ABIOperand::Reg { .. }) => {
                        let offset = caller_stack_offsets[offset_index];
                        let addr = masm.address_from_sp(offset);
                        masm.load(addr, *dst, (*ty).into());
                        offset_index += 1;
                    }

                    (ABIOperand::Stack { ty, offset, .. }, ABIOperand::Reg { .. }) => {
                        let spill_offset = caller_stack_offsets[offset_index];
                        let addr = masm.address_from_sp(spill_offset);
                        masm.load(addr, scratch, (*ty).into());

                        let arg_addr = masm.address_at_sp(SPOffset::from_u32(*offset));
                        masm.store(scratch.into(), arg_addr, (*ty).into());
                        offset_index += 1;
                    }

                    (ABIOperand::Reg { ty, reg: dst, .. }, ABIOperand::Stack { offset, .. }) => {
                        let addr = masm.address_at_reg(fp, arg_base_offset + offset);
                        masm.load(addr, *dst, (*ty).into());
                    }

                    (
                        ABIOperand::Stack {
                            ty,
                            offset: callee_offset,
                            ..
                        },
                        ABIOperand::Stack {
                            offset: caller_offset,
                            ..
                        },
                    ) => {
                        let addr = masm.address_at_reg(fp, arg_base_offset + caller_offset);
                        masm.load(addr, scratch, (*ty).into());

                        let arg_addr = masm.address_at_sp(SPOffset::from_u32(*callee_offset));
                        masm.store(scratch.into(), arg_addr, (*ty).into());
                    }
                },
            );
    }

    /// Get the type of the caller and callee VM contexts.
    fn callee_and_caller_vmctx_types(&self) -> SmallVec<[WasmValType; 2]> {
        std::iter::repeat(self.pointer_type).take(2).collect()
    }

    /// Returns an [ABISig] for the array calling convention.
    /// The signature looks like:
    /// ```ignore
    /// unsafe extern "C" fn(
    ///     callee_vmctx: *mut VMOpaqueContext,
    ///     caller_vmctx: *mut VMOpaqueContext,
    ///     values_ptr: *mut ValRaw,
    ///     values_len: usize,
    /// )
    /// ```
    fn array_sig(&self) -> ABISig {
        let mut params = self.callee_and_caller_vmctx_types();
        params.extend_from_slice(&[self.pointer_type, self.pointer_type]);
        <M::ABI as ABI>::sig_from(&params, &[], self.call_conv)
    }

    /// Returns an [ABISig] that follows a variation of the system's
    /// calling convention.
    /// The main difference between the flavor of the returned signature
    /// and the vanilla signature is how multiple values are returned.
    /// Multiple returns are handled following Wasmtime's expectations:
    /// * A single value is returned via a register according to the calling
    ///   convention.
    /// * More than one values are returned via a return pointer.
    /// These variations look like:
    ///
    /// Single return value.
    ///
    /// ```ignore
    /// unsafe extern "C" fn(
    ///     callee_vmctx: *mut VMOpaqueContext,
    ///     caller_vmctx: *mut VMOpaqueContext,
    ///     // rest of paramters
    /// ) -> // single result
    /// ```
    ///
    /// Multiple return values.
    ///
    /// ```ignore
    /// unsafe extern "C" fn(
    ///     callee_vmctx: *mut VMOpaqueContext,
    ///     caller_vmctx: *mut VMOpaqueContext,
    ///     // rest of parameters
    ///     retptr: *mut (), // 2+ results
    /// ) -> // first result
    /// ```
    fn native_sig(&self, ty: &WasmFuncType) -> ABISig {
        let mut params = self.callee_and_caller_vmctx_types();
        params.extend_from_slice(ty.params());
        <M::ABI as ABI>::sig_from(&params, ty.returns(), self.call_conv)
    }

    /// Returns an [ABISig] using the Winch's default calling convention.
    fn wasm_sig(&self, ty: &WasmFuncType) -> ABISig {
        <M::ABI as ABI>::sig(ty, &CallingConvention::Default)
    }

    /// Returns the register pair containing the callee and caller VM context pointers.
    fn callee_and_caller_vmctx(params: &ABIParams) -> Result<(Reg, Reg)> {
        let vmctx = params
            .get(0)
            .map(|operand| operand.unwrap_reg())
            .expect("Callee VMContext to be in a register");
        let caller_vmctx = params
            .get(1)
            .map(|operand| operand.unwrap_reg())
            .expect("Caller VMContext to be in a register");
        Ok((vmctx, caller_vmctx))
    }

    /// Returns the address of the VM context runtime limits
    /// field.
    fn vmctx_runtime_limits_addr(&mut self, caller_vmctx: Reg) -> M::Address {
        self.masm.address_at_reg(
            caller_vmctx,
            self.pointer_size.vmcontext_runtime_limits().into(),
        )
    }

    /// Performs a spill of the given operands.
    fn spill(&mut self, operands: &[ABIOperand]) -> (SmallVec<[SPOffset; 6]>, u32) {
        let mut offsets = SmallVec::new();
        let mut spill_size = 0;
        operands.iter().for_each(|param| {
            if let Some(reg) = param.get_reg() {
                let slot = self.masm.push(reg, param.ty().into());
                offsets.push(slot.offset);
                spill_size += slot.size;
            }
        });

