1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
use super::*;
use std::collections::*;
pub struct TypeReader {
nested: HashMap<Row, BTreeMap<&'static str, TypeDef>>,
pub types: TypeTree,
}
impl TypeReader {
pub fn get() -> &'static Self {
use std::{mem::MaybeUninit, sync::Once};
static ONCE: Once = Once::new();
static mut VALUE: MaybeUninit<TypeReader> = MaybeUninit::uninit();
ONCE.call_once(|| {
unsafe { VALUE = MaybeUninit::new(Self::new()) }
});
unsafe { &*VALUE.as_mut_ptr() }
}
fn new() -> Self {
let files = workspace_winmds();
let mut nested = HashMap::<Row, BTreeMap<&'static str, TypeDef>>::new();
let mut types = TypeTree::from_namespace("");
for file in files {
let row_count = file.type_def_table().row_count;
for row in 0..row_count {
let def: TypeDef = Row::new(row, TableIndex::TypeDef, file).into();
let type_name = def.type_name();
if type_name.namespace.is_empty() {
continue;
}
if is_well_known(type_name) {
continue;
}
if def.name() == "INetCfgComponentUpperEdge" {
continue;
}
let extends = def.extends();
if extends == TypeName::Attribute {
continue;
}
let namespace = types.insert_namespace(type_name.namespace, 0);
if def.is_winrt() || extends != TypeName::Object {
namespace.insert_type(type_name.name, Type::TypeDef(def));
} else {
for field in def.fields() {
let name = field.name();
namespace.insert_type(name, Type::Field(field));
}
for method in def.methods() {
let name = method.name();
namespace.insert_type(name, Type::MethodDef(method));
}
}
}
let row_count = file.nested_class_table().row_count;
for row in 0..row_count {
let row = NestedClass(Row::new(row, TableIndex::NestedClass, file));
let enclosed = row.nested_type();
let enclosing = row.enclosing_type();
let name = enclosed.name();
nested.entry(enclosing.row.clone()).or_default().insert(name, enclosed);
}
}
Self { nested, types }
}
pub fn nested_types(&'static self, enclosing: &TypeDef) -> Option<&BTreeMap<&'static str, TypeDef>> {
self.nested.get(&enclosing.row)
}
pub fn get_type_entry<T: HasTypeName>(&'static self, type_name: T) -> Option<&Vec<Type>> {
self.types.get_namespace(type_name.namespace()).and_then(|tree| tree.get_type(type_name.name()))
}
pub fn get_type<T: HasTypeName>(&'static self, type_name: T) -> Option<&Type> {
self.types.get_namespace(type_name.namespace()).and_then(|tree| tree.get_type(type_name.name())).and_then(|entry| entry.first())
}
pub fn get_namespace(&self, namespace: &str) -> Option<&TypeTree> {
self.types.get_namespace(namespace)
}
pub fn expect_type_def<T: HasTypeName>(&'static self, type_name: T) -> TypeDef {
self.get_type(type_name).and_then(|def| if let Type::TypeDef(def) = def { Some(def.clone()) } else { None }).unwrap_or_else(|| panic!("Expected type not found `{}.{}`", type_name.namespace(), type_name.name()))
}
pub fn expect_type_ref(&'static self, enclosing: Option<&TypeDef>, type_ref: &TypeRef) -> TypeDef {
let type_name = type_ref.type_name();
if let Some(enclosing) = enclosing {
if type_name.namespace.is_empty() {
return self.nested[&enclosing.row].get(type_name.name).unwrap_or_else(|| panic!("Could not find nested type `{}` in `{}`", type_name.name, enclosing.type_name(),)).clone();
}
}
self.expect_type_def(type_name)
}
pub fn type_from_code(&'static self, code: &TypeDefOrRef, enclosing: Option<&TypeDef>, generics: &[Type]) -> Type {
if let TypeDefOrRef::TypeSpec(def) = code {
let mut blob = def.blob();
return self.type_from_blob_impl(&mut blob, enclosing, generics);
}
let full_name = code.type_name();
for (known_name, kind) in WELL_KNOWN_TYPES {
if full_name == known_name {
return kind;
}
}
for (from, to) in REMAP_TYPES {
if full_name == from {
return TypeReader::get().expect_type_def(to).into();
}
}
code.resolve(enclosing).into()
}
pub fn type_from_blob(&'static self, blob: &mut Blob, enclosing: Option<&TypeDef>, generics: &[Type]) -> Option<Type> {
let is_winrt_const_ref = blob.read_modifiers().iter().any(|def| def.type_name() == TypeName::IsConst);
let is_winrt_array_ref = blob.read_expected(0x10);
if blob.read_expected(0x01) {
return None;
}
let is_winrt_array = blob.read_expected(0x1D);
let mut pointers = 0;
while blob.read_expected(0x0f) {
pointers += 1;
}
let mut kind = self.type_from_blob_impl(blob, enclosing, generics);
if pointers > 0 {
kind = Type::MutPtr((Box::new(kind), pointers));
}
Some(if is_winrt_array {
if is_winrt_array_ref {
Type::WinrtArrayRef(Box::new(kind))
} else {
Type::WinrtArray(Box::new(kind))
}
} else if is_winrt_const_ref {
Type::WinrtConstRef(Box::new(kind))
} else {
kind
})
}
fn type_from_blob_impl(&'static self, blob: &mut Blob, enclosing: Option<&TypeDef>, generics: &[Type]) -> Type {
let code = blob.read_unsigned();
if let Some(code) = Type::from_code(code) {
return code;
}
match code {
0x11 | 0x12 => self.type_from_code(&TypeDefOrRef::decode(blob.file, blob.read_unsigned()), enclosing, generics),
0x13 => generics.get(blob.read_unsigned() as usize).unwrap_or(&Type::Void).clone(),
0x14 => {
let kind = self.type_from_blob(blob, enclosing, generics).unwrap();
let _rank = blob.read_unsigned();
let _bounds_count = blob.read_unsigned();
let bounds = blob.read_unsigned();
Type::Win32Array((Box::new(kind), bounds))
}
0x15 => {
blob.read_unsigned();
let mut def = TypeDefOrRef::decode(blob.file, blob.read_unsigned()).resolve(enclosing);
let args = blob.read_unsigned();
for _ in 0..args {
def.generics.push(self.type_from_blob_impl(blob, enclosing, generics));
}
Type::TypeDef(def)
}
_ => unimplemented!(),
}
}
}
fn is_well_known(type_name: TypeName) -> bool {
for (known_name, _) in WELL_KNOWN_TYPES {
if type_name == known_name {
return true;
}
}
false
}
const REMAP_TYPES: [(TypeName, TypeName); 1] = [(TypeName::D2D_MATRIX_3X2_F, TypeName::Matrix3x2)];
const WELL_KNOWN_TYPES: [(TypeName, Type); 11] = [(TypeName::GUID, Type::GUID), (TypeName::IUnknown, Type::IUnknown), (TypeName::HResult, Type::HRESULT), (TypeName::HRESULT, Type::HRESULT), (TypeName::HSTRING, Type::String), (TypeName::IInspectable, Type::IInspectable), (TypeName::LARGE_INTEGER, Type::I64), (TypeName::ULARGE_INTEGER, Type::U64), (TypeName::Type, Type::TypeName), (TypeName::PSTR, Type::PSTR), (TypeName::PWSTR, Type::PWSTR)];