1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650
use anyhow::{anyhow, bail, Context, Result};
use indexmap::{IndexMap, IndexSet};
use std::collections::HashMap;
use std::mem;
use wasmparser::{
names::{ComponentName, ComponentNameKind},
types, ComponentExport, ComponentExternalKind, ComponentImport, Parser, Payload,
PrimitiveValType, ValidPayload, Validator, WasmFeatures,
};
use wit_parser::*;
use crate::encoding::docs::{PackageDocs, PACKAGE_DOCS_SECTION_NAME};
/// Represents information about a decoded WebAssembly component.
struct ComponentInfo<'a> {
/// Wasmparser-defined type information learned after a component is fully
/// validated.
types: types::Types,
/// List of all imports and exports from this component.
externs: Vec<(&'a str, Extern<'a>)>,
/// Decoded package docs
package_docs: Option<PackageDocs>,
}
enum Extern<'a> {
Import(ComponentImport<'a>),
Export(ComponentExport<'a>),
}
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
enum WitEncodingVersion {
V1,
V2,
}
impl<'a> ComponentInfo<'a> {
/// Creates a new component info by parsing the given WebAssembly component bytes.
fn new(bytes: &'a [u8]) -> Result<Self> {
let mut validator = Validator::new_with_features(WasmFeatures::all());
let mut externs = Vec::new();
let mut depth = 1;
let mut types = None;
let mut package_docs = None;
for payload in Parser::new(0).parse_all(bytes) {
let payload = payload?;
match validator.payload(&payload)? {
ValidPayload::Ok => {}
ValidPayload::Parser(_) => depth += 1,
ValidPayload::End(t) => {
depth -= 1;
if depth == 0 {
types = Some(t);
}
}
ValidPayload::Func(..) => {}
}
match payload {
Payload::ComponentImportSection(s) if depth == 1 => {
for import in s {
let import = import?;
externs.push((import.name.0, Extern::Import(import)));
}
}
Payload::ComponentExportSection(s) if depth == 1 => {
for export in s {
let export = export?;
externs.push((export.name.0, Extern::Export(export)));
}
}
Payload::CustomSection(s) if s.name() == PACKAGE_DOCS_SECTION_NAME => {
if package_docs.is_some() {
bail!("multiple {PACKAGE_DOCS_SECTION_NAME:?} sections");
}
package_docs = Some(PackageDocs::decode(s.data())?);
}
_ => {}
}
}
Ok(Self {
types: types.unwrap(),
externs,
package_docs,
})
}
fn is_wit_package(&self) -> Option<WitEncodingVersion> {
// all wit package exports must be component types, and there must be at
// least one
if self.externs.is_empty() {
return None;
}
if !self.externs.iter().all(|(_, item)| {
let export = match item {
Extern::Export(e) => e,
_ => return false,
};
match export.kind {
ComponentExternalKind::Type => matches!(
self.types.component_any_type_at(export.index),
types::ComponentAnyTypeId::Component(_)
),
_ => false,
}
}) {
return None;
}
// The distinction between v1 and v2 encoding formats is the structure of the export
// strings for each component. The v1 format uses "<namespace>:<package>/wit" as the name
// for the top-level exports, while the v2 format uses the unqualified name of the encoded
// entity.
match ComponentName::new(self.externs[0].0, 0).ok()?.kind() {
ComponentNameKind::Interface(name) if name.interface().as_str() == "wit" => {
Some(WitEncodingVersion::V1)
}
ComponentNameKind::Label(_) => Some(WitEncodingVersion::V2),
_ => None,
}
}
fn decode_wit_v1_package(&self) -> Result<(Resolve, PackageId)> {
let mut decoder = WitPackageDecoder::new(&self.types);
let mut pkg = None;
for (name, item) in self.externs.iter() {
let export = match item {
Extern::Export(e) => e,
_ => unreachable!(),
};
let id = self.types.component_type_at(export.index);
let ty = &self.types[id];
if pkg.is_some() {
bail!("more than one top-level exported component type found");
}
let name = ComponentName::new(*name, 0).unwrap();
pkg = Some(
decoder
.decode_v1_package(&name, ty)
.with_context(|| format!("failed to decode document `{name}`"))?,
);
}
let pkg = pkg.ok_or_else(|| anyhow!("no exported component type found"))?;
let (mut resolve, package) = decoder.finish(pkg);
if let Some(package_docs) = &self.package_docs {
package_docs.inject(&mut resolve, package)?;
}
Ok((resolve, package))
}
fn decode_wit_v2_package(&self) -> Result<(Resolve, PackageId)> {
let mut decoder = WitPackageDecoder::new(&self.types);
let mut pkg_name = None;
let mut interfaces = IndexMap::new();
let mut worlds = IndexMap::new();
let mut fields = PackageFields {
interfaces: &mut interfaces,
worlds: &mut worlds,
};
for (_, item) in self.externs.iter() {
let export = match item {
Extern::Export(e) => e,
_ => unreachable!(),
};
let index = export.index;
let id = self.types.component_type_at(index);
let component = &self.types[id];
// The single export of this component will determine if it's a world or an interface:
// worlds export a component, while interfaces export an instance.
if component.exports.len() != 1 {
bail!(
"Expected a single export, but found {} instead",
component.exports.len()
);
}
let name = component.exports.keys().nth(0).unwrap();
let name = match component.exports[name] {
types::ComponentEntityType::Component(ty) => {
let package_name =
decoder.decode_world(name.as_str(), &self.types[ty], &mut fields)?;
package_name
}
types::ComponentEntityType::Instance(ty) => {
let package_name = decoder.decode_interface(
name.as_str(),
&component.imports,
&self.types[ty],
&mut fields,
)?;
package_name
}
_ => unreachable!(),
};
if let Some(pkg_name) = pkg_name.as_ref() {
// TODO: when we have fully switched to the v2 format, we should switch to parsing
// multiple wit documents instead of bailing.
