1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
//! UI scaling is important, so read the docs for this module if you don't want to be confused.
//!
//! ## Why should I care about UI scaling?
//!
//! Modern computer screens don't have a consistent relationship between resolution and size.
//! 1920x1080 is a common resolution for both desktop and mobile screens, despite mobile screens
//! normally being less than a quarter the size of their desktop counterparts. What's more, neither
//! desktop nor mobile screens are consistent resolutions within their own size classes - common
//! mobile screens range from below 720p to above 1440p, and desktop screens range from 720p to 5K
//! and beyond.
//!
//! Given that, it's a mistake to assume that 2D content will only be displayed on screens with
//! a consistent pixel density. If you were to render a 96-pixel-square image on a 1080p screen,
//! then render the same image on a similarly-sized 4K screen, the 4K rendition would only take up
//! about a quarter of the physical space as it did on the 1080p screen. That issue is especially
//! problematic with text rendering, where quarter-sized text becomes a significant legibility
//! problem.
//!
//! Failure to account for the scale factor can create a significantly degraded user experience.
//! Most notably, it can make users feel like they have bad eyesight, which will potentially cause
//! them to think about growing elderly, resulting in them having an existential crisis. Once users
//! enter that state, they will no longer be focused on your application.
//!
//! ## How should I handle it?
//!
//! The solution to this problem is to account for the device's *scale factor*. The scale factor is
//! the factor UI elements should be scaled by to be consistent with the rest of the user's system -
//! for example, a button that's normally 50 pixels across would be 100 pixels across on a device
//! with a scale factor of `2.0`, or 75 pixels across with a scale factor of `1.5`.
//!
//! Many UI systems, such as CSS, expose DPI-dependent units like [points] or [picas]. That's
//! usually a mistake, since there's no consistent mapping between the scale factor and the screen's
//! actual DPI. Unless you're printing to a physical medium, you should work in scaled pixels rather
//! than any DPI-dependent units.
//!
//! ### Position and Size types
//!
//! Winit's [`PhysicalPosition`] / [`PhysicalSize`] types correspond with the actual pixels on the
//! device, and the [`LogicalPosition`] / [`LogicalSize`] types correspond to the physical pixels
//! divided by the scale factor.
//! All of Winit's functions return physical types, but can take either logical or physical
//! coordinates as input, allowing you to use the most convenient coordinate system for your
//! particular application.
//!
//! Winit's position and size types types are generic over their exact pixel type, `P`, to allow the
//! API to have integer precision where appropriate (e.g. most window manipulation functions) and
//! floating precision when necessary (e.g. logical sizes for fractional scale factors and touch
//! input). If `P` is a floating-point type, please do not cast the values with `as {int}`. Doing so
//! will truncate the fractional part of the float, rather than properly round to the nearest
//! integer. Use the provided `cast` function or [`From`]/[`Into`] conversions, which handle the
//! rounding properly. Note that precision loss will still occur when rounding from a float to an
//! int, although rounding lessens the problem.
//!
//! ### Events
//!
//! Winit will dispatch a [`ScaleFactorChanged`] event whenever a window's scale factor has changed.
//! This can happen if the user drags their window from a standard-resolution monitor to a high-DPI
//! monitor, or if the user changes their DPI settings. This gives you a chance to rescale your
//! application's UI elements and adjust how the platform changes the window's size to reflect the new
//! scale factor. If a window hasn't received a [`ScaleFactorChanged`] event,  then its scale factor
//! can be found by calling [`window.scale_factor()`].
//!
//! ## How is the scale factor calculated?
//!
//! Scale factor is calculated differently on different platforms:
//!
//! - **Windows:** On Windows 8 and 10, per-monitor scaling is readily configured by users from the
//!   display settings. While users are free to select any option they want, they're only given a
//!   selection of "nice" scale factors, i.e. 1.0, 1.25, 1.5... on Windows 7, the scale factor is
//!   global and changing it requires logging out. See [this article][windows_1] for technical
//!   details.
//! - **macOS:** Recent versions of macOS allow the user to change the scaling factor for certain
//!   displays. When this is available, the user may pick a per-monitor scaling factor from a set
//!   of pre-defined settings. All "retina displays" have a scaling factor above 1.0 by default but
//!   the specific value varies across devices.
//! - **X11:** Many man-hours have been spent trying to figure out how to handle DPI in X11. Winit
//!   currently uses a three-pronged approach:
//!   + Use the value in the `WINIT_X11_SCALE_FACTOR` environment variable, if present.
//!   + If not present, use the value set in `Xft.dpi` in Xresources.
//!   + Otherwise, calculate the scale factor based on the millimeter monitor dimensions provided by XRandR.
//!
//!   If `WINIT_X11_SCALE_FACTOR` is set to `randr`, it'll ignore the `Xft.dpi` field and use the
//!   XRandR scaling method. Generally speaking, you should try to configure the standard system
//!   variables to do what you want before resorting to `WINIT_X11_SCALE_FACTOR`.
//! - **Wayland:** On Wayland, scale factors are set per-screen by the server, and are always
//!   integers (most often 1 or 2).
//! - **iOS:** Scale factors are set by Apple to the value that best suits the device, and range
//!   from `1.0` to `3.0`. See [this article][apple_1] and [this article][apple_2] for more
//!   information.
//! - **Android:** Scale factors are set by the manufacturer to the value that best suits the
//!   device, and range from `1.0` to `4.0`. See [this article][android_1] for more information.
//! - **Web:** The scale factor is the ratio between CSS pixels and the physical device pixels.
//!   In other words, it is the value of [`window.devicePixelRatio`][web_1]. It is affected by
//!   both the screen scaling and the browser zoom level and can go below `1.0`.
//!
//!
//! [points]: https://en.wikipedia.org/wiki/Point_(typography)
//! [picas]: https://en.wikipedia.org/wiki/Pica_(typography)
//! [`ScaleFactorChanged`]: crate::event::WindowEvent::ScaleFactorChanged
//! [`window.scale_factor()`]: crate::window::Window::scale_factor
//! [windows_1]: https://docs.microsoft.com/en-us/windows/win32/hidpi/high-dpi-desktop-application-development-on-windows
//! [apple_1]: https://developer.apple.com/library/archive/documentation/DeviceInformation/Reference/iOSDeviceCompatibility/Displays/Displays.html
//! [apple_2]: https://developer.apple.com/design/human-interface-guidelines/macos/icons-and-images/image-size-and-resolution/
//! [android_1]: https://developer.android.com/training/multiscreen/screendensities
//! [web_1]: https://developer.mozilla.org/en-US/docs/Web/API/Window/devicePixelRatio

