1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
// Copyright (c) Facebook, Inc. and its affiliates.
//
// This source code is licensed under the MIT license found in the
// LICENSE file in the root directory of this source tree.

use alloc::vec::Vec;

use math::{FieldElement, StarkField};

use crate::{errors::RandomCoinError, Digest, ElementHasher, RandomCoin};

// DEFAULT RANDOM COIN IMPLEMENTATION
// ================================================================================================

/// Pseudo-random element generator for finite fields, which is a default implementation of the
/// RandomCoin trait.
///
/// A random coin can be used to draw elements uniformly at random from the specified base field
/// or from any extension of the base field.
///
/// Internally we use a cryptographic hash function (which is specified via the `H` type parameter),
/// to draw elements from the field. The coin works roughly as follows:
/// - The internal state of the coin consists of a `seed` and a `counter`. At instantiation
///   time, the `seed` is set to a hash of the provided bytes, and the `counter` is set to 0.
/// - To draw the next element, we increment the `counter` and compute hash(`seed` || `counter`).
///   If the resulting value is a valid field element, we return the result; otherwise we try
///   again until a valid element is found or the number of allowed tries is exceeded.
/// - We can also re-seed the coin with a new value. During the reseeding procedure, the
///   seed is set to hash(`old_seed` || `new_seed`), and the counter is reset to 0.
///
/// # Examples
/// ```
/// # use winter_crypto::{RandomCoin, DefaultRandomCoin, Hasher, hashers::Blake3_256};
/// # use math::fields::f128::BaseElement;
/// // initial elements for seeding the random coin
/// let seed = &[BaseElement::new(1), BaseElement::new(2), BaseElement::new(3), BaseElement::new(4)];
///
/// // instantiate a random coin using BLAKE3 as the hash function
/// let mut coin = DefaultRandomCoin::<Blake3_256<BaseElement>>::new(seed);
///
/// // should draw different elements each time
/// let e1 = coin.draw::<BaseElement>().unwrap();;
/// let e2 = coin.draw::<BaseElement>().unwrap();;
/// assert_ne!(e1, e2);
///
/// let e3 = coin.draw::<BaseElement>().unwrap();;
/// assert_ne!(e1, e3);
/// assert_ne!(e2, e3);
///
/// // should draw same elements for the same seed
/// let mut coin2 = DefaultRandomCoin::<Blake3_256<BaseElement>>::new(seed);
/// let mut coin1 = DefaultRandomCoin::<Blake3_256<BaseElement>>::new(seed);
/// let e1 = coin1.draw::<BaseElement>().unwrap();;
/// let e2 = coin2.draw::<BaseElement>().unwrap();;
/// assert_eq!(e1, e2);
///
/// // should draw different elements based on seed
/// let mut coin1 = DefaultRandomCoin::<Blake3_256<BaseElement>>::new(seed);
/// let seed = &[BaseElement::new(2), BaseElement::new(3), BaseElement::new(4), BaseElement::new(5)];
/// let mut coin2 = DefaultRandomCoin::<Blake3_256<BaseElement>>::new(seed);
/// let e1 = coin1.draw::<BaseElement>().unwrap();;
/// let e2 = coin2.draw::<BaseElement>().unwrap();;
/// assert_ne!(e1, e2);
/// ```
pub struct DefaultRandomCoin<H: ElementHasher> {
    seed: H::Digest,
    counter: u64,
}

impl<H: ElementHasher> DefaultRandomCoin<H> {
    /// Updates the state by incrementing the counter and returns hash(seed || counter)
    fn next(&mut self) -> H::Digest {
        self.counter += 1;
        H::merge_with_int(self.seed, self.counter)
    }
}

impl<B: StarkField, H: ElementHasher<BaseField = B>> RandomCoin for DefaultRandomCoin<H> {
    type BaseField = B;
    type Hasher = H;

    // CONSTRUCTOR
    // --------------------------------------------------------------------------------------------
    /// Returns a new random coin instantiated with the provided `seed`.
    fn new(seed: &[Self::BaseField]) -> Self {
        let seed = H::hash_elements(seed);
        Self { seed, counter: 0 }
    }