if pkg_name != &name {
bail!("item defined with mismatched package name")
}
} else {
pkg_name.replace(name);
}
}
let pkg = if let Some(name) = pkg_name {
Package {
name,
docs: Docs::default(),
interfaces,
worlds,
}
} else {
bail!("no exported component type found");
};
let (mut resolve, package) = decoder.finish(pkg);
if let Some(package_docs) = &self.package_docs {
package_docs.inject(&mut resolve, package)?;
}
Ok((resolve, package))
}
fn decode_component(&self) -> Result<(Resolve, WorldId)> {
assert!(self.is_wit_package().is_none());
let mut decoder = WitPackageDecoder::new(&self.types);
// Note that this name is arbitrarily chosen. We may one day perhaps
// want to encode this in the component binary format itself, but for
// now it shouldn't be an issue to have a defaulted name here.
let world_name = "root";
let world = decoder.resolve.worlds.alloc(World {
name: world_name.to_string(),
docs: Default::default(),
imports: Default::default(),
exports: Default::default(),
package: None,
includes: Default::default(),
include_names: Default::default(),
});
let mut package = Package {
// Similar to `world_name` above this is arbitrarily chosen as it's
// not otherwise encoded in a binary component. This theoretically
// shouldn't cause issues, however.
name: PackageName {
namespace: "root".to_string(),
version: None,
name: "component".to_string(),
},
docs: Default::default(),
worlds: [(world_name.to_string(), world)].into_iter().collect(),
interfaces: Default::default(),
};
let mut fields = PackageFields {
worlds: &mut package.worlds,
interfaces: &mut package.interfaces,
};
for (_name, item) in self.externs.iter() {
match item {
Extern::Import(import) => {
decoder.decode_component_import(import, world, &mut fields)?
}
Extern::Export(export) => {
decoder.decode_component_export(export, world, &mut fields)?
}
}
}
let (resolve, _) = decoder.finish(package);
Ok((resolve, world))
}
}
/// Result of the [`decode`] function.
pub enum DecodedWasm {
/// The input to [`decode`] was a binary-encoded WIT package.
///
/// The full resolve graph is here plus the identifier of the package that
/// was encoded. Note that other packages may be within the resolve if this
/// package refers to foreign packages.
WitPackage(Resolve, PackageId),
/// The input to [`decode`] was a component and its interface is specified
/// by the world here.
Component(Resolve, WorldId),
}
impl DecodedWasm {
/// Returns the [`Resolve`] for WIT types contained.
pub fn resolve(&self) -> &Resolve {
match self {
DecodedWasm::WitPackage(resolve, _) => resolve,
DecodedWasm::Component(resolve, _) => resolve,
}
}
/// Returns the main package of what was decoded.
pub fn package(&self) -> PackageId {
match self {
DecodedWasm::WitPackage(_, id) => *id,
DecodedWasm::Component(resolve, world) => resolve.worlds[*world].package.unwrap(),
}
}
}
/// Decodes an in-memory WebAssembly binary into a WIT [`Resolve`] and
/// associated metadata.
///
/// The WebAssembly binary provided here can either be a
/// WIT-package-encoded-as-binary or an actual component itself. A [`Resolve`]
/// is always created and the return value indicates which was detected.
pub fn decode(bytes: &[u8]) -> Result<DecodedWasm> {
let info = ComponentInfo::new(bytes)?;
if let Some(version) = info.is_wit_package() {
match version {
WitEncodingVersion::V1 => {
log::debug!("decoding a v1 WIT package encoded as wasm");
let (resolve, pkg) = info.decode_wit_v1_package()?;
Ok(DecodedWasm::WitPackage(resolve, pkg))
}
WitEncodingVersion::V2 => {
log::debug!("decoding a v2 WIT package encoded as wasm");
let (resolve, pkg) = info.decode_wit_v2_package()?;
Ok(DecodedWasm::WitPackage(resolve, pkg))
}
}
} else {
log::debug!("inferring the WIT of a concrete component");
let (resolve, world) = info.decode_component()?;
Ok(DecodedWasm::Component(resolve, world))
}
}
/// Decodes the single component type `world` specified as a WIT world.
///
/// The `name` provided should be a full ID such as `foo:bar/baz`.
pub(crate) fn decode_world(
types: &types::Types,
name: &str,
world: types::ComponentTypeId,
) -> Result<(Resolve, WorldId)> {
let mut decoder = WitPackageDecoder::new(types);
let mut interfaces = IndexMap::new();
let mut worlds = IndexMap::new();
let name = decoder.decode_world(
name,
&types[world],
&mut PackageFields {
interfaces: &mut interfaces,
worlds: &mut worlds,
},
)?;
let (resolve, pkg) = decoder.finish(Package {
name,
interfaces,
worlds,
docs: Default::default(),
});
// The package decoded here should only have a single world so extract that
// here to return.
let world = *resolve.packages[pkg].worlds.iter().next().unwrap().1;
Ok((resolve, world))
}
struct PackageFields<'a> {
interfaces: &'a mut IndexMap<String, InterfaceId>,
worlds: &'a mut IndexMap<String, WorldId>,
}
struct WitPackageDecoder<'a> {
resolve: Resolve,
types: &'a types::Types,
foreign_packages: IndexMap<String, Package>,
iface_to_package_index: HashMap<InterfaceId, usize>,
named_interfaces: HashMap<String, InterfaceId>,
/// A map which tracks named resources to what their corresponding `TypeId`
/// is. This first layer of key in this map is the owner scope of a
/// resource, more-or-less the `world` or `interface` that it's defined
/// within. The second layer of this map is keyed by name of the resource
/// and points to the actual ID of the resource.
