wit_bindgen_core/
abi.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
pub use wit_parser::abi::{AbiVariant, WasmSignature, WasmType};
use wit_parser::{
    Enum, Flags, FlagsRepr, Function, Handle, Int, Record, Resolve, Result_, Results, SizeAlign,
    Tuple, Type, TypeDefKind, TypeId, Variant,
};

// Helper macro for defining instructions without having to have tons of
// exhaustive `match` statements to update
macro_rules! def_instruction {
    (
        $( #[$enum_attr:meta] )*
        pub enum $name:ident<'a> {
            $(
                $( #[$attr:meta] )*
                $variant:ident $( {
                    $($field:ident : $field_ty:ty $(,)* )*
                } )?
                    :
                [$num_popped:expr] => [$num_pushed:expr],
            )*
        }
    ) => {
        $( #[$enum_attr] )*
        pub enum $name<'a> {
            $(
                $( #[$attr] )*
                $variant $( {
                    $(
                        $field : $field_ty,
                    )*
                } )? ,
            )*
        }

        impl $name<'_> {
            /// How many operands does this instruction pop from the stack?
            #[allow(unused_variables)]
            pub fn operands_len(&self) -> usize {
                match self {
                    $(
                        Self::$variant $( {
                            $(
                                $field,
                            )*
                        } )? => $num_popped,
                    )*
                }
            }

            /// How many results does this instruction push onto the stack?
            #[allow(unused_variables)]
            pub fn results_len(&self) -> usize {
                match self {
                    $(
                        Self::$variant $( {
                            $(
                                $field,
                            )*
                        } )? => $num_pushed,
                    )*
                }
            }
        }
    };
}

def_instruction! {
    #[derive(Debug)]
    pub enum Instruction<'a> {
        /// Acquires the specified parameter and places it on the stack.
        /// Depending on the context this may refer to wasm parameters or
        /// interface types parameters.
        GetArg { nth: usize } : [0] => [1],

        // Integer const/manipulation instructions

        /// Pushes the constant `val` onto the stack.
        I32Const { val: i32 } : [0] => [1],
        /// Casts the top N items on the stack using the `Bitcast` enum
        /// provided. Consumes the same number of operands that this produces.
        Bitcasts { casts: &'a [Bitcast] } : [casts.len()] => [casts.len()],
        /// Pushes a number of constant zeros for each wasm type on the stack.
        ConstZero { tys: &'a [WasmType] } : [0] => [tys.len()],

        // Memory load/store instructions

        /// Pops a pointer from the stack and loads a little-endian `i32` from
        /// it, using the specified constant offset.
        I32Load { offset: i32 } : [1] => [1],
        /// Pops a pointer from the stack and loads a little-endian `i8` from
        /// it, using the specified constant offset. The value loaded is the
        /// zero-extended to 32-bits
        I32Load8U { offset: i32 } : [1] => [1],
        /// Pops a pointer from the stack and loads a little-endian `i8` from
        /// it, using the specified constant offset. The value loaded is the
        /// sign-extended to 32-bits
        I32Load8S { offset: i32 } : [1] => [1],
        /// Pops a pointer from the stack and loads a little-endian `i16` from
        /// it, using the specified constant offset. The value loaded is the
        /// zero-extended to 32-bits
        I32Load16U { offset: i32 } : [1] => [1],
        /// Pops a pointer from the stack and loads a little-endian `i16` from
        /// it, using the specified constant offset. The value loaded is the
        /// sign-extended to 32-bits
        I32Load16S { offset: i32 } : [1] => [1],
        /// Pops a pointer from the stack and loads a little-endian `i64` from
        /// it, using the specified constant offset.
        I64Load { offset: i32 } : [1] => [1],
        /// Pops a pointer from the stack and loads a little-endian `f32` from
        /// it, using the specified constant offset.
        F32Load { offset: i32 } : [1] => [1],
        /// Pops a pointer from the stack and loads a little-endian `f64` from
        /// it, using the specified constant offset.
        F64Load { offset: i32 } : [1] => [1],

        /// Like `I32Load` or `I64Load`, but for loading pointer values.
        PointerLoad { offset: i32 } : [1] => [1],
        /// Like `I32Load` or `I64Load`, but for loading array length values.
        LengthLoad { offset: i32 } : [1] => [1],

        /// Pops a pointer from the stack and then an `i32` value.
        /// Stores the value in little-endian at the pointer specified plus the
        /// constant `offset`.
        I32Store { offset: i32 } : [2] => [0],
        /// Pops a pointer from the stack and then an `i32` value.
        /// Stores the low 8 bits of the value in little-endian at the pointer
        /// specified plus the constant `offset`.
        I32Store8 { offset: i32 } : [2] => [0],
        /// Pops a pointer from the stack and then an `i32` value.
        /// Stores the low 16 bits of the value in little-endian at the pointer
        /// specified plus the constant `offset`.
        I32Store16 { offset: i32 } : [2] => [0],
        /// Pops a pointer from the stack and then an `i64` value.
        /// Stores the value in little-endian at the pointer specified plus the
        /// constant `offset`.
        I64Store { offset: i32 } : [2] => [0],
        /// Pops a pointer from the stack and then an `f32` value.
        /// Stores the value in little-endian at the pointer specified plus the
        /// constant `offset`.
        F32Store { offset: i32 } : [2] => [0],
        /// Pops a pointer from the stack and then an `f64` value.
        /// Stores the value in little-endian at the pointer specified plus the
        /// constant `offset`.
        F64Store { offset: i32 } : [2] => [0],

        /// Like `I32Store` or `I64Store`, but for storing pointer values.
        PointerStore { offset: i32 } : [2] => [0],
        /// Like `I32Store` or `I64Store`, but for storing array length values.
        LengthStore { offset: i32 } : [2] => [0],

        // Scalar lifting/lowering

        /// Converts an interface type `char` value to a 32-bit integer
        /// representing the unicode scalar value.
        I32FromChar : [1] => [1],
        /// Converts an interface type `u64` value to a wasm `i64`.
        I64FromU64 : [1] => [1],
        /// Converts an interface type `s64` value to a wasm `i64`.
        I64FromS64 : [1] => [1],
        /// Converts an interface type `u32` value to a wasm `i32`.
        I32FromU32 : [1] => [1],
        /// Converts an interface type `s32` value to a wasm `i32`.
        I32FromS32 : [1] => [1],
        /// Converts an interface type `u16` value to a wasm `i32`.
        I32FromU16 : [1] => [1],
        /// Converts an interface type `s16` value to a wasm `i32`.
        I32FromS16 : [1] => [1],
        /// Converts an interface type `u8` value to a wasm `i32`.
        I32FromU8 : [1] => [1],
        /// Converts an interface type `s8` value to a wasm `i32`.
        I32FromS8 : [1] => [1],
        /// Conversion an interface type `f32` value to a wasm `f32`.
        ///
        /// This may be a noop for some implementations, but it's here in case the
        /// native language representation of `f32` is different than the wasm
        /// representation of `f32`.
        CoreF32FromF32 : [1] => [1],
        /// Conversion an interface type `f64` value to a wasm `f64`.
        ///
        /// This may be a noop for some implementations, but it's here in case the
        /// native language representation of `f64` is different than the wasm
        /// representation of `f64`.
        CoreF64FromF64 : [1] => [1],

        /// Converts a native wasm `i32` to an interface type `s8`.
        ///
        /// This will truncate the upper bits of the `i32`.
        S8FromI32 : [1] => [1],
        /// Converts a native wasm `i32` to an interface type `u8`.
        ///
        /// This will truncate the upper bits of the `i32`.
        U8FromI32 : [1] => [1],
        /// Converts a native wasm `i32` to an interface type `s16`.
        ///
        /// This will truncate the upper bits of the `i32`.
        S16FromI32 : [1] => [1],
        /// Converts a native wasm `i32` to an interface type `u16`.
        ///
        /// This will truncate the upper bits of the `i32`.
        U16FromI32 : [1] => [1],
        /// Converts a native wasm `i32` to an interface type `s32`.
        S32FromI32 : [1] => [1],
        /// Converts a native wasm `i32` to an interface type `u32`.
        U32FromI32 : [1] => [1],
        /// Converts a native wasm `i64` to an interface type `s64`.
        S64FromI64 : [1] => [1],
        /// Converts a native wasm `i64` to an interface type `u64`.
        U64FromI64 : [1] => [1],
        /// Converts a native wasm `i32` to an interface type `char`.
        ///
        /// It's safe to assume that the `i32` is indeed a valid unicode code point.
        CharFromI32 : [1] => [1],
        /// Converts a native wasm `f32` to an interface type `f32`.
        F32FromCoreF32 : [1] => [1],
        /// Converts a native wasm `f64` to an interface type `f64`.
        F64FromCoreF64 : [1] => [1],