pub trait Pixel: Copy + Into<f64> {
    fn from_f64(f: f64) -> Self;
    fn cast<P: Pixel>(self) -> P {
        P::from_f64(self.into())
    }
}

impl Pixel for u8 {
    fn from_f64(f: f64) -> Self {
        f.round() as u8
    }
}
impl Pixel for u16 {
    fn from_f64(f: f64) -> Self {
        f.round() as u16
    }
}
impl Pixel for u32 {
    fn from_f64(f: f64) -> Self {
        f.round() as u32
    }
}
impl Pixel for i8 {
    fn from_f64(f: f64) -> Self {
        f.round() as i8
    }
}
impl Pixel for i16 {
    fn from_f64(f: f64) -> Self {
        f.round() as i16
    }
}
impl Pixel for i32 {
    fn from_f64(f: f64) -> Self {
        f.round() as i32
    }
}
impl Pixel for f32 {
    fn from_f64(f: f64) -> Self {
        f as f32
    }
}
impl Pixel for f64 {
    fn from_f64(f: f64) -> Self {
        f
    }
}

/// Checks that the scale factor is a normal positive `f64`.
///
/// All functions that take a scale factor assert that this will return `true`. If you're sourcing scale factors from
/// anywhere other than winit, it's recommended to validate them using this function before passing them to winit;
/// otherwise, you risk panics.
#[inline]
pub fn validate_scale_factor(scale_factor: f64) -> bool {
    scale_factor.is_sign_positive() && scale_factor.is_normal()
}

/// A position represented in logical pixels.
///
/// The position is stored as floats, so please be careful. Casting floats to integers truncates the
/// fractional part, which can cause noticable issues. To help with that, an `Into<(i32, i32)>`
/// implementation is provided which does the rounding for you.
#[derive(Debug, Copy, Clone, Eq, PartialEq, Default, Hash)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct LogicalPosition<P> {
    pub x: P,
    pub y: P,
}

impl<P> LogicalPosition<P> {
    #[inline]
    pub const fn new(x: P, y: P) -> Self {
        LogicalPosition { x, y }
    }
}

impl<P: Pixel> LogicalPosition<P> {
    #[inline]
    pub fn from_physical<T: Into<PhysicalPosition<X>>, X: Pixel>(
        physical: T,
        scale_factor: f64,
    ) -> Self {
        physical.into().to_logical(scale_factor)
    }