///
/// This map is populated in `register_type_export`.
resources: HashMap<TypeOwner, HashMap<String, TypeId>>,
/// A map from a type id to what it's been translated to.
type_map: HashMap<types::ComponentAnyTypeId, TypeId>,
}
impl WitPackageDecoder<'_> {
fn new<'a>(types: &'a types::Types) -> WitPackageDecoder<'a> {
WitPackageDecoder {
resolve: Resolve::default(),
types,
type_map: HashMap::new(),
foreign_packages: Default::default(),
iface_to_package_index: Default::default(),
named_interfaces: Default::default(),
resources: Default::default(),
}
}
fn decode_v1_package(
&mut self,
name: &ComponentName,
ty: &types::ComponentType,
) -> Result<Package> {
// Process all imports for this package first, where imports are
// importing from remote packages.
for (name, ty) in ty.imports.iter() {
let ty = match ty {
types::ComponentEntityType::Instance(idx) => &self.types[*idx],
_ => bail!("import `{name}` is not an instance"),
};
self.register_import(name, ty)
.with_context(|| format!("failed to process import `{name}`"))?;
}
let mut package = Package {
// The name encoded for packages must be of the form `foo:bar/wit`
// where "wit" is just a placeholder for now. The package name in
// this case would be `foo:bar`.
name: match name.kind() {
ComponentNameKind::Interface(name) if name.interface().as_str() == "wit" => {
name.to_package_name()
}
_ => bail!("package name is not a valid id: {name}"),
},
docs: Default::default(),
interfaces: Default::default(),
worlds: Default::default(),
};
let mut fields = PackageFields {
interfaces: &mut package.interfaces,
worlds: &mut package.worlds,
};
for (name, ty) in ty.exports.iter() {
match ty {
types::ComponentEntityType::Instance(idx) => {
let ty = &self.types[*idx];
self.register_interface(name.as_str(), ty, &mut fields)
.with_context(|| format!("failed to process export `{name}`"))?;
}
types::ComponentEntityType::Component(idx) => {
let ty = &self.types[*idx];
self.register_world(name.as_str(), ty, &mut fields)
.with_context(|| format!("failed to process export `{name}`"))?;
}
_ => bail!("component export `{name}` is not an instance or component"),
}
}
Ok(package)
}
fn decode_interface<'a>(
&mut self,
name: &str,
imports: &IndexMap<String, types::ComponentEntityType>,
ty: &types::ComponentInstanceType,
fields: &mut PackageFields<'a>,
) -> Result<PackageName> {
let component_name = self
.parse_component_name(name)
.context("expected world name to have an ID form")?;
let package = match component_name.kind() {
ComponentNameKind::Interface(name) => name.to_package_name(),
_ => bail!("expected world name to be fully qualified"),
};
for (name, ty) in imports.iter() {
let ty = match ty {
types::ComponentEntityType::Instance(idx) => &self.types[*idx],
_ => bail!("import `{name}` is not an instance"),
};
self.register_import(name, ty)
.with_context(|| format!("failed to process import `{name}`"))?;
}
let _ = self.register_interface(name, ty, fields)?;
Ok(package)
}
fn decode_world<'a>(
&mut self,
name: &str,
ty: &types::ComponentType,
fields: &mut PackageFields<'a>,
) -> Result<PackageName> {
let kebab_name = self
.parse_component_name(name)
.context("expected world name to have an ID form")?;
let package = match kebab_name.kind() {
ComponentNameKind::Interface(name) => name.to_package_name(),
_ => bail!("expected world name to be fully qualified"),
};
let _ = self.register_world(name, ty, fields)?;
Ok(package)
}
fn decode_component_import<'a>(
&mut self,
import: &ComponentImport<'_>,
world: WorldId,
package: &mut PackageFields<'a>,
) -> Result<()> {
let name = import.name.0;
log::debug!("decoding component import `{name}`");
let ty = self.types.component_entity_type_of_import(name).unwrap();
let owner = TypeOwner::World(world);
let (name, item) = match ty {
types::ComponentEntityType::Instance(i) => {
let ty = &self.types[i];
let (name, id) = if name.contains('/') {
let id = self.register_import(name, ty)?;
(WorldKey::Interface(id), id)
} else {
self.register_interface(name, ty, package)
.with_context(|| format!("failed to decode WIT from import `{name}`"))?
};
(name, WorldItem::Interface(id))
}
types::ComponentEntityType::Func(i) => {
let ty = &self.types[i];
let func = self
.convert_function(name, ty, owner)
.with_context(|| format!("failed to decode function from import `{name}`"))?;
(WorldKey::Name(name.to_string()), WorldItem::Function(func))
}
types::ComponentEntityType::Type {
referenced,
created,
} => {
let id = self
.register_type_export(name, owner, referenced, created)
.with_context(|| format!("failed to decode type from export `{name}`"))?;
(WorldKey::Name(name.to_string()), WorldItem::Type(id))
}
// All other imports do not form part of the component's world
_ => return Ok(()),
};
self.resolve.worlds[world].imports.insert(name, item);
Ok(())
}
fn decode_component_export<'a>(
&mut self,
export: &ComponentExport<'_>,
world: WorldId,
package: &mut PackageFields<'a>,
) -> Result<()> {
let name = export.name.0;
log::debug!("decoding component export `{name}`");
let types = &self.types;
let ty = types.component_entity_type_of_export(name).unwrap();
let (name, item) = match ty {
types::ComponentEntityType::Func(i) => {
let ty = &types[i];
let func = self
.convert_function(name, ty, TypeOwner::World(world))
.with_context(|| format!("failed to decode function from export `{name}`"))?;
(WorldKey::Name(name.to_string()), WorldItem::Function(func))
}
types::ComponentEntityType::Instance(i) => {
let ty = &types[i];
let (name, id) = if name.contains('/') {
let id = self.register_import(name, ty)?;
(WorldKey::Interface(id), id)
} else {
self.register_interface(name, ty, package)
.with_context(|| format!("failed to decode WIT from export `{name}`"))?