        /// Creates a `bool` from an `i32` input, trapping if the `i32` isn't
        /// zero or one.
        BoolFromI32 : [1] => [1],
        /// Creates an `i32` from a `bool` input, must return 0 or 1.
        I32FromBool : [1] => [1],

        // lists

        /// Lowers a list where the element's layout in the native language is
        /// expected to match the canonical ABI definition of interface types.
        ///
        /// Pops a list value from the stack and pushes the pointer/length onto
        /// the stack. If `realloc` is set to `Some` then this is expected to
        /// *consume* the list which means that the data needs to be copied. An
        /// allocation/copy is expected when:
        ///
        /// * A host is calling a wasm export with a list (it needs to copy the
        ///   list in to the callee's module, allocating space with `realloc`)
        /// * A wasm export is returning a list (it's expected to use `realloc`
        ///   to give ownership of the list to the caller.
        /// * A host is returning a list in a import definition, meaning that
        ///   space needs to be allocated in the caller with `realloc`).
        ///
        /// A copy does not happen (e.g. `realloc` is `None`) when:
        ///
        /// * A wasm module calls an import with the list. In this situation
        ///   it's expected the caller will know how to access this module's
        ///   memory (e.g. the host has raw access or wasm-to-wasm communication
        ///   would copy the list).
        ///
        /// If `realloc` is `Some` then the adapter is not responsible for
        /// cleaning up this list because the other end is receiving the
        /// allocation. If `realloc` is `None` then the adapter is responsible
        /// for cleaning up any temporary allocation it created, if any.
        ListCanonLower {
            element: &'a Type,
            realloc: Option<&'a str>,
        } : [1] => [2],

        /// Same as `ListCanonLower`, but used for strings
        StringLower {
            realloc: Option<&'a str>,
        } : [1] => [2],

        /// Lowers a list where the element's layout in the native language is
        /// not expected to match the canonical ABI definition of interface
        /// types.
        ///
        /// Pops a list value from the stack and pushes the pointer/length onto
        /// the stack. This operation also pops a block from the block stack
        /// which is used as the iteration body of writing each element of the
        /// list consumed.
        ///
        /// The `realloc` field here behaves the same way as `ListCanonLower`.
        /// It's only set to `None` when a wasm module calls a declared import.
        /// Otherwise lowering in other contexts requires allocating memory for
        /// the receiver to own.
        ListLower {
            element: &'a Type,
            realloc: Option<&'a str>,
        } : [1] => [2],

        /// Lifts a list which has a canonical representation into an interface
        /// types value.
        ///
        /// The term "canonical" representation here means that the
        /// representation of the interface types value in the native language
        /// exactly matches the canonical ABI definition of the type.
        ///
        /// This will consume two `i32` values from the stack, a pointer and a
        /// length, and then produces an interface value list.
        ListCanonLift {
            element: &'a Type,
            ty: TypeId,
        } : [2] => [1],

        /// Same as `ListCanonLift`, but used for strings
        StringLift : [2] => [1],

        /// Lifts a list which into an interface types value.
        ///
        /// This will consume two `i32` values from the stack, a pointer and a
        /// length, and then produces an interface value list.
        ///
        /// This will also pop a block from the block stack which is how to
        /// read each individual element from the list.
        ListLift {
            element: &'a Type,
            ty: TypeId,
        } : [2] => [1],

        /// Pushes an operand onto the stack representing the list item from
        /// each iteration of the list.
        ///
        /// This is only used inside of blocks related to lowering lists.
        IterElem { element: &'a Type } : [0] => [1],

        /// Pushes an operand onto the stack representing the base pointer of
        /// the next element in a list.
        ///
        /// This is used for both lifting and lowering lists.
        IterBasePointer : [0] => [1],

        // records and tuples

        /// Pops a record value off the stack, decomposes the record to all of
        /// its fields, and then pushes the fields onto the stack.
        RecordLower {
            record: &'a Record,
            name: &'a str,
            ty: TypeId,
        } : [1] => [record.fields.len()],

        /// Pops all fields for a record off the stack and then composes them
        /// into a record.
        RecordLift {
            record: &'a Record,
            name: &'a str,
            ty: TypeId,
        } : [record.fields.len()] => [1],

        /// Create an `i32` from a handle.
        HandleLower {
            handle: &'a Handle,
            name: &'a str,
            ty: TypeId,
        } : [1] => [1],

        /// Create a handle from an `i32`.
        HandleLift {
            handle: &'a Handle,
            name: &'a str,
            ty: TypeId,
        } : [1] => [1],

        /// Pops a tuple value off the stack, decomposes the tuple to all of
        /// its fields, and then pushes the fields onto the stack.
        TupleLower {
            tuple: &'a Tuple,
            ty: TypeId,
        } : [1] => [tuple.types.len()],

        /// Pops all fields for a tuple off the stack and then composes them
        /// into a tuple.
        TupleLift {
            tuple: &'a Tuple,
            ty: TypeId,
        } : [tuple.types.len()] => [1],

        /// Converts a language-specific record-of-bools to a list of `i32`.
        FlagsLower {
            flags: &'a Flags,
            name: &'a str,
            ty: TypeId,
        } : [1] => [flags.repr().count()],
        /// Converts a list of native wasm `i32` to a language-specific
        /// record-of-bools.
        FlagsLift {
            flags: &'a Flags,
            name: &'a str,
            ty: TypeId,
        } : [flags.repr().count()] => [1],

        // variants

        /// This is a special instruction used for `VariantLower`
        /// instruction to determine the name of the payload, if present, to use
        /// within each block.
        ///
        /// Each sub-block will have this be the first instruction, and if it
        /// lowers a payload it will expect something bound to this name.
        VariantPayloadName : [0] => [1],

        /// Pops a variant off the stack as well as `ty.cases.len()` blocks
        /// from the code generator. Uses each of those blocks and the value
        /// from the stack to produce `nresults` of items.
        VariantLower {
            variant: &'a Variant,
            name: &'a str,
            ty: TypeId,
            results: &'a [WasmType],
        } : [1] => [results.len()],

        /// Pops an `i32` off the stack as well as `ty.cases.len()` blocks
        /// from the code generator. Uses each of those blocks and the value
        /// from the stack to produce a final variant.
        VariantLift {
            variant: &'a Variant,
            name: &'a str,
            ty: TypeId,
        } : [1] => [1],

        /// Pops an enum off the stack and pushes the `i32` representation.
        EnumLower {
            enum_: &'a Enum,
            name: &'a str,
            ty: TypeId,
        } : [1] => [1],

        /// Pops an `i32` off the stack and lifts it into the `enum` specified.
        EnumLift {
            enum_: &'a Enum,
            name: &'a str,
            ty: TypeId,
        } : [1] => [1],

        /// Specialization of `VariantLower` for specifically `option<T>` types,
        /// otherwise behaves the same as `VariantLower` (e.g. two blocks for
        /// the two cases.
        OptionLower {
            payload: &'a Type,
            ty: TypeId,
            results: &'a [WasmType],
        } : [1] => [results.len()],

        /// Specialization of `VariantLift` for specifically the `option<T>`
        /// type. Otherwise behaves the same as the `VariantLift` instruction
        /// with two blocks for the lift.
        OptionLift {
            payload: &'a Type,
            ty: TypeId,
        } : [1] => [1],

        /// Specialization of `VariantLower` for specifically `result<T, E>`
        /// types, otherwise behaves the same as `VariantLower` (e.g. two blocks
        /// for the two cases.
        ResultLower {
            result: &'a Result_
            ty: TypeId,
            results: &'a [WasmType],
        } : [1] => [results.len()],

        /// Specialization of `VariantLift` for specifically the `result<T,
        /// E>` type. Otherwise behaves the same as the `VariantLift`
        /// instruction with two blocks for the lift.
        ResultLift {
            result: &'a Result_,
            ty: TypeId,
        } : [1] => [1],

        // calling/control flow

        /// Represents a call to a raw WebAssembly API. The module/name are
        /// provided inline as well as the types if necessary.
        CallWasm {
            name: &'a str,
            sig: &'a WasmSignature,
        } : [sig.params.len()] => [sig.results.len()],