    #[inline]
    pub fn to_physical<X: Pixel>(&self, scale_factor: f64) -> PhysicalPosition<X> {
        assert!(validate_scale_factor(scale_factor));
        let x = self.x.into() * scale_factor;
        let y = self.y.into() * scale_factor;
        PhysicalPosition::new(x, y).cast()
    }

    #[inline]
    pub fn cast<X: Pixel>(&self) -> LogicalPosition<X> {
        LogicalPosition {
            x: self.x.cast(),
            y: self.y.cast(),
        }
    }
}

impl<P: Pixel, X: Pixel> From<(X, X)> for LogicalPosition<P> {
    fn from((x, y): (X, X)) -> LogicalPosition<P> {
        LogicalPosition::new(x.cast(), y.cast())
    }
}

impl<P: Pixel, X: Pixel> From<LogicalPosition<P>> for (X, X) {
    fn from(p: LogicalPosition<P>) -> (X, X) {
        (p.x.cast(), p.y.cast())
    }
}

impl<P: Pixel, X: Pixel> From<[X; 2]> for LogicalPosition<P> {
    fn from([x, y]: [X; 2]) -> LogicalPosition<P> {
        LogicalPosition::new(x.cast(), y.cast())
    }
}

impl<P: Pixel, X: Pixel> From<LogicalPosition<P>> for [X; 2] {
    fn from(p: LogicalPosition<P>) -> [X; 2] {
        [p.x.cast(), p.y.cast()]
    }
}

#[cfg(feature = "mint")]
impl<P: Pixel> From<mint::Point2<P>> for LogicalPosition<P> {
    fn from(p: mint::Point2<P>) -> Self {
        Self::new(p.x, p.y)
    }
}

#[cfg(feature = "mint")]
impl<P: Pixel> From<LogicalPosition<P>> for mint::Point2<P> {
    fn from(p: LogicalPosition<P>) -> Self {
        mint::Point2 { x: p.x, y: p.y }
    }
}

/// A position represented in physical pixels.
#[derive(Debug, Copy, Clone, Eq, PartialEq, Default, Hash)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct PhysicalPosition<P> {
    pub x: P,
    pub y: P,
}

impl<P> PhysicalPosition<P> {
    #[inline]
    pub const fn new(x: P, y: P) -> Self {
        PhysicalPosition { x, y }
    }
}

impl<P: Pixel> PhysicalPosition<P> {
    #[inline]
    pub fn from_logical<T: Into<LogicalPosition<X>>, X: Pixel>(
        logical: T,
        scale_factor: f64,
    ) -> Self {
        logical.into().to_physical(scale_factor)
    }

    #[inline]
    pub fn to_logical<X: Pixel>(&self, scale_factor: f64) -> LogicalPosition<X> {
        assert!(validate_scale_factor(scale_factor));
        let x = self.x.into() / scale_factor;
        let y = self.y.into() / scale_factor;
        LogicalPosition::new(x, y).cast()
    }

    #[inline]
    pub fn cast<X: Pixel>(&self) -> PhysicalPosition<X> {
        PhysicalPosition {
            x: self.x.cast(),
            y: self.y.cast(),
        }
    }
}

impl<P: Pixel, X: Pixel> From<(X, X)> for PhysicalPosition<P> {
    fn from((x, y): (X, X)) -> PhysicalPosition<P> {
        PhysicalPosition::new(x.cast(), y.cast())
    }
}

impl<P: Pixel, X: Pixel> From<PhysicalPosition<P>> for (X, X) {
    fn from(p: PhysicalPosition<P>) -> (X, X) {
        (p.x.cast(), p.y.cast())
    }
}

impl<P: Pixel, X: Pixel> From<[X; 2]> for PhysicalPosition<P> {
    fn from([x, y]: [X; 2]) -> PhysicalPosition<P> {
        PhysicalPosition::new(x.cast(), y.cast())
    }
}

impl<P: Pixel, X: Pixel> From<PhysicalPosition<P>> for [X; 2] {
    fn from(p: PhysicalPosition<P>) -> [X; 2] {
        [p.x.cast(), p.y.cast()]
    }
}