};
(name, WorldItem::Interface(id))
}
_ => {
bail!("component export `{name}` was not a function or instance")
}
};
self.resolve.worlds[world].exports.insert(name, item);
Ok(())
}
/// Registers that the `name` provided is either imported interface from a
/// foreign package or referencing a previously defined interface in this
/// package.
///
/// This function will internally ensure that `name` is well-structured and
/// will fill in any information as necessary. For example with a foreign
/// dependency the foreign package structure, types, etc, all need to be
/// created. For a local dependency it's instead ensured that all the types
/// line up with the previous definitions.
fn register_import(
&mut self,
name: &str,
ty: &types::ComponentInstanceType,
) -> Result<InterfaceId> {
let (is_local, interface) = match self.named_interfaces.get(name) {
Some(id) => (true, *id),
None => (false, self.extract_dep_interface(name)?),
};
let owner = TypeOwner::Interface(interface);
for (name, ty) in ty.exports.iter() {
log::debug!("decoding import instance export `{name}`");
match *ty {
types::ComponentEntityType::Type {
referenced,
created,
} => {
match self.resolve.interfaces[interface]
.types
.get(name.as_str())
.copied()
{
// If this name is already defined as a type in the
// specified interface then that's ok. For package-local
// interfaces that's expected since the interface was
// fully defined. For remote interfaces it means we're
// using something that was already used elsewhere. In
// both cases continue along.
//
// Notably for the remotely defined case this will also
// walk over the structure of the type and register
// internal wasmparser ids with wit-parser ids. This is
// necessary to ensure that anonymous types like
// `list<u8>` defined in original definitions are
// unified with anonymous types when duplicated inside
// of worlds. Overall this prevents, for example, extra
// `list<u8>` types from popping up when decoding. This
// is not strictly necessary but assists with
// roundtripping assertions during fuzzing.
Some(id) => {
log::debug!("type already exist");
match referenced {
types::ComponentAnyTypeId::Defined(ty) => {
self.register_defined(id, &self.types[ty])?;
}
types::ComponentAnyTypeId::Resource(_) => {}
_ => unreachable!(),
}
let prev = self.type_map.insert(created, id);
assert!(prev.is_none());
}
// If the name is not defined, however, then there's two
// possibilities:
//
// * For package-local interfaces this is an error
// because the package-local interface defined
// everything already and this is referencing
// something that isn't defined.
//
// * For remote interfaces they're never fully declared
// so it's lazily filled in here. This means that the
// view of remote interfaces ends up being the minimal
// slice needed for this resolve, which is what's
// intended.
None => {
if is_local {
bail!("instance type export `{name}` not defined in interface");
}
let id = self.register_type_export(
name.as_str(),
owner,
referenced,
created,
)?;
let prev = self.resolve.interfaces[interface]
.types
.insert(name.to_string(), id);
assert!(prev.is_none());
}
}
}
// This has similar logic to types above where we lazily fill in
// functions for remote dependencies and otherwise assert
// they're already defined for local dependencies.
types::ComponentEntityType::Func(ty) => {
let def = &self.types[ty];
if self.resolve.interfaces[interface]
.functions
.contains_key(name.as_str())
{
// TODO: should ideally verify that function signatures
// match.
continue;
}
if is_local {
bail!("instance function export `{name}` not defined in interface");
}
let func = self.convert_function(name.as_str(), def, owner)?;
let prev = self.resolve.interfaces[interface]
.functions
.insert(name.to_string(), func);
assert!(prev.is_none());
}
_ => bail!("instance type export `{name}` is not a type"),
}
}
Ok(interface)
}
fn find_alias(&self, id: types::ComponentAnyTypeId) -> Option<TypeId> {
// Consult `type_map` for `referenced` or anything in its
// chain of aliases to determine what it maps to. This may
// bottom out in `None` in the case that this type is
// just now being defined, but this should otherwise follow
// chains of aliases to determine what exactly this was a
// `use` of if it exists.
let mut prev = None;
let mut cur = id;
while prev.is_none() {
prev = self.type_map.get(&cur).copied();
cur = match self.types.peel_alias(cur) {
Some(next) => next,
None => break,
};
}
prev
}
/// This will parse the `name_string` as a component model ID string and
/// ensure that there's an `InterfaceId` corresponding to its components.
fn extract_dep_interface(&mut self, name_string: &str) -> Result<InterfaceId> {
let name = ComponentName::new(name_string, 0).unwrap();
let name = match name.kind() {
ComponentNameKind::Interface(name) => name,
_ => bail!("package name is not a valid id: {name_string}"),
};
let package_name = name.to_package_name();
// Lazily create a `Package` as necessary, along with the interface.
let package = self
.foreign_packages
.entry(package_name.to_string())
.or_insert_with(|| Package {
name: package_name.clone(),
docs: Default::default(),
interfaces: Default::default(),
worlds: Default::default(),
});
let interface = *package
.interfaces
.entry(name.interface().to_string())
.or_insert_with(|| {
self.resolve.interfaces.alloc(Interface {
name: Some(name.interface().to_string()),
docs: Default::default(),
types: IndexMap::default(),
functions: IndexMap::new(),
package: None,
})
});
// Record a mapping of which foreign package this interface belongs to
self.iface_to_package_index.insert(
interface,
self.foreign_packages
.get_full(&package_name.to_string())
.unwrap()
.0,
);
Ok(interface)
}
/// A general-purpose helper function to translate a component instance
/// into a WIT interface.