        /// Same as `CallWasm`, except the dual where an interface is being
        /// called rather than a raw wasm function.
        ///
        /// Note that this will be used for async functions.
        CallInterface {
            func: &'a Function,
        } : [func.params.len()] => [func.results.len()],

        /// Returns `amt` values on the stack. This is always the last
        /// instruction.
        Return { amt: usize, func: &'a Function } : [*amt] => [0],

        /// Calls the `realloc` function specified in a malloc-like fashion
        /// allocating `size` bytes with alignment `align`.
        ///
        /// Pushes the returned pointer onto the stack.
        Malloc {
            realloc: &'static str,
            size: usize,
            align: usize,
        } : [0] => [1],

        /// Used exclusively for guest-code generation this indicates that
        /// the standard memory deallocation function needs to be invoked with
        /// the specified parameters.
        ///
        /// This will pop a pointer from the stack and push nothing.
        GuestDeallocate {
            size: usize,
            align: usize,
        } : [1] => [0],

        /// Used exclusively for guest-code generation this indicates that
        /// a string is being deallocated. The ptr/length are on the stack and
        /// are poppped off and used to deallocate the string.
        GuestDeallocateString : [2] => [0],

        /// Used exclusively for guest-code generation this indicates that
        /// a list is being deallocated. The ptr/length are on the stack and
        /// are poppped off and used to deallocate the list.
        ///
        /// This variant also pops a block off the block stack to be used as the
        /// body of the deallocation loop.
        GuestDeallocateList {
            element: &'a Type,
        } : [2] => [0],

        /// Used exclusively for guest-code generation this indicates that
        /// a variant is being deallocated. The integer discriminant is popped
        /// off the stack as well as `blocks` number of blocks popped from the
        /// blocks stack. The variant is used to select, at runtime, which of
        /// the blocks is executed to deallocate the variant.
        GuestDeallocateVariant {
            blocks: usize,
        } : [1] => [0],
    }
}

#[derive(Debug, PartialEq)]
pub enum Bitcast {
    // Upcasts
    F32ToI32,
    F64ToI64,
    I32ToI64,
    F32ToI64,

    // Downcasts
    I32ToF32,
    I64ToF64,
    I64ToI32,
    I64ToF32,

    // PointerOrI64 conversions. These preserve provenance when the source
    // or destination is a pointer value.
    //
    // These are used when pointer values are being stored in
    // (ToP64) and loaded out of (P64To) PointerOrI64 values, so they
    // always have to preserve provenance when the value being loaded or
    // stored is a pointer.
    P64ToI64,
    I64ToP64,
    P64ToP,
    PToP64,

    // Pointer<->number conversions. These do not preserve provenance.
    //
    // These are used when integer or floating-point values are being stored in
    // (I32ToP/etc.) and loaded out of (PToI32/etc.) pointer values, so they
    // never have any provenance to preserve.
    I32ToP,
    PToI32,
    PToL,
    LToP,

    // Number<->Number conversions.
    I32ToL,
    LToI32,
    I64ToL,
    LToI64,

    // Multiple conversions in sequence.
    Sequence(Box<[Bitcast; 2]>),

    None,
}

/// Whether the glue code surrounding a call is lifting arguments and lowering
/// results or vice versa.
#[derive(Clone, Copy, PartialEq, Eq)]
pub enum LiftLower {
    /// When the glue code lifts arguments and lowers results.
    ///
    /// ```text
    /// Wasm --lift-args--> SourceLanguage; call; SourceLanguage --lower-results--> Wasm
    /// ```
    LiftArgsLowerResults,
    /// When the glue code lowers arguments and lifts results.
    ///
    /// ```text
    /// SourceLanguage --lower-args--> Wasm; call; Wasm --lift-results--> SourceLanguage
    /// ```
    LowerArgsLiftResults,
}

/// Trait for language implementors to use to generate glue code between native
/// WebAssembly signatures and interface types signatures.
///
/// This is used as an implementation detail in interpreting the ABI between
/// interface types and wasm types. Eventually this will be driven by interface
/// types adapters themselves, but for now the ABI of a function dictates what
/// instructions are fed in.
///
/// Types implementing `Bindgen` are incrementally fed `Instruction` values to
/// generate code for. Instructions operate like a stack machine where each
/// instruction has a list of inputs and a list of outputs (provided by the
/// `emit` function).
pub trait Bindgen {
    /// The intermediate type for fragments of code for this type.
    ///
    /// For most languages `String` is a suitable intermediate type.
    type Operand: Clone;

    /// Emit code to implement the given instruction.
    ///
    /// Each operand is given in `operands` and can be popped off if ownership
    /// is required. It's guaranteed that `operands` has the appropriate length
    /// for the `inst` given, as specified with [`Instruction`].
    ///
    /// Each result variable should be pushed onto `results`. This function must
    /// push the appropriate number of results or binding generation will panic.
    fn emit(
        &mut self,
        resolve: &Resolve,
        inst: &Instruction<'_>,
        operands: &mut Vec<Self::Operand>,
        results: &mut Vec<Self::Operand>,
    );

    /// Gets a operand reference to the return pointer area.
    ///
    /// The provided size and alignment is for the function's return type.
    fn return_pointer(&mut self, size: usize, align: usize) -> Self::Operand;

    /// Enters a new block of code to generate code for.
    ///
    /// This is currently exclusively used for constructing variants. When a
    /// variant is constructed a block here will be pushed for each case of a
    /// variant, generating the code necessary to translate a variant case.
    ///
    /// Blocks are completed with `finish_block` below. It's expected that `emit`
    /// will always push code (if necessary) into the "current block", which is
    /// updated by calling this method and `finish_block` below.
    fn push_block(&mut self);

    /// Indicates to the code generator that a block is completed, and the
    /// `operand` specified was the resulting value of the block.
    ///
    /// This method will be used to compute the value of each arm of lifting a
    /// variant. The `operand` will be `None` if the variant case didn't
    /// actually have any type associated with it. Otherwise it will be `Some`
    /// as the last value remaining on the stack representing the value
    /// associated with a variant's `case`.
    ///
    /// It's expected that this will resume code generation in the previous
    /// block before `push_block` was called. This must also save the results
    /// of the current block internally for instructions like `ResultLift` to
    /// use later.
    fn finish_block(&mut self, operand: &mut Vec<Self::Operand>);

    /// Returns size information that was previously calculated for all types.
    fn sizes(&self) -> &SizeAlign;

    /// Returns whether or not the specified element type is represented in a
    /// "canonical" form for lists. This dictates whether the `ListCanonLower`
    /// and `ListCanonLift` instructions are used or not.
    fn is_list_canonical(&self, resolve: &Resolve, element: &Type) -> bool;
}

/// Generates an abstract sequence of instructions which represents this
/// function being adapted as an imported function.
///
/// The instructions here, when executed, will emulate a language with
/// interface types calling the concrete wasm implementation. The parameters
/// for the returned instruction sequence are the language's own
/// interface-types parameters. One instruction in the instruction stream
/// will be a `Call` which represents calling the actual raw wasm function
/// signature.
///
/// This function is useful, for example, if you're building a language
/// generator for WASI bindings. This will document how to translate
/// language-specific values into the wasm types to call a WASI function,
/// and it will also automatically convert the results of the WASI function
/// back to a language-specific value.
pub fn call(
    resolve: &Resolve,
    variant: AbiVariant,
    lift_lower: LiftLower,
    func: &Function,
    bindgen: &mut impl Bindgen,
) {
    Generator::new(resolve, variant, lift_lower, bindgen).call(func);
}

/// Used in a similar manner as the `Interface::call` function except is
/// used to generate the `post-return` callback for `func`.
///
/// This is only intended to be used in guest generators for exported
/// functions and will primarily generate `GuestDeallocate*` instructions,
/// plus others used as input to those instructions.
pub fn post_return(resolve: &Resolve, func: &Function, bindgen: &mut impl Bindgen) {
    Generator::new(
        resolve,
        AbiVariant::GuestExport,
        LiftLower::LiftArgsLowerResults,
        bindgen,
    )
    .post_return(func);
}
/// Returns whether the `Function` specified needs a post-return function to
/// be generated in guest code.
///
/// This is used when the return value contains a memory allocation such as
/// a list or a string primarily.
pub fn guest_export_needs_post_return(resolve: &Resolve, func: &Function) -> bool {
    func.results
        .iter_types()
        .any(|t| needs_post_return(resolve, t))
}

fn needs_post_return(resolve: &Resolve, ty: &Type) -> bool {
    match ty {
        Type::String => true,
        Type::Id(id) => match &resolve.types[*id].kind {
            TypeDefKind::List(_) => true,
            TypeDefKind::Type(t) => needs_post_return(resolve, t),
            TypeDefKind::Handle(_) => false,
            TypeDefKind::Resource => false,
            TypeDefKind::Record(r) => r.fields.iter().any(|f| needs_post_return(resolve, &f.ty)),
            TypeDefKind::Tuple(t) => t.types.iter().any(|t| needs_post_return(resolve, t)),
            TypeDefKind::Variant(t) => t
                .cases
                .iter()
                .filter_map(|t| t.ty.as_ref())
                .any(|t| needs_post_return(resolve, t)),
            TypeDefKind::Option(t) => needs_post_return(resolve, t),
            TypeDefKind::Result(t) => [&t.ok, &t.err]
                .iter()
                .filter_map(|t| t.as_ref())
                .any(|t| needs_post_return(resolve, t)),
            TypeDefKind::Flags(_) | TypeDefKind::Enum(_) => false,
            TypeDefKind::Future(_) | TypeDefKind::Stream(_) => unimplemented!(),
            TypeDefKind::Unknown => unreachable!(),
        },