#[cfg(feature = "mint")]
impl<P: Pixel> From<mint::Point2<P>> for PhysicalPosition<P> {
    fn from(p: mint::Point2<P>) -> Self {
        Self::new(p.x, p.y)
    }
}

#[cfg(feature = "mint")]
impl<P: Pixel> From<PhysicalPosition<P>> for mint::Point2<P> {
    fn from(p: PhysicalPosition<P>) -> Self {
        mint::Point2 { x: p.x, y: p.y }
    }
}

/// A size represented in logical pixels.
#[derive(Debug, Copy, Clone, Eq, PartialEq, Default, Hash)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct LogicalSize<P> {
    pub width: P,
    pub height: P,
}

impl<P> LogicalSize<P> {
    #[inline]
    pub const fn new(width: P, height: P) -> Self {
        LogicalSize { width, height }
    }
}

impl<P: Pixel> LogicalSize<P> {
    #[inline]
    pub fn from_physical<T: Into<PhysicalSize<X>>, X: Pixel>(
        physical: T,
        scale_factor: f64,
    ) -> Self {
        physical.into().to_logical(scale_factor)
    }

    #[inline]
    pub fn to_physical<X: Pixel>(&self, scale_factor: f64) -> PhysicalSize<X> {
        assert!(validate_scale_factor(scale_factor));
        let width = self.width.into() * scale_factor;
        let height = self.height.into() * scale_factor;
        PhysicalSize::new(width, height).cast()
    }

    #[inline]
    pub fn cast<X: Pixel>(&self) -> LogicalSize<X> {
        LogicalSize {
            width: self.width.cast(),
            height: self.height.cast(),
        }
    }
}

impl<P: Pixel, X: Pixel> From<(X, X)> for LogicalSize<P> {
    fn from((x, y): (X, X)) -> LogicalSize<P> {
        LogicalSize::new(x.cast(), y.cast())
    }
}

impl<P: Pixel, X: Pixel> From<LogicalSize<P>> for (X, X) {
    fn from(s: LogicalSize<P>) -> (X, X) {
        (s.width.cast(), s.height.cast())
    }
}

impl<P: Pixel, X: Pixel> From<[X; 2]> for LogicalSize<P> {
    fn from([x, y]: [X; 2]) -> LogicalSize<P> {
        LogicalSize::new(x.cast(), y.cast())
    }
}

impl<P: Pixel, X: Pixel> From<LogicalSize<P>> for [X; 2] {
    fn from(s: LogicalSize<P>) -> [X; 2] {
        [s.width.cast(), s.height.cast()]
    }
}

#[cfg(feature = "mint")]
impl<P: Pixel> From<mint::Vector2<P>> for LogicalSize<P> {
    fn from(v: mint::Vector2<P>) -> Self {
        Self::new(v.x, v.y)
    }
}

#[cfg(feature = "mint")]
impl<P: Pixel> From<LogicalSize<P>> for mint::Vector2<P> {
    fn from(s: LogicalSize<P>) -> Self {
        mint::Vector2 {
            x: s.width,
            y: s.height,
        }
    }
}

/// A size represented in physical pixels.
#[derive(Debug, Copy, Clone, Eq, PartialEq, Default, Hash)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub struct PhysicalSize<P> {
    pub width: P,
    pub height: P,
}

impl<P> PhysicalSize<P> {
    #[inline]
    pub const fn new(width: P, height: P) -> Self {
        PhysicalSize { width, height }
    }
}

impl<P: Pixel> PhysicalSize<P> {
    #[inline]
    pub fn from_logical<T: Into<LogicalSize<X>>, X: Pixel>(logical: T, scale_factor: f64) -> Self {
        logical.into().to_physical(scale_factor)
    }

    #[inline]
    pub fn to_logical<X: Pixel>(&self, scale_factor: f64) -> LogicalSize<X> {
        assert!(validate_scale_factor(scale_factor));
        let width = self.width.into() / scale_factor;
        let height = self.height.into() / scale_factor;
        LogicalSize::new(width, height).cast()
    }