///
/// This is one of the main workhorses of this module. This handles
/// interfaces both at the type level, for concrete components, and
/// internally within worlds as well.
///
/// The `name` provided is the contextual ID or name of the interface. This
/// could be a kebab-name in the case of a world import or export or it can
/// also be an ID. This is used to guide insertion into various maps.
///
/// The `ty` provided is the actual component type being decoded.
///
/// The `package` is where to insert the final interface if `name` is an ID
/// meaning it's registered as a named standalone item within the package.
fn register_interface<'a>(
&mut self,
name: &str,
ty: &types::ComponentInstanceType,
package: &mut PackageFields<'a>,
) -> Result<(WorldKey, InterfaceId)> {
// If this interface's name is already known then that means this is an
// interface that's both imported and exported. Use `register_import`
// to draw connections between types and this interface's types.
if self.named_interfaces.contains_key(name) {
let id = self.register_import(name, ty)?;
return Ok((WorldKey::Interface(id), id));
}
// If this is a bare kebab-name for an interface then the interface's
// listed name is `None` and the name goes out through the key.
// Otherwise this name is extracted from `name` interpreted as an ID.
let interface_name = self.extract_interface_name_from_component_name(name)?;
let mut interface = Interface {
name: interface_name.clone(),
docs: Default::default(),
types: IndexMap::default(),
functions: IndexMap::new(),
package: None,
};
let owner = TypeOwner::Interface(self.resolve.interfaces.next_id());
for (name, ty) in ty.exports.iter() {
match *ty {
types::ComponentEntityType::Type {
referenced,
created,
} => {
let ty = self
.register_type_export(name.as_str(), owner, referenced, created)
.with_context(|| format!("failed to register type export '{name}'"))?;
let prev = interface.types.insert(name.to_string(), ty);
assert!(prev.is_none());
}
types::ComponentEntityType::Func(ty) => {
let ty = &self.types[ty];
let func = self
.convert_function(name.as_str(), ty, owner)
.with_context(|| format!("failed to convert function '{name}'"))?;
let prev = interface.functions.insert(name.to_string(), func);
assert!(prev.is_none());
}
_ => bail!("instance type export `{name}` is not a type or function"),
};
}
let id = self.resolve.interfaces.alloc(interface);
let key = match interface_name {
// If this interface is named then it's part of the package, so
// insert it. Additionally register it in `named_interfaces` so
// further use comes back to this original definition.
Some(interface_name) => {
let prev = package.interfaces.insert(interface_name, id);
assert!(prev.is_none(), "duplicate interface added for {name:?}");
let prev = self.named_interfaces.insert(name.to_string(), id);
assert!(prev.is_none());
WorldKey::Interface(id)
}
// If this interface isn't named then its key is always a
// kebab-name.
None => WorldKey::Name(name.to_string()),
};
Ok((key, id))
}
fn parse_component_name(&self, name: &str) -> Result<ComponentName> {
ComponentName::new(name, 0)
.with_context(|| format!("cannot extract item name from: {name}"))
}
fn extract_interface_name_from_component_name(&self, name: &str) -> Result<Option<String>> {
let component_name = self.parse_component_name(name)?;
match component_name.kind() {
ComponentNameKind::Interface(name) => Ok(Some(name.interface().to_string())),
ComponentNameKind::Label(_name) => Ok(None),
_ => bail!("cannot extract item name from: {name}"),
}
}
fn register_type_export(
&mut self,
name: &str,
owner: TypeOwner,
referenced: types::ComponentAnyTypeId,
created: types::ComponentAnyTypeId,
) -> Result<TypeId> {
let kind = match self.find_alias(referenced) {
// If this `TypeId` points to a type which has
// previously been defined, meaning we're aliasing a
// prior definition.
Some(prev) => {
log::debug!("type export for `{name}` is an alias");
TypeDefKind::Type(Type::Id(prev))
}
// ... or this `TypeId`'s source definition has never
// been seen before, so declare the full type.
None => {
log::debug!("type export for `{name}` is a new type");
match referenced {
types::ComponentAnyTypeId::Defined(ty) => self
.convert_defined(&self.types[ty])
.context("failed to convert unaliased type")?,
types::ComponentAnyTypeId::Resource(_) => TypeDefKind::Resource,
_ => unreachable!(),
}
}
};
let ty = self.resolve.types.alloc(TypeDef {
name: Some(name.to_string()),
kind,
docs: Default::default(),
owner,
});
// If this is a resource then doubly-register it in `self.resources` so
// the ID allocated here can be looked up via name later on during
// `convert_function`.
if let TypeDefKind::Resource = self.resolve.types[ty].kind {
let prev = self
.resources
.entry(owner)
.or_insert(HashMap::new())
.insert(name.to_string(), ty);
assert!(prev.is_none());
}
let prev = self.type_map.insert(created, ty);
assert!(prev.is_none());
Ok(ty)
}
fn register_world<'a>(
&mut self,
name: &str,
ty: &types::ComponentType,
package: &mut PackageFields<'a>,
) -> Result<WorldId> {
let name = self
.extract_interface_name_from_component_name(name)?
.context("expected world name to have an ID form")?;
let mut world = World {
name: name.clone(),
docs: Default::default(),
imports: Default::default(),
exports: Default::default(),
includes: Default::default(),
include_names: Default::default(),
package: None,
};
let owner = TypeOwner::World(self.resolve.worlds.next_id());
for (name, ty) in ty.imports.iter() {
let (name, item) = match ty {
types::ComponentEntityType::Instance(idx) => {
let ty = &self.types[*idx];
let (name, id) = if name.contains('/') {
// If a name is an interface import then it is either to
// a package-local or foreign interface, and both
// situations are handled in `register_import`.
let id = self.register_import(name, ty)?;
(WorldKey::Interface(id), id)
} else {
// A plain kebab-name indicates an inline interface that
// wasn't declared explicitly elsewhere with a name, and
// `register_interface` will create a new `Interface`
// with no name.
self.register_interface(name, ty, package)?