        Type::Bool
        | Type::U8
        | Type::S8
        | Type::U16
        | Type::S16
        | Type::U32
        | Type::S32
        | Type::U64
        | Type::S64
        | Type::F32
        | Type::F64
        | Type::Char => false,
    }
}

struct Generator<'a, B: Bindgen> {
    variant: AbiVariant,
    lift_lower: LiftLower,
    bindgen: &'a mut B,
    resolve: &'a Resolve,
    operands: Vec<B::Operand>,
    results: Vec<B::Operand>,
    stack: Vec<B::Operand>,
    return_pointer: Option<B::Operand>,
}

impl<'a, B: Bindgen> Generator<'a, B> {
    fn new(
        resolve: &'a Resolve,
        variant: AbiVariant,
        lift_lower: LiftLower,
        bindgen: &'a mut B,
    ) -> Generator<'a, B> {
        Generator {
            resolve,
            variant,
            lift_lower,
            bindgen,
            operands: Vec::new(),
            results: Vec::new(),
            stack: Vec::new(),
            return_pointer: None,
        }
    }

    fn call(&mut self, func: &Function) {
        let sig = self.resolve.wasm_signature(self.variant, func);

        match self.lift_lower {
            LiftLower::LowerArgsLiftResults => {
                if !sig.indirect_params {
                    // If the parameters for this function aren't indirect
                    // (there aren't too many) then we simply do a normal lower
                    // operation for them all.
                    for (nth, (_, ty)) in func.params.iter().enumerate() {
                        self.emit(&Instruction::GetArg { nth });
                        self.lower(ty);
                    }
                } else {
                    // ... otherwise if parameters are indirect space is
                    // allocated from them and each argument is lowered
                    // individually into memory.
                    let info = self
                        .bindgen
                        .sizes()
                        .record(func.params.iter().map(|t| &t.1));
                    let ptr = match self.variant {
                        // When a wasm module calls an import it will provide
                        // space that isn't explicitly deallocated.
                        AbiVariant::GuestImport => self
                            .bindgen
                            .return_pointer(info.size.size_wasm32(), info.align.align_wasm32()),
                        // When calling a wasm module from the outside, though,
                        // malloc needs to be called.
                        AbiVariant::GuestExport => {
                            self.emit(&Instruction::Malloc {
                                realloc: "cabi_realloc",
                                size: info.size.size_wasm32(),
                                align: info.align.align_wasm32(),
                            });
                            self.stack.pop().unwrap()
                        }
                    };
                    let mut offset = 0usize;
                    for (nth, (_, ty)) in func.params.iter().enumerate() {
                        self.emit(&Instruction::GetArg { nth });
                        offset = align_to(offset, self.bindgen.sizes().align(ty).align_wasm32());
                        self.write_to_memory(ty, ptr.clone(), offset as i32);
                        offset += self.bindgen.sizes().size(ty).size_wasm32();
                    }

                    self.stack.push(ptr);
                }

                // If necessary we may need to prepare a return pointer for
                // this ABI.
                if self.variant == AbiVariant::GuestImport && sig.retptr {
                    let info = self.bindgen.sizes().params(func.results.iter_types());
                    let ptr = self
                        .bindgen
                        .return_pointer(info.size.size_wasm32(), info.align.align_wasm32());
                    self.return_pointer = Some(ptr.clone());
                    self.stack.push(ptr);
                }

                // Now that all the wasm args are prepared we can call the
                // actual wasm function.
                assert_eq!(self.stack.len(), sig.params.len());
                self.emit(&Instruction::CallWasm {
                    name: &func.name,
                    sig: &sig,
                });

                if !sig.retptr {
                    // With no return pointer in use we can simply lift the
                    // result(s) of the function from the result of the core
                    // wasm function.
                    for ty in func.results.iter_types() {
                        self.lift(ty)
                    }
                } else {
                    let ptr = match self.variant {
                        // imports into guests means it's a wasm module
                        // calling an imported function. We supplied the
                        // return poitner as the last argument (saved in
                        // `self.return_pointer`) so we use that to read
                        // the result of the function from memory.
                        AbiVariant::GuestImport => {
                            assert!(sig.results.is_empty());
                            self.return_pointer.take().unwrap()
                        }

                        // guest exports means that this is a host
                        // calling wasm so wasm returned a pointer to where
                        // the result is stored
                        AbiVariant::GuestExport => self.stack.pop().unwrap(),
                    };

                    self.read_results_from_memory(&func.results, ptr, 0);
                }

                self.emit(&Instruction::Return {
                    func,
                    amt: func.results.len(),
                });
            }
            LiftLower::LiftArgsLowerResults => {
                if !sig.indirect_params {
                    // If parameters are not passed indirectly then we lift each
                    // argument in succession from the component wasm types that
                    // make-up the type.
                    let mut offset = 0;
                    let mut temp = Vec::new();
                    for (_, ty) in func.params.iter() {
                        temp.truncate(0);
                        self.resolve.push_flat(ty, &mut temp);
                        for _ in 0..temp.len() {
                            self.emit(&Instruction::GetArg { nth: offset });
                            offset += 1;
                        }
                        self.lift(ty);
                    }
                } else {
                    // ... otherwise argument is read in succession from memory
                    // where the pointer to the arguments is the first argument
                    // to the function.
                    let mut offset = 0usize;
                    self.emit(&Instruction::GetArg { nth: 0 });
                    let ptr = self.stack.pop().unwrap();
                    for (_, ty) in func.params.iter() {
                        offset = align_to(offset, self.bindgen.sizes().align(ty).align_wasm32());
                        self.read_from_memory(ty, ptr.clone(), offset as i32);
                        offset += self.bindgen.sizes().size(ty).size_wasm32();
                    }
                }

                // ... and that allows us to call the interface types function
                self.emit(&Instruction::CallInterface { func });

                // This was dynamically allocated by the caller so after
                // it's been read by the guest we need to deallocate it.
                if let AbiVariant::GuestExport = self.variant {
                    if sig.indirect_params {
                        let info = self
                            .bindgen
                            .sizes()
                            .record(func.params.iter().map(|t| &t.1));
                        self.emit(&Instruction::GetArg { nth: 0 });
                        self.emit(&Instruction::GuestDeallocate {
                            size: info.size.size_wasm32(),
                            align: info.align.align_wasm32(),
                        });
                    }
                }

                if !sig.retptr {
                    // With no return pointer in use we simply lower the
                    // result(s) and return that directly from the function.
                    let results = self
                        .stack
                        .drain(self.stack.len() - func.results.len()..)
                        .collect::<Vec<_>>();
                    for (ty, result) in func.results.iter_types().zip(results) {
                        self.stack.push(result);
                        self.lower(ty);
                    }
                } else {
                    match self.variant {
                        // When a function is imported to a guest this means
                        // it's a host providing the implementation of the
                        // import. The result is stored in the pointer
                        // specified in the last argument, so we get the
                        // pointer here and then write the return value into
                        // it.
                        AbiVariant::GuestImport => {
                            self.emit(&Instruction::GetArg {
                                nth: sig.params.len() - 1,
                            });
                            let ptr = self.stack.pop().unwrap();
                            self.write_params_to_memory(func.results.iter_types(), ptr, 0);
                        }