    #[inline]
    pub fn cast<X: Pixel>(&self) -> PhysicalSize<X> {
        PhysicalSize {
            width: self.width.cast(),
            height: self.height.cast(),
        }
    }
}

impl<P: Pixel, X: Pixel> From<(X, X)> for PhysicalSize<P> {
    fn from((x, y): (X, X)) -> PhysicalSize<P> {
        PhysicalSize::new(x.cast(), y.cast())
    }
}

impl<P: Pixel, X: Pixel> From<PhysicalSize<P>> for (X, X) {
    fn from(s: PhysicalSize<P>) -> (X, X) {
        (s.width.cast(), s.height.cast())
    }
}

impl<P: Pixel, X: Pixel> From<[X; 2]> for PhysicalSize<P> {
    fn from([x, y]: [X; 2]) -> PhysicalSize<P> {
        PhysicalSize::new(x.cast(), y.cast())
    }
}

impl<P: Pixel, X: Pixel> From<PhysicalSize<P>> for [X; 2] {
    fn from(s: PhysicalSize<P>) -> [X; 2] {
        [s.width.cast(), s.height.cast()]
    }
}

#[cfg(feature = "mint")]
impl<P: Pixel> From<mint::Vector2<P>> for PhysicalSize<P> {
    fn from(v: mint::Vector2<P>) -> Self {
        Self::new(v.x, v.y)
    }
}

#[cfg(feature = "mint")]
impl<P: Pixel> From<PhysicalSize<P>> for mint::Vector2<P> {
    fn from(s: PhysicalSize<P>) -> Self {
        mint::Vector2 {
            x: s.width,
            y: s.height,
        }
    }
}

/// A size that's either physical or logical.
#[derive(Debug, Copy, Clone, PartialEq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub enum Size {
    Physical(PhysicalSize<u32>),
    Logical(LogicalSize<f64>),
}

impl Size {
    pub fn new<S: Into<Size>>(size: S) -> Size {
        size.into()
    }

    pub fn to_logical<P: Pixel>(&self, scale_factor: f64) -> LogicalSize<P> {
        match *self {
            Size::Physical(size) => size.to_logical(scale_factor),
            Size::Logical(size) => size.cast(),
        }
    }

    pub fn to_physical<P: Pixel>(&self, scale_factor: f64) -> PhysicalSize<P> {
        match *self {
            Size::Physical(size) => size.cast(),
            Size::Logical(size) => size.to_physical(scale_factor),
        }
    }

    pub fn clamp<S: Into<Size>>(input: S, min: S, max: S, scale_factor: f64) -> Size {
        let (input, min, max) = (
            input.into().to_physical::<f64>(scale_factor),
            min.into().to_physical::<f64>(scale_factor),
            max.into().to_physical::<f64>(scale_factor),
        );

        let width = input.width.clamp(min.width, max.width);
        let height = input.height.clamp(min.height, max.height);

        PhysicalSize::new(width, height).into()
    }
}

impl<P: Pixel> From<PhysicalSize<P>> for Size {
    #[inline]
    fn from(size: PhysicalSize<P>) -> Size {
        Size::Physical(size.cast())
    }
}

impl<P: Pixel> From<LogicalSize<P>> for Size {
    #[inline]
    fn from(size: LogicalSize<P>) -> Size {
        Size::Logical(size.cast())
    }
}

/// A position that's either physical or logical.
#[derive(Debug, Copy, Clone, PartialEq)]
#[cfg_attr(feature = "serde", derive(Serialize, Deserialize))]
pub enum Position {
    Physical(PhysicalPosition<i32>),
    Logical(LogicalPosition<f64>),
}

impl Position {
    pub fn new<S: Into<Position>>(position: S) -> Position {
        position.into()
    }

    pub fn to_logical<P: Pixel>(&self, scale_factor: f64) -> LogicalPosition<P> {
        match *self {
            Position::Physical(position) => position.to_logical(scale_factor),
            Position::Logical(position) => position.cast(),
        }
    }

    pub fn to_physical<P: Pixel>(&self, scale_factor: f64) -> PhysicalPosition<P> {
        match *self {
            Position::Physical(position) => position.cast(),
            Position::Logical(position) => position.to_physical(scale_factor),
        }
    }
}

impl<P: Pixel> From<PhysicalPosition<P>> for Position {
    #[inline]
    fn from(position: PhysicalPosition<P>) -> Position {
        Position::Physical(position.cast())
    }
}

impl<P: Pixel> From<LogicalPosition<P>> for Position {
    #[inline]
    fn from(position: LogicalPosition<P>) -> Position {
        Position::Logical(position.cast())
    }
}