};
(name, WorldItem::Interface(id))
}
types::ComponentEntityType::Type {
created,
referenced,
} => {
let ty =
self.register_type_export(name.as_str(), owner, *referenced, *created)?;
(WorldKey::Name(name.to_string()), WorldItem::Type(ty))
}
types::ComponentEntityType::Func(idx) => {
let ty = &self.types[*idx];
let func = self.convert_function(name.as_str(), ty, owner)?;
(WorldKey::Name(name.to_string()), WorldItem::Function(func))
}
_ => bail!("component import `{name}` is not an instance, func, or type"),
};
world.imports.insert(name, item);
}
for (name, ty) in ty.exports.iter() {
let (name, item) = match ty {
types::ComponentEntityType::Instance(idx) => {
let ty = &self.types[*idx];
let (name, id) = if name.contains('/') {
// Note that despite this being an export this is
// calling `register_import`. With a URL this interface
// must have been previously defined so this will
// trigger the logic of either filling in a remotely
// defined interface or connecting items to local
// definitions of our own interface.
let id = self.register_import(name, ty)?;
(WorldKey::Interface(id), id)
} else {
self.register_interface(name, ty, package)?
};
(name, WorldItem::Interface(id))
}
types::ComponentEntityType::Func(idx) => {
let ty = &self.types[*idx];
let func = self.convert_function(name.as_str(), ty, owner)?;
(WorldKey::Name(name.to_string()), WorldItem::Function(func))
}
_ => bail!("component export `{name}` is not an instance or function"),
};
world.exports.insert(name, item);
}
let id = self.resolve.worlds.alloc(world);
let prev = package.worlds.insert(name, id);
assert!(prev.is_none());
Ok(id)
}
fn convert_function(
&mut self,
name: &str,
ty: &types::ComponentFuncType,
owner: TypeOwner,
) -> Result<Function> {
let name = ComponentName::new(name, 0).unwrap();
let params = ty
.params
.iter()
.map(|(name, ty)| Ok((name.to_string(), self.convert_valtype(ty)?)))
.collect::<Result<Vec<_>>>()
.context("failed to convert params")?;
let results = if ty.results.len() == 1 && ty.results[0].0.is_none() {
Results::Anon(
self.convert_valtype(&ty.results[0].1)
.context("failed to convert anonymous result type")?,
)
} else {
Results::Named(
ty.results
.iter()
.map(|(name, ty)| {
Ok((
name.as_ref().unwrap().to_string(),
self.convert_valtype(ty)?,
))
})
.collect::<Result<Vec<_>>>()
.context("failed to convert named result types")?,
)
};
Ok(Function {
docs: Default::default(),
kind: match name.kind() {
ComponentNameKind::Label(_) => FunctionKind::Freestanding,
ComponentNameKind::Constructor(resource) => {
FunctionKind::Constructor(self.resources[&owner][resource.as_str()])
}
ComponentNameKind::Method(name) => {
FunctionKind::Method(self.resources[&owner][name.resource().as_str()])
}
ComponentNameKind::Static(name) => {
FunctionKind::Static(self.resources[&owner][name.resource().as_str()])
}
// Functions shouldn't have ID-based names at this time.
ComponentNameKind::Interface(_)
| ComponentNameKind::Url(_)
| ComponentNameKind::Hash(_)
| ComponentNameKind::Dependency(_) => unreachable!(),
},
// Note that this name includes "name mangling" such as
// `[method]foo.bar` which is intentional. The `FunctionKind`
// discriminant calculated above indicates how to interpret this
// name.
name: name.to_string(),
params,
results,
})
}
fn convert_valtype(&mut self, ty: &types::ComponentValType) -> Result<Type> {
let id = match ty {
types::ComponentValType::Primitive(ty) => return Ok(self.convert_primitive(*ty)),
types::ComponentValType::Type(id) => *id,
};
// Don't create duplicate types for anything previously created.
if let Some(ret) = self.type_map.get(&id.into()) {
return Ok(Type::Id(*ret));
}
// Otherwise create a new `TypeDef` without a name since this is an
// anonymous valtype. Note that this is invalid for some types so return
// errors on those types, but eventually the `bail!` here is
// more-or-less unreachable due to expected validation to be added to
// the component model binary format itself.
let def = &self.types[id];
let kind = self.convert_defined(def)?;
match &kind {
TypeDefKind::Type(_)
| TypeDefKind::List(_)
| TypeDefKind::Tuple(_)
| TypeDefKind::Option(_)
| TypeDefKind::Result(_)
| TypeDefKind::Handle(_) => {}
TypeDefKind::Resource
| TypeDefKind::Record(_)
| TypeDefKind::Enum(_)
| TypeDefKind::Variant(_)
| TypeDefKind::Flags(_)
| TypeDefKind::Future(_)
| TypeDefKind::Stream(_) => {
bail!("unexpected unnamed type of kind '{}'", kind.as_str());
}
TypeDefKind::Unknown => unreachable!(),
}
let ty = self.resolve.types.alloc(TypeDef {
name: None,
docs: Default::default(),
owner: TypeOwner::None,
kind,
});
let prev = self.type_map.insert(id.into(), ty);
assert!(prev.is_none());
Ok(Type::Id(ty))
}
/// Converts a wasmparser `ComponentDefinedType`, the definition of a type
/// in the component model, to a WIT `TypeDefKind` to get inserted into the
/// types arena by the caller.