                        // For a guest import this is a function defined in
                        // wasm, so we're returning a pointer where the
                        // value was stored at. Allocate some space here
                        // (statically) and then write the result into that
                        // memory, returning the pointer at the end.
                        AbiVariant::GuestExport => {
                            let info = self.bindgen.sizes().params(func.results.iter_types());
                            let ptr = self
                                .bindgen
                                .return_pointer(info.size.size_wasm32(), info.align.align_wasm32());
                            self.write_params_to_memory(func.results.iter_types(), ptr.clone(), 0);
                            self.stack.push(ptr);
                        }
                    }
                }

                self.emit(&Instruction::Return {
                    func,
                    amt: sig.results.len(),
                });
            }
        }

        assert!(
            self.stack.is_empty(),
            "stack has {} items remaining",
            self.stack.len()
        );
    }

    fn post_return(&mut self, func: &Function) {
        let sig = self.resolve.wasm_signature(self.variant, func);

        // Currently post-return is only used for lists and lists are always
        // returned indirectly through memory due to their flat representation
        // having more than one type. Assert that a return pointer is used,
        // though, in case this ever changes.
        assert!(sig.retptr);

        self.emit(&Instruction::GetArg { nth: 0 });
        let addr = self.stack.pop().unwrap();
        for (offset, ty) in self
            .bindgen
            .sizes()
            .field_offsets(func.results.iter_types())
        {
            let offset = offset.size_wasm32();
            let offset = i32::try_from(offset).unwrap();
            self.deallocate(ty, addr.clone(), offset);
        }
        self.emit(&Instruction::Return { func, amt: 0 });

        assert!(
            self.stack.is_empty(),
            "stack has {} items remaining",
            self.stack.len()
        );
    }

    fn emit(&mut self, inst: &Instruction<'_>) {
        self.operands.clear();
        self.results.clear();

        let operands_len = inst.operands_len();
        assert!(
            self.stack.len() >= operands_len,
            "not enough operands on stack for {:?}",
            inst
        );
        self.operands
            .extend(self.stack.drain((self.stack.len() - operands_len)..));
        self.results.reserve(inst.results_len());

        self.bindgen
            .emit(self.resolve, inst, &mut self.operands, &mut self.results);

        assert_eq!(
            self.results.len(),
            inst.results_len(),
            "{:?} expected {} results, got {}",
            inst,
            inst.results_len(),
            self.results.len()
        );
        self.stack.append(&mut self.results);
    }

    fn push_block(&mut self) {
        self.bindgen.push_block();
    }

    fn finish_block(&mut self, size: usize) {
        self.operands.clear();
        assert!(
            size <= self.stack.len(),
            "not enough operands on stack for finishing block",
        );
        self.operands
            .extend(self.stack.drain((self.stack.len() - size)..));
        self.bindgen.finish_block(&mut self.operands);
    }

    fn lower(&mut self, ty: &Type) {
        use Instruction::*;

        match *ty {
            Type::Bool => self.emit(&I32FromBool),
            Type::S8 => self.emit(&I32FromS8),
            Type::U8 => self.emit(&I32FromU8),
            Type::S16 => self.emit(&I32FromS16),
            Type::U16 => self.emit(&I32FromU16),
            Type::S32 => self.emit(&I32FromS32),
            Type::U32 => self.emit(&I32FromU32),
            Type::S64 => self.emit(&I64FromS64),
            Type::U64 => self.emit(&I64FromU64),
            Type::Char => self.emit(&I32FromChar),
            Type::F32 => self.emit(&CoreF32FromF32),
            Type::F64 => self.emit(&CoreF64FromF64),
            Type::String => {
                let realloc = self.list_realloc();
                self.emit(&StringLower { realloc });
            }
            Type::Id(id) => match &self.resolve.types[id].kind {
                TypeDefKind::Type(t) => self.lower(t),
                TypeDefKind::List(element) => {
                    let realloc = self.list_realloc();
                    if self.bindgen.is_list_canonical(self.resolve, element) {
                        self.emit(&ListCanonLower { element, realloc });
                    } else {
                        self.push_block();
                        self.emit(&IterElem { element });
                        self.emit(&IterBasePointer);
                        let addr = self.stack.pop().unwrap();
                        self.write_to_memory(element, addr, 0);
                        self.finish_block(0);
                        self.emit(&ListLower { element, realloc });
                    }
                }
                TypeDefKind::Handle(handle) => {
                    let (Handle::Own(ty) | Handle::Borrow(ty)) = handle;
                    self.emit(&HandleLower {
                        handle,
                        ty: id,
                        name: self.resolve.types[*ty].name.as_deref().unwrap(),
                    });
                }
                TypeDefKind::Resource => {
                    todo!();
                }
                TypeDefKind::Record(record) => {
                    self.emit(&RecordLower {
                        record,
                        ty: id,
                        name: self.resolve.types[id].name.as_deref().unwrap(),
                    });
                    let values = self
                        .stack
                        .drain(self.stack.len() - record.fields.len()..)
                        .collect::<Vec<_>>();
                    for (field, value) in record.fields.iter().zip(values) {
                        self.stack.push(value);
                        self.lower(&field.ty);
                    }
                }
                TypeDefKind::Tuple(tuple) => {
                    self.emit(&TupleLower { tuple, ty: id });
                    let values = self
                        .stack
                        .drain(self.stack.len() - tuple.types.len()..)
                        .collect::<Vec<_>>();
                    for (ty, value) in tuple.types.iter().zip(values) {
                        self.stack.push(value);
                        self.lower(ty);
                    }
                }

                TypeDefKind::Flags(flags) => {
                    self.emit(&FlagsLower {
                        flags,
                        ty: id,
                        name: self.resolve.types[id].name.as_ref().unwrap(),
                    });
                }

                TypeDefKind::Variant(v) => {
                    let results =
                        self.lower_variant_arms(ty, v.cases.iter().map(|c| c.ty.as_ref()));
                    self.emit(&VariantLower {
                        variant: v,
                        ty: id,
                        results: &results,
                        name: self.resolve.types[id].name.as_deref().unwrap(),
                    });
                }
                TypeDefKind::Enum(enum_) => {
                    self.emit(&EnumLower {
                        enum_,
                        ty: id,
                        name: self.resolve.types[id].name.as_deref().unwrap(),
                    });
                }
                TypeDefKind::Option(t) => {
                    let results = self.lower_variant_arms(ty, [None, Some(t)]);
                    self.emit(&OptionLower {
                        payload: t,
                        ty: id,
                        results: &results,
                    });
                }
                TypeDefKind::Result(r) => {
                    let results = self.lower_variant_arms(ty, [r.ok.as_ref(), r.err.as_ref()]);
                    self.emit(&ResultLower {
                        result: r,
                        ty: id,
                        results: &results,
                    });
                }
                TypeDefKind::Future(_) => todo!("lower future"),
                TypeDefKind::Stream(_) => todo!("lower stream"),
                TypeDefKind::Unknown => unreachable!(),
            },
        }
    }

    fn lower_variant_arms<'b>(
        &mut self,
        ty: &Type,
        cases: impl IntoIterator<Item = Option<&'b Type>>,
    ) -> Vec<WasmType> {
        use Instruction::*;
        let mut results = Vec::new();
        let mut temp = Vec::new();
        let mut casts = Vec::new();
        self.resolve.push_flat(ty, &mut results);
        for (i, ty) in cases.into_iter().enumerate() {
            self.push_block();
            self.emit(&VariantPayloadName);
            let payload_name = self.stack.pop().unwrap();
            self.emit(&I32Const { val: i as i32 });
            let mut pushed = 1;
            if let Some(ty) = ty {
                // Using the payload of this block we lower the type to
                // raw wasm values.
                self.stack.push(payload_name);
                self.lower(ty);

                // Determine the types of all the wasm values we just
                // pushed, and record how many. If we pushed too few
                // then we'll need to push some zeros after this.
                temp.truncate(0);
                self.resolve.push_flat(ty, &mut temp);
                pushed += temp.len();

                // For all the types pushed we may need to insert some
                // bitcasts. This will go through and cast everything
                // to the right type to ensure all blocks produce the
                // same set of results.
                casts.truncate(0);
                for (actual, expected) in temp.iter().zip(&results[1..]) {
                    casts.push(cast(*actual, *expected));
                }
                if casts.iter().any(|c| *c != Bitcast::None) {
                    self.emit(&Bitcasts { casts: &casts });
                }
            }

            // If we haven't pushed enough items in this block to match
            // what other variants are pushing then we need to push
            // some zeros.
            if pushed < results.len() {
                self.emit(&ConstZero {
                    tys: &results[pushed..],
                });
            }
            self.finish_block(results.len());
        }
        results
    }

    fn list_realloc(&self) -> Option<&'static str> {
        // Lowering parameters calling a wasm import means
        // we don't need to pass ownership, but we pass
        // ownership in all other cases.
        match (self.variant, self.lift_lower) {
            (AbiVariant::GuestImport, LiftLower::LowerArgsLiftResults) => None,
            _ => Some("cabi_realloc"),
        }
    }