    // RESEEDING
    // --------------------------------------------------------------------------------------------

    /// Reseeds the coin with the specified data by setting the new seed to hash(`seed` || `data`).
    ///
    /// # Examples
    /// ```
    /// # use winter_crypto::{RandomCoin, DefaultRandomCoin, Hasher, hashers::Blake3_256};
    /// # use math::fields::f128::BaseElement;
    /// // initial elements for seeding the random coin
    /// let seed = &[BaseElement::new(1), BaseElement::new(2), BaseElement::new(3), BaseElement::new(4)];
    ///
    /// let mut coin1 = DefaultRandomCoin::<Blake3_256<BaseElement>>::new(seed);
    /// let mut coin2 = DefaultRandomCoin::<Blake3_256<BaseElement>>::new(seed);
    ///
    /// // should draw the same element form both coins
    /// let e1 = coin1.draw::<BaseElement>().unwrap();
    /// let e2 = coin2.draw::<BaseElement>().unwrap();;
    /// assert_eq!(e1, e2);
    ///
    /// // after reseeding should draw different elements
    /// coin2.reseed(Blake3_256::<BaseElement>::hash(&[2, 3, 4, 5]));
    /// let e1 = coin1.draw::<BaseElement>().unwrap();;
    /// let e2 = coin2.draw::<BaseElement>().unwrap();;
    /// assert_ne!(e1, e2);
    /// ```
    fn reseed(&mut self, data: H::Digest) {
        self.seed = H::merge(&[self.seed, data]);
        self.counter = 0;
    }

    // PUBLIC ACCESSORS
    // --------------------------------------------------------------------------------------------

    /// Computes hash(`seed` || `value`) and returns the number of leading zeros in the resulting
    /// value if it is interpreted as an integer in big-endian byte order.
    fn check_leading_zeros(&self, value: u64) -> u32 {
        let new_seed = H::merge_with_int(self.seed, value);
        let bytes = new_seed.as_bytes();
        let seed_head = u64::from_le_bytes(bytes[..8].try_into().unwrap());
        seed_head.trailing_zeros()
    }

    // DRAW METHODS
    // --------------------------------------------------------------------------------------------

    /// Returns the next pseudo-random field element.
    ///
    /// # Errors
    /// Returns an error if a valid field element could not be generated after 1000 calls to the
    /// PRNG.
    fn draw<E: FieldElement>(&mut self) -> Result<E, RandomCoinError> {
        for _ in 0..1000 {
            // get the next pseudo-random value and take the first ELEMENT_BYTES from it
            let value = self.next();
            let bytes = &value.as_bytes()[..E::ELEMENT_BYTES];

            // check if the bytes can be converted into a valid field element; if they can,
            // return; otherwise try again
            if let Some(element) = E::from_random_bytes(bytes) {
                return Ok(element);
            }
        }

        Err(RandomCoinError::FailedToDrawFieldElement(1000))
    }

    /// Returns a vector of integers selected from the range [0, domain_size) after reseeding
    /// the PRNG with the specified `nonce` by setting the new seed to hash(`seed` || `nonce`).
    ///
    /// # Errors
    /// Returns an error if the specified number of integers could not be generated after 1000
    /// calls to the PRNG.
    ///
    /// # Panics
    /// Panics if:
    /// - `domain_size` is not a power of two.
    /// - `num_values` is greater than or equal to `domain_size`.
    ///
    /// # Examples
    /// ```
    /// # use std::collections::HashSet;
    /// # use winter_crypto::{RandomCoin, DefaultRandomCoin, Hasher, hashers::Blake3_256};
    /// # use math::fields::f128::BaseElement;
    /// // initial elements for seeding the random coin
    /// let seed = &[BaseElement::new(1), BaseElement::new(2), BaseElement::new(3), BaseElement::new(4)];
    ///
    /// let mut coin = DefaultRandomCoin::<Blake3_256<BaseElement>>::new(seed);
    ///
    /// let num_values = 20;
    /// let domain_size = 64;
    /// let nonce = 0;
    /// let values = coin.draw_integers(num_values, domain_size, nonce).unwrap();
    ///
    /// assert_eq!(num_values, values.len());
    ///
    /// for value in values {
    ///     assert!(value < domain_size);
    /// }
    /// ```
    fn draw_integers(
        &mut self,
        num_values: usize,
        domain_size: usize,
        nonce: u64,
    ) -> Result<Vec<usize>, RandomCoinError> {
        assert!(domain_size.is_power_of_two(), "domain size must be a power of two");
        assert!(num_values < domain_size, "number of values must be smaller than domain size");

        // reseed with nonce
        self.seed = H::merge_with_int(self.seed, nonce);
        self.counter = 0;

        // determine how many bits are needed to represent valid values in the domain
        let v_mask = (domain_size - 1) as u64;

        // draw values from PRNG until we get as many unique values as specified by num_queries
        let mut values = Vec::new();
        for _ in 0..1000 {
            // get the next pseudo-random value and read the first 8 bytes from it
            let bytes: [u8; 8] = self.next().as_bytes()[..8].try_into().unwrap();

            // convert to integer and limit the integer to the number of bits which can fit
            // into the specified domain
            let value = (u64::from_le_bytes(bytes) & v_mask) as usize;

            values.push(value);
            if values.len() == num_values {
                break;
            }
        }

        if values.len() < num_values {
            return Err(RandomCoinError::FailedToDrawIntegers(num_values, values.len(), 1000));
        }

        Ok(values)
    }
}