fn convert_defined(&mut self, ty: &types::ComponentDefinedType) -> Result<TypeDefKind> {
match ty {
types::ComponentDefinedType::Primitive(t) => {
Ok(TypeDefKind::Type(self.convert_primitive(*t)))
}
types::ComponentDefinedType::List(t) => {
let t = self.convert_valtype(t)?;
Ok(TypeDefKind::List(t))
}
types::ComponentDefinedType::Tuple(t) => {
let types = t
.types
.iter()
.map(|t| self.convert_valtype(t))
.collect::<Result<_>>()?;
Ok(TypeDefKind::Tuple(Tuple { types }))
}
types::ComponentDefinedType::Option(t) => {
let t = self.convert_valtype(t)?;
Ok(TypeDefKind::Option(t))
}
types::ComponentDefinedType::Result { ok, err } => {
let ok = match ok {
Some(t) => Some(self.convert_valtype(t)?),
None => None,
};
let err = match err {
Some(t) => Some(self.convert_valtype(t)?),
None => None,
};
Ok(TypeDefKind::Result(Result_ { ok, err }))
}
types::ComponentDefinedType::Record(r) => {
let fields = r
.fields
.iter()
.map(|(name, ty)| {
Ok(Field {
name: name.to_string(),
ty: self.convert_valtype(ty).with_context(|| {
format!("failed to convert record field '{name}'")
})?,
docs: Default::default(),
})
})
.collect::<Result<_>>()?;
Ok(TypeDefKind::Record(Record { fields }))
}
types::ComponentDefinedType::Variant(v) => {
let cases = v
.cases
.iter()
.map(|(name, case)| {
if case.refines.is_some() {
bail!("unimplemented support for `refines`");
}
Ok(Case {
name: name.to_string(),
ty: match &case.ty {
Some(ty) => Some(self.convert_valtype(ty)?),
None => None,
},
docs: Default::default(),
})
})
.collect::<Result<_>>()?;
Ok(TypeDefKind::Variant(Variant { cases }))
}
types::ComponentDefinedType::Flags(f) => {
let flags = f
.iter()
.map(|name| Flag {
name: name.to_string(),
docs: Default::default(),
})
.collect();
Ok(TypeDefKind::Flags(Flags { flags }))
}
types::ComponentDefinedType::Enum(e) => {
let cases = e
.iter()
.cloned()
.map(|name| EnumCase {
name: name.into(),
docs: Default::default(),
})
.collect();
Ok(TypeDefKind::Enum(Enum { cases }))
}
types::ComponentDefinedType::Own(id) => {
let id = self.type_map[&(*id).into()];
Ok(TypeDefKind::Handle(Handle::Own(id)))
}
types::ComponentDefinedType::Borrow(id) => {
let id = self.type_map[&(*id).into()];
Ok(TypeDefKind::Handle(Handle::Borrow(id)))
}
}
}
fn convert_primitive(&self, ty: PrimitiveValType) -> Type {
match ty {
PrimitiveValType::U8 => Type::U8,
PrimitiveValType::S8 => Type::S8,
PrimitiveValType::U16 => Type::U16,
PrimitiveValType::S16 => Type::S16,
PrimitiveValType::U32 => Type::U32,
PrimitiveValType::S32 => Type::S32,
PrimitiveValType::U64 => Type::U64,
PrimitiveValType::S64 => Type::S64,
PrimitiveValType::Bool => Type::Bool,
PrimitiveValType::Char => Type::Char,
PrimitiveValType::String => Type::String,
PrimitiveValType::Float32 => Type::Float32,
PrimitiveValType::Float64 => Type::Float64,
}
}
fn register_defined(&mut self, id: TypeId, def: &types::ComponentDefinedType) -> Result<()> {
Registrar {
types: &self.types,
type_map: &mut self.type_map,
resolve: &self.resolve,
}
.defined(id, def)
}
/// Completes the decoding of this resolve by finalizing all packages into
/// their topological ordering within the returned `Resolve`.
///
/// Takes the root package as an argument to insert.
fn finish(mut self, package: Package) -> (Resolve, PackageId) {
// Build a topological ordering is then calculated by visiting all the
// transitive dependencies of packages.
let mut order = IndexSet::new();
for i in 0..self.foreign_packages.len() {
self.visit_package(i, &mut order);
}
// Using the topological ordering create a temporary map from
// index-in-`foreign_packages` to index-in-`order`
let mut idx_to_pos = vec![0; self.foreign_packages.len()];
for (pos, idx) in order.iter().enumerate() {
idx_to_pos[*idx] = pos;
}
// .. and then using `idx_to_pos` sort the `foreign_packages` array based
// on the position it's at in the topological ordering
let mut deps = mem::take(&mut self.foreign_packages)
.into_iter()
.enumerate()
.collect::<Vec<_>>();
deps.sort_by_key(|(idx, _)| idx_to_pos[*idx]);
// .. and finally insert the packages, in their final topological
// ordering, into the returned array.
for (_idx, (_url, pkg)) in deps {
self.insert_package(pkg);
}
let id = self.insert_package(package);
assert!(self.resolve.worlds.iter().all(|(_, w)| w.package.is_some()));
assert!(self
.resolve
.interfaces
.iter()
.all(|(_, i)| i.package.is_some()));
(self.resolve, id)
}
fn insert_package(&mut self, package: Package) -> PackageId {
let Package {
name,
interfaces,
worlds,
docs,
} = package;
// Most of the time the `package` being inserted is not already present
// in `self.resolve`, but in the case of the top-level `decode_world`
// function this isn't the case. This shouldn't in general be a problem
// so union-up the packages here while asserting that nothing gets
// replaced by accident which would indicate a bug.