    /// Note that in general everything in this function is the opposite of the
    /// `lower` function above. This is intentional and should be kept this way!
    fn lift(&mut self, ty: &Type) {
        use Instruction::*;

        match *ty {
            Type::Bool => self.emit(&BoolFromI32),
            Type::S8 => self.emit(&S8FromI32),
            Type::U8 => self.emit(&U8FromI32),
            Type::S16 => self.emit(&S16FromI32),
            Type::U16 => self.emit(&U16FromI32),
            Type::S32 => self.emit(&S32FromI32),
            Type::U32 => self.emit(&U32FromI32),
            Type::S64 => self.emit(&S64FromI64),
            Type::U64 => self.emit(&U64FromI64),
            Type::Char => self.emit(&CharFromI32),
            Type::F32 => self.emit(&F32FromCoreF32),
            Type::F64 => self.emit(&F64FromCoreF64),
            Type::String => self.emit(&StringLift),
            Type::Id(id) => match &self.resolve.types[id].kind {
                TypeDefKind::Type(t) => self.lift(t),
                TypeDefKind::List(element) => {
                    if self.bindgen.is_list_canonical(self.resolve, element) {
                        self.emit(&ListCanonLift { element, ty: id });
                    } else {
                        self.push_block();
                        self.emit(&IterBasePointer);
                        let addr = self.stack.pop().unwrap();
                        self.read_from_memory(element, addr, 0);
                        self.finish_block(1);
                        self.emit(&ListLift { element, ty: id });
                    }
                }
                TypeDefKind::Handle(handle) => {
                    let (Handle::Own(ty) | Handle::Borrow(ty)) = handle;
                    self.emit(&HandleLift {
                        handle,
                        ty: id,
                        name: self.resolve.types[*ty].name.as_deref().unwrap(),
                    });
                }
                TypeDefKind::Resource => {
                    todo!();
                }
                TypeDefKind::Record(record) => {
                    let mut temp = Vec::new();
                    self.resolve.push_flat(ty, &mut temp);
                    let mut args = self
                        .stack
                        .drain(self.stack.len() - temp.len()..)
                        .collect::<Vec<_>>();
                    for field in record.fields.iter() {
                        temp.truncate(0);
                        self.resolve.push_flat(&field.ty, &mut temp);
                        self.stack.extend(args.drain(..temp.len()));
                        self.lift(&field.ty);
                    }
                    self.emit(&RecordLift {
                        record,
                        ty: id,
                        name: self.resolve.types[id].name.as_deref().unwrap(),
                    });
                }
                TypeDefKind::Tuple(tuple) => {
                    let mut temp = Vec::new();
                    self.resolve.push_flat(ty, &mut temp);
                    let mut args = self
                        .stack
                        .drain(self.stack.len() - temp.len()..)
                        .collect::<Vec<_>>();
                    for ty in tuple.types.iter() {
                        temp.truncate(0);
                        self.resolve.push_flat(ty, &mut temp);
                        self.stack.extend(args.drain(..temp.len()));
                        self.lift(ty);
                    }
                    self.emit(&TupleLift { tuple, ty: id });
                }
                TypeDefKind::Flags(flags) => {
                    self.emit(&FlagsLift {
                        flags,
                        ty: id,
                        name: self.resolve.types[id].name.as_ref().unwrap(),
                    });
                }

                TypeDefKind::Variant(v) => {
                    self.lift_variant_arms(ty, v.cases.iter().map(|c| c.ty.as_ref()));
                    self.emit(&VariantLift {
                        variant: v,
                        ty: id,
                        name: self.resolve.types[id].name.as_deref().unwrap(),
                    });
                }

                TypeDefKind::Enum(enum_) => {
                    self.emit(&EnumLift {
                        enum_,
                        ty: id,
                        name: self.resolve.types[id].name.as_deref().unwrap(),
                    });
                }

                TypeDefKind::Option(t) => {
                    self.lift_variant_arms(ty, [None, Some(t)]);
                    self.emit(&OptionLift { payload: t, ty: id });
                }

                TypeDefKind::Result(r) => {
                    self.lift_variant_arms(ty, [r.ok.as_ref(), r.err.as_ref()]);
                    self.emit(&ResultLift { result: r, ty: id });
                }

                TypeDefKind::Future(_) => todo!("lift future"),
                TypeDefKind::Stream(_) => todo!("lift stream"),
                TypeDefKind::Unknown => unreachable!(),
            },
        }
    }

    fn lift_variant_arms<'b>(
        &mut self,
        ty: &Type,
        cases: impl IntoIterator<Item = Option<&'b Type>>,
    ) {
        let mut params = Vec::new();
        let mut temp = Vec::new();
        let mut casts = Vec::new();
        self.resolve.push_flat(ty, &mut params);
        let block_inputs = self
            .stack
            .drain(self.stack.len() + 1 - params.len()..)
            .collect::<Vec<_>>();
        for ty in cases {
            self.push_block();
            if let Some(ty) = ty {
                // Push only the values we need for this variant onto
                // the stack.
                temp.truncate(0);
                self.resolve.push_flat(ty, &mut temp);
                self.stack
                    .extend(block_inputs[..temp.len()].iter().cloned());

                // Cast all the types we have on the stack to the actual
                // types needed for this variant, if necessary.
                casts.truncate(0);
                for (actual, expected) in temp.iter().zip(&params[1..]) {
                    casts.push(cast(*expected, *actual));
                }
                if casts.iter().any(|c| *c != Bitcast::None) {
                    self.emit(&Instruction::Bitcasts { casts: &casts });
                }

                // Then recursively lift this variant's payload.
                self.lift(ty);
            }
            self.finish_block(ty.is_some() as usize);
        }
    }

    fn write_to_memory(&mut self, ty: &Type, addr: B::Operand, offset: i32) {
        use Instruction::*;

        match *ty {
            // Builtin types need different flavors of storage instructions
            // depending on the size of the value written.
            Type::Bool | Type::U8 | Type::S8 => {
                self.lower_and_emit(ty, addr, &I32Store8 { offset })
            }
            Type::U16 | Type::S16 => self.lower_and_emit(ty, addr, &I32Store16 { offset }),
            Type::U32 | Type::S32 | Type::Char => {
                self.lower_and_emit(ty, addr, &I32Store { offset })
            }
            Type::U64 | Type::S64 => self.lower_and_emit(ty, addr, &I64Store { offset }),
            Type::F32 => self.lower_and_emit(ty, addr, &F32Store { offset }),
            Type::F64 => self.lower_and_emit(ty, addr, &F64Store { offset }),
            Type::String => self.write_list_to_memory(ty, addr, offset),

            Type::Id(id) => match &self.resolve.types[id].kind {
                TypeDefKind::Type(t) => self.write_to_memory(t, addr, offset),
                TypeDefKind::List(_) => self.write_list_to_memory(ty, addr, offset),

                TypeDefKind::Handle(_) => self.lower_and_emit(ty, addr, &I32Store { offset }),

                // Decompose the record into its components and then write all
                // the components into memory one-by-one.
                TypeDefKind::Record(record) => {
                    self.emit(&RecordLower {
                        record,
                        ty: id,
                        name: self.resolve.types[id].name.as_deref().unwrap(),
                    });
                    self.write_fields_to_memory(record.fields.iter().map(|f| &f.ty), addr, offset);
                }
                TypeDefKind::Resource => {
                    todo!()
                }
                TypeDefKind::Tuple(tuple) => {
                    self.emit(&TupleLower { tuple, ty: id });
                    self.write_fields_to_memory(tuple.types.iter(), addr, offset);
                }

                TypeDefKind::Flags(f) => {
                    self.lower(ty);
                    match f.repr() {
                        FlagsRepr::U8 => {
                            self.stack.push(addr);
                            self.store_intrepr(offset, Int::U8);
                        }
                        FlagsRepr::U16 => {
                            self.stack.push(addr);
                            self.store_intrepr(offset, Int::U16);
                        }
                        FlagsRepr::U32(n) => {
                            for i in (0..n).rev() {
                                self.stack.push(addr.clone());
                                self.emit(&I32Store {
                                    offset: offset + (i as i32) * 4,
                                });
                            }
                        }
                    }
                }