        (offsets, spill_size)
    }

    /// Loads and assigns values from the value array used in the array
    /// calling convention.
    fn load_values_from_array(
        masm: &mut M,
        callee_sig: &ABISig,
        ret_area: Option<&RetArea>,
        values_reg: Reg,
        scratch: Reg,
    ) {
        callee_sig
            .params_without_retptr()
            .iter()
            .enumerate()
            .for_each(|(i, param)| {
                let value_offset = (i * VALUE_SIZE) as u32;

                match param {
                    ABIOperand::Reg { reg, ty, .. } => masm.load(
                        masm.address_at_reg(values_reg, value_offset),
                        *reg,
                        (*ty).into(),
                    ),
                    ABIOperand::Stack { offset, ty, .. } => {
                        masm.load(
                            masm.address_at_reg(values_reg, value_offset),
                            scratch,
                            (*ty).into(),
                        );
                        masm.store(
                            scratch.into(),
                            masm.address_at_sp(SPOffset::from_u32(*offset)),
                            (*ty).into(),
                        );
                    }
                }
            });

        // Assign the retpr param.
        if let Some(offs) = ret_area {
            let results_area_operand = callee_sig.params.unwrap_results_area_operand();
            let addr = match offs {
                RetArea::SP(sp_offset) => masm.address_from_sp(*sp_offset),
                _ => unreachable!(),
            };
            match results_area_operand {
                ABIOperand::Reg { ty, reg, .. } => {
                    masm.load_addr(addr, (*reg).into(), (*ty).into());
                }
                ABIOperand::Stack { ty, offset, .. } => {
                    masm.load_addr(addr, scratch, (*ty).into());
                    masm.store(
                        scratch.into(),
                        masm.address_at_sp(SPOffset::from_u32(*offset)),
                        (*ty).into(),
                    );
                }
            }
        }
    }

    fn save_last_wasm_entry_sp(
        masm: &mut M,
        vm_runtime_limits_addr: M::Address,
        scratch: Reg,
        ptr: &impl PtrSize,
    ) {
        let sp = <M::ABI as ABI>::sp_reg();
        masm.load(vm_runtime_limits_addr, scratch, OperandSize::S64);
        let addr = masm.address_at_reg(scratch, ptr.vmruntime_limits_last_wasm_entry_sp().into());
        masm.store(sp.into(), addr, OperandSize::S64);
    }

    fn save_last_wasm_exit_fp_and_pc(
        masm: &mut M,
        vm_runtime_limits_addr: M::Address,
        scratch: Reg,
        alloc_scratch: Reg,
        ptr: &impl PtrSize,
    ) {
        masm.load(vm_runtime_limits_addr, alloc_scratch, OperandSize::S64);
        let last_wasm_exit_fp_addr = masm.address_at_reg(
            alloc_scratch,
            ptr.vmruntime_limits_last_wasm_exit_fp().into(),
        );
        let last_wasm_exit_pc_addr = masm.address_at_reg(
            alloc_scratch,
            ptr.vmruntime_limits_last_wasm_exit_pc().into(),
        );

        // Handle the frame pointer.
        let fp = <M::ABI as ABI>::fp_reg();
        let fp_addr = masm.address_at_reg(fp, 0);
        masm.load(fp_addr, scratch, OperandSize::S64);
        masm.store(scratch.into(), last_wasm_exit_fp_addr, OperandSize::S64);

        // Handle the return address.
        let ret_addr_offset = <M::ABI as ABI>::ret_addr_offset();
        let ret_addr = masm.address_at_reg(fp, ret_addr_offset.into());
        masm.load(ret_addr, scratch, OperandSize::S64);
        masm.store(scratch.into(), last_wasm_exit_pc_addr, OperandSize::S64);
    }

    /// The trampoline's prologue.
    fn prologue(&mut self) {
        self.masm.prologue();
    }

    /// Similar to [Trampoline::prologue], but saves
    /// callee-saved registers.
    fn prologue_with_callee_saved(&mut self) {
        self.masm.prologue();
        // Save any callee-saved registers.
        let mut off = 0;
        for (r, s) in &self.callee_saved_regs {
            let slot = self.masm.save(off, *r, *s);
            off += slot.size;
        }
    }

    /// Similar to [Trampoline::epilogue], but restores
    /// callee-saved registers.
    fn epilogue_with_callee_saved_restore(&mut self, arg_size: u32) {
        // Free the stack space allocated by pushing the trampoline arguments.
        self.masm.free_stack(arg_size);
        // Restore the callee-saved registers.
        for (r, s) in self.callee_saved_regs.iter().rev() {
            self.masm.pop(*r, *s);
        }
        self.masm.epilogue(0);
    }

    /// The trampoline's epilogue.
    fn epilogue(&mut self, arg_size: u32) {
        // Free the stack space allocated by pushing the trampoline arguments.
        self.masm.free_stack(arg_size);
        self.masm.epilogue(0);
    }
}