                // Each case will get its own block, and the first item in each
                // case is writing the discriminant. After that if we have a
                // payload we write the payload after the discriminant, aligned up
                // to the type's alignment.
                TypeDefKind::Variant(v) => {
                    self.write_variant_arms_to_memory(
                        offset,
                        addr,
                        v.tag(),
                        v.cases.iter().map(|c| c.ty.as_ref()),
                    );
                    self.emit(&VariantLower {
                        variant: v,
                        ty: id,
                        results: &[],
                        name: self.resolve.types[id].name.as_deref().unwrap(),
                    });
                }

                TypeDefKind::Option(t) => {
                    self.write_variant_arms_to_memory(offset, addr, Int::U8, [None, Some(t)]);
                    self.emit(&OptionLower {
                        payload: t,
                        ty: id,
                        results: &[],
                    });
                }

                TypeDefKind::Result(r) => {
                    self.write_variant_arms_to_memory(
                        offset,
                        addr,
                        Int::U8,
                        [r.ok.as_ref(), r.err.as_ref()],
                    );
                    self.emit(&ResultLower {
                        result: r,
                        ty: id,
                        results: &[],
                    });
                }

                TypeDefKind::Enum(e) => {
                    self.lower(ty);
                    self.stack.push(addr);
                    self.store_intrepr(offset, e.tag());
                }

                TypeDefKind::Future(_) => todo!("write future to memory"),
                TypeDefKind::Stream(_) => todo!("write stream to memory"),
                TypeDefKind::Unknown => unreachable!(),
            },
        }
    }

    fn write_params_to_memory<'b>(
        &mut self,
        params: impl IntoIterator<Item = &'b Type> + ExactSizeIterator,
        addr: B::Operand,
        offset: i32,
    ) {
        self.write_fields_to_memory(params, addr, offset);
    }

    fn write_variant_arms_to_memory<'b>(
        &mut self,
        offset: i32,
        addr: B::Operand,
        tag: Int,
        cases: impl IntoIterator<Item = Option<&'b Type>> + Clone,
    ) {
        let payload_offset = offset
            + (self
                .bindgen
                .sizes()
                .payload_offset(tag, cases.clone())
                .size_wasm32() as i32);
        for (i, ty) in cases.into_iter().enumerate() {
            self.push_block();
            self.emit(&Instruction::VariantPayloadName);
            let payload_name = self.stack.pop().unwrap();
            self.emit(&Instruction::I32Const { val: i as i32 });
            self.stack.push(addr.clone());
            self.store_intrepr(offset, tag);
            if let Some(ty) = ty {
                self.stack.push(payload_name.clone());
                self.write_to_memory(ty, addr.clone(), payload_offset);
            }
            self.finish_block(0);
        }
    }

    fn write_list_to_memory(&mut self, ty: &Type, addr: B::Operand, offset: i32) {
        // After lowering the list there's two i32 values on the stack
        // which we write into memory, writing the pointer into the low address
        // and the length into the high address.
        self.lower(ty);
        self.stack.push(addr.clone());
        self.emit(&Instruction::LengthStore { offset: offset + 4 });
        self.stack.push(addr);
        self.emit(&Instruction::PointerStore { offset });
    }

    fn write_fields_to_memory<'b>(
        &mut self,
        tys: impl IntoIterator<Item = &'b Type> + ExactSizeIterator,
        addr: B::Operand,
        offset: i32,
    ) {
        let fields = self
            .stack
            .drain(self.stack.len() - tys.len()..)
            .collect::<Vec<_>>();
        for ((field_offset, ty), op) in self
            .bindgen
            .sizes()
            .field_offsets(tys)
            .into_iter()
            .zip(fields)
        {
            self.stack.push(op);
            let field_offset = field_offset.size_wasm32();
            self.write_to_memory(ty, addr.clone(), offset + (field_offset as i32));
        }
    }

    fn lower_and_emit(&mut self, ty: &Type, addr: B::Operand, instr: &Instruction) {
        self.lower(ty);
        self.stack.push(addr);
        self.emit(instr);
    }

    fn read_from_memory(&mut self, ty: &Type, addr: B::Operand, offset: i32) {
        use Instruction::*;

        match *ty {
            Type::Bool => self.emit_and_lift(ty, addr, &I32Load8U { offset }),
            Type::U8 => self.emit_and_lift(ty, addr, &I32Load8U { offset }),
            Type::S8 => self.emit_and_lift(ty, addr, &I32Load8S { offset }),
            Type::U16 => self.emit_and_lift(ty, addr, &I32Load16U { offset }),
            Type::S16 => self.emit_and_lift(ty, addr, &I32Load16S { offset }),
            Type::U32 | Type::S32 | Type::Char => self.emit_and_lift(ty, addr, &I32Load { offset }),
            Type::U64 | Type::S64 => self.emit_and_lift(ty, addr, &I64Load { offset }),
            Type::F32 => self.emit_and_lift(ty, addr, &F32Load { offset }),
            Type::F64 => self.emit_and_lift(ty, addr, &F64Load { offset }),
            Type::String => self.read_list_from_memory(ty, addr, offset),

            Type::Id(id) => match &self.resolve.types[id].kind {
                TypeDefKind::Type(t) => self.read_from_memory(t, addr, offset),

                TypeDefKind::List(_) => self.read_list_from_memory(ty, addr, offset),

                TypeDefKind::Handle(_) => self.emit_and_lift(ty, addr, &I32Load { offset }),

                TypeDefKind::Resource => {
                    todo!();
                }

                // Read and lift each field individually, adjusting the offset
                // as we go along, then aggregate all the fields into the
                // record.
                TypeDefKind::Record(record) => {
                    self.read_fields_from_memory(record.fields.iter().map(|f| &f.ty), addr, offset);
                    self.emit(&RecordLift {
                        record,
                        ty: id,
                        name: self.resolve.types[id].name.as_deref().unwrap(),
                    });
                }

                TypeDefKind::Tuple(tuple) => {
                    self.read_fields_from_memory(&tuple.types, addr, offset);
                    self.emit(&TupleLift { tuple, ty: id });
                }

                TypeDefKind::Flags(f) => {
                    match f.repr() {
                        FlagsRepr::U8 => {
                            self.stack.push(addr);
                            self.load_intrepr(offset, Int::U8);
                        }
                        FlagsRepr::U16 => {
                            self.stack.push(addr);
                            self.load_intrepr(offset, Int::U16);
                        }
                        FlagsRepr::U32(n) => {
                            for i in 0..n {
                                self.stack.push(addr.clone());
                                self.emit(&I32Load {
                                    offset: offset + (i as i32) * 4,
                                });
                            }
                        }
                    }
                    self.lift(ty);
                }

                // Each case will get its own block, and we'll dispatch to the
                // right block based on the `i32.load` we initially perform. Each
                // individual block is pretty simple and just reads the payload type
                // from the corresponding offset if one is available.
                TypeDefKind::Variant(variant) => {
                    self.read_variant_arms_from_memory(
                        offset,
                        addr,
                        variant.tag(),
                        variant.cases.iter().map(|c| c.ty.as_ref()),
                    );
                    self.emit(&VariantLift {
                        variant,
                        ty: id,
                        name: self.resolve.types[id].name.as_deref().unwrap(),
                    });
                }

                TypeDefKind::Option(t) => {
                    self.read_variant_arms_from_memory(offset, addr, Int::U8, [None, Some(t)]);
                    self.emit(&OptionLift { payload: t, ty: id });
                }

                TypeDefKind::Result(r) => {
                    self.read_variant_arms_from_memory(
                        offset,
                        addr,
                        Int::U8,
                        [r.ok.as_ref(), r.err.as_ref()],
                    );
                    self.emit(&ResultLift { result: r, ty: id });
                }

                TypeDefKind::Enum(e) => {
                    self.stack.push(addr.clone());
                    self.load_intrepr(offset, e.tag());
                    self.lift(ty);
                }

                TypeDefKind::Future(_) => todo!("read future from memory"),
                TypeDefKind::Stream(_) => todo!("read stream from memory"),
                TypeDefKind::Unknown => unreachable!(),
            },
        }
    }

    fn read_results_from_memory(&mut self, results: &Results, addr: B::Operand, offset: i32) {
        self.read_fields_from_memory(results.iter_types(), addr, offset)
    }

    fn read_variant_arms_from_memory<'b>(
        &mut self,
        offset: i32,
        addr: B::Operand,
        tag: Int,
        cases: impl IntoIterator<Item = Option<&'b Type>> + Clone,
    ) {
        self.stack.push(addr.clone());
        self.load_intrepr(offset, tag);
        let payload_offset = offset
            + (self
                .bindgen
                .sizes()
                .payload_offset(tag, cases.clone())
                .size_wasm32() as i32);
        for ty in cases {
            self.push_block();
            if let Some(ty) = ty {
                self.read_from_memory(ty, addr.clone(), payload_offset);
            }
            self.finish_block(ty.is_some() as usize);
        }
    }

    fn read_list_from_memory(&mut self, ty: &Type, addr: B::Operand, offset: i32) {
        // Read the pointer/len and then perform the standard lifting
        // proceses.
        self.stack.push(addr.clone());
        self.emit(&Instruction::PointerLoad { offset });
        self.stack.push(addr);
        self.emit(&Instruction::LengthLoad { offset: offset + 4 });
        self.lift(ty);
    }

    fn read_fields_from_memory<'b>(
        &mut self,
        tys: impl IntoIterator<Item = &'b Type>,
        addr: B::Operand,
        offset: i32,
    ) {
        for (field_offset, ty) in self.bindgen.sizes().field_offsets(tys).iter() {
            let field_offset = field_offset.size_wasm32();
            self.read_from_memory(ty, addr.clone(), offset + (field_offset as i32));
        }
    }

    fn emit_and_lift(&mut self, ty: &Type, addr: B::Operand, instr: &Instruction) {
        self.stack.push(addr);
        self.emit(instr);
        self.lift(ty);
    }

    fn load_intrepr(&mut self, offset: i32, repr: Int) {
        self.emit(&match repr {
            Int::U64 => Instruction::I64Load { offset },
            Int::U32 => Instruction::I32Load { offset },
            Int::U16 => Instruction::I32Load16U { offset },
            Int::U8 => Instruction::I32Load8U { offset },
        });
    }

    fn store_intrepr(&mut self, offset: i32, repr: Int) {
        self.emit(&match repr {
            Int::U64 => Instruction::I64Store { offset },
            Int::U32 => Instruction::I32Store { offset },
            Int::U16 => Instruction::I32Store16 { offset },
            Int::U8 => Instruction::I32Store8 { offset },
        });
    }

    fn deallocate(&mut self, ty: &Type, addr: B::Operand, offset: i32) {
        use Instruction::*;

        // No need to execute any instructions if this type itself doesn't
        // require any form of post-return.
        if !needs_post_return(self.resolve, ty) {
            return;
        }

        match *ty {
            Type::String => {
                self.stack.push(addr.clone());
                self.emit(&Instruction::PointerLoad { offset });
                self.stack.push(addr);
                self.emit(&Instruction::LengthLoad { offset: offset + 4 });
                self.emit(&Instruction::GuestDeallocateString);
            }

            Type::Bool
            | Type::U8
            | Type::S8
            | Type::U16
            | Type::S16
            | Type::U32
            | Type::S32
            | Type::Char
            | Type::U64
            | Type::S64
            | Type::F32
            | Type::F64 => {}

            Type::Id(id) => match &self.resolve.types[id].kind {
                TypeDefKind::Type(t) => self.deallocate(t, addr, offset),

                TypeDefKind::List(element) => {
                    self.stack.push(addr.clone());
                    self.emit(&Instruction::PointerLoad { offset });
                    self.stack.push(addr);
                    self.emit(&Instruction::LengthLoad { offset: offset + 4 });

                    self.push_block();
                    self.emit(&IterBasePointer);
                    let elemaddr = self.stack.pop().unwrap();
                    self.deallocate(element, elemaddr, 0);
                    self.finish_block(0);

                    self.emit(&Instruction::GuestDeallocateList { element });
                }

                TypeDefKind::Handle(_) => {
                    todo!()
                }

                TypeDefKind::Resource => {
                    todo!()
                }

                TypeDefKind::Record(record) => {
                    self.deallocate_fields(
                        &record.fields.iter().map(|f| f.ty).collect::<Vec<_>>(),
                        addr,
                        offset,
                    );
                }

                TypeDefKind::Tuple(tuple) => {
                    self.deallocate_fields(&tuple.types, addr, offset);
                }

                TypeDefKind::Flags(_) => {}

                TypeDefKind::Variant(variant) => {
                    self.deallocate_variant(
                        offset,
                        addr,
                        variant.tag(),
                        variant.cases.iter().map(|c| c.ty.as_ref()),
                    );
                    self.emit(&GuestDeallocateVariant {
                        blocks: variant.cases.len(),
                    });
                }

                TypeDefKind::Option(t) => {
                    self.deallocate_variant(offset, addr, Int::U8, [None, Some(t)]);
                    self.emit(&GuestDeallocateVariant { blocks: 2 });
                }

                TypeDefKind::Result(e) => {
                    self.deallocate_variant(offset, addr, Int::U8, [e.ok.as_ref(), e.err.as_ref()]);
                    self.emit(&GuestDeallocateVariant { blocks: 2 });
                }

                TypeDefKind::Enum(_) => {}

                TypeDefKind::Future(_) => todo!("read future from memory"),
                TypeDefKind::Stream(_) => todo!("read stream from memory"),
                TypeDefKind::Unknown => unreachable!(),
            },
        }
    }

    fn deallocate_variant<'b>(
        &mut self,
        offset: i32,
        addr: B::Operand,
        tag: Int,
        cases: impl IntoIterator<Item = Option<&'b Type>> + Clone,
    ) {
        self.stack.push(addr.clone());
        self.load_intrepr(offset, tag);
        let payload_offset = offset
            + (self
                .bindgen
                .sizes()
                .payload_offset(tag, cases.clone())
                .size_wasm32() as i32);
        for ty in cases {
            self.push_block();
            if let Some(ty) = ty {
                self.deallocate(ty, addr.clone(), payload_offset);
            }
            self.finish_block(0);
        }
    }

    fn deallocate_fields(&mut self, tys: &[Type], addr: B::Operand, offset: i32) {
        for (field_offset, ty) in self.bindgen.sizes().field_offsets(tys) {
            let field_offset = field_offset.size_wasm32();
            self.deallocate(ty, addr.clone(), offset + (field_offset as i32));
        }
    }
}

fn cast(from: WasmType, to: WasmType) -> Bitcast {
    use WasmType::*;

    match (from, to) {
        (I32, I32)
        | (I64, I64)
        | (F32, F32)
        | (F64, F64)
        | (Pointer, Pointer)
        | (PointerOrI64, PointerOrI64)
        | (Length, Length) => Bitcast::None,

        (I32, I64) => Bitcast::I32ToI64,
        (F32, I32) => Bitcast::F32ToI32,
        (F64, I64) => Bitcast::F64ToI64,

        (I64, I32) => Bitcast::I64ToI32,
        (I32, F32) => Bitcast::I32ToF32,
        (I64, F64) => Bitcast::I64ToF64,

        (F32, I64) => Bitcast::F32ToI64,
        (I64, F32) => Bitcast::I64ToF32,

        (I64, PointerOrI64) => Bitcast::I64ToP64,
        (Pointer, PointerOrI64) => Bitcast::PToP64,
        (_, PointerOrI64) => {
            Bitcast::Sequence(Box::new([cast(from, I64), cast(I64, PointerOrI64)]))
        }

        (PointerOrI64, I64) => Bitcast::P64ToI64,
        (PointerOrI64, Pointer) => Bitcast::P64ToP,
        (PointerOrI64, _) => Bitcast::Sequence(Box::new([cast(PointerOrI64, I64), cast(I64, to)])),

        (I32, Pointer) => Bitcast::I32ToP,
        (Pointer, I32) => Bitcast::PToI32,
        (I32, Length) => Bitcast::I32ToL,
        (Length, I32) => Bitcast::LToI32,
        (I64, Length) => Bitcast::I64ToL,
        (Length, I64) => Bitcast::LToI64,
        (Pointer, Length) => Bitcast::PToL,
        (Length, Pointer) => Bitcast::LToP,

        (F32, Pointer | Length) => Bitcast::Sequence(Box::new([cast(F32, I32), cast(I32, to)])),
        (Pointer | Length, F32) => Bitcast::Sequence(Box::new([cast(from, I32), cast(I32, F32)])),

        (F32, F64)
        | (F64, F32)
        | (F64, I32)
        | (I32, F64)
        | (Pointer | Length, I64 | F64)
        | (I64 | F64, Pointer | Length) => {
            unreachable!("Don't know how to bitcast from {:?} to {:?}", from, to);
        }
    }
}

fn align_to(val: usize, align: usize) -> usize {
    (val + align - 1) & !(align - 1)
}