let pkg = self
.resolve
.package_names
.get(&name)
.copied()
.unwrap_or_else(|| {
let id = self.resolve.packages.alloc(Package {
name: name.clone(),
interfaces: Default::default(),
worlds: Default::default(),
docs,
});
let prev = self.resolve.package_names.insert(name, id);
assert!(prev.is_none());
id
});
for (name, id) in interfaces {
let prev = self.resolve.packages[pkg].interfaces.insert(name, id);
assert!(prev.is_none());
self.resolve.interfaces[id].package = Some(pkg);
}
for (name, id) in worlds {
let prev = self.resolve.packages[pkg].worlds.insert(name, id);
assert!(prev.is_none());
let world = &mut self.resolve.worlds[id];
world.package = Some(pkg);
for (name, item) in world.imports.iter().chain(world.exports.iter()) {
if let WorldKey::Name(_) = name {
if let WorldItem::Interface(iface) = item {
self.resolve.interfaces[*iface].package = Some(pkg);
}
}
}
}
pkg
}
fn visit_package(&self, idx: usize, order: &mut IndexSet<usize>) {
if order.contains(&idx) {
return;
}
let (_name, pkg) = self.foreign_packages.get_index(idx).unwrap();
let interfaces = pkg.interfaces.values().copied().chain(
pkg.worlds
.values()
.flat_map(|w| {
let world = &self.resolve.worlds[*w];
world.imports.values().chain(world.exports.values())
})
.filter_map(|item| match item {
WorldItem::Interface(id) => Some(*id),
WorldItem::Function(_) | WorldItem::Type(_) => None,
}),
);
for iface in interfaces {
for dep in self.resolve.interface_direct_deps(iface) {
let dep_idx = self.iface_to_package_index[&dep];
if dep_idx != idx {
self.visit_package(dep_idx, order);
}
}
}
assert!(order.insert(idx));
}
}
/// Helper type to register the structure of a wasm-defined type against a
/// wit-defined type.
struct Registrar<'a> {
types: &'a types::Types,
type_map: &'a mut HashMap<types::ComponentAnyTypeId, TypeId>,
resolve: &'a Resolve,
}
impl Registrar<'_> {
/// Verifies that the wasm structure of `def` matches the wit structure of
/// `id` and recursively registers types.
fn defined(&mut self, id: TypeId, def: &types::ComponentDefinedType) -> Result<()> {
match def {
types::ComponentDefinedType::Primitive(_) => Ok(()),
types::ComponentDefinedType::List(t) => {
let ty = match &self.resolve.types[id].kind {
TypeDefKind::List(r) => r,
// Note that all cases below have this match and the general
// idea is that once a type is named or otherwise identified
// here there's no need to recurse. The purpose of this
// registrar is to build connections for anonymous types
// that don't otherwise have a name to ensure that they're
// decoded to reuse the same constructs consistently. For
// that reason once something is named we can bail out.
TypeDefKind::Type(Type::Id(_)) => return Ok(()),
_ => bail!("expected a list"),
};
self.valtype(t, ty)
}
types::ComponentDefinedType::Tuple(t) => {
let ty = match &self.resolve.types[id].kind {
TypeDefKind::Tuple(r) => r,
TypeDefKind::Type(Type::Id(_)) => return Ok(()),
_ => bail!("expected a tuple"),
};
if ty.types.len() != t.types.len() {
bail!("mismatched number of tuple fields");
}
for (a, b) in t.types.iter().zip(ty.types.iter()) {
self.valtype(a, b)?;
}
Ok(())
}
types::ComponentDefinedType::Option(t) => {
let ty = match &self.resolve.types[id].kind {
TypeDefKind::Option(r) => r,
TypeDefKind::Type(Type::Id(_)) => return Ok(()),
_ => bail!("expected an option"),
};
self.valtype(t, ty)
}
types::ComponentDefinedType::Result { ok, err } => {
let ty = match &self.resolve.types[id].kind {
TypeDefKind::Result(r) => r,
TypeDefKind::Type(Type::Id(_)) => return Ok(()),
_ => bail!("expected a result"),
};
match (ok, &ty.ok) {
(Some(a), Some(b)) => self.valtype(a, b)?,
(None, None) => {}
_ => bail!("disagreement on result structure"),
}
match (err, &ty.err) {
(Some(a), Some(b)) => self.valtype(a, b)?,
(None, None) => {}
_ => bail!("disagreement on result structure"),
}
Ok(())
}
types::ComponentDefinedType::Record(def) => {
let ty = match &self.resolve.types[id].kind {
TypeDefKind::Record(r) => r,
TypeDefKind::Type(Type::Id(_)) => return Ok(()),
_ => bail!("expected a record"),
};
if def.fields.len() != ty.fields.len() {
bail!("mismatched number of record fields");
}
for ((name, ty), field) in def.fields.iter().zip(&ty.fields) {
if name.as_str() != field.name {
bail!("mismatched field order");
}
self.valtype(ty, &field.ty)?;
}
Ok(())
}
types::ComponentDefinedType::Variant(def) => {
let ty = match &self.resolve.types[id].kind {
TypeDefKind::Variant(r) => r,
TypeDefKind::Type(Type::Id(_)) => return Ok(()),
_ => bail!("expected a variant"),
};
if def.cases.len() != ty.cases.len() {
bail!("mismatched number of variant cases");
}
for ((name, ty), case) in def.cases.iter().zip(&ty.cases) {
if name.as_str() != case.name {
bail!("mismatched case order");
}
match (&ty.ty, &case.ty) {
(Some(a), Some(b)) => self.valtype(a, b)?,
(None, None) => {}
_ => bail!("disagreement on case type"),
}
}
Ok(())
}
// These have no recursive structure so they can bail out.
types::ComponentDefinedType::Flags(_)
| types::ComponentDefinedType::Enum(_)
| types::ComponentDefinedType::Own(_)
| types::ComponentDefinedType::Borrow(_) => Ok(()),
}
}
fn valtype(&mut self, wasm: &types::ComponentValType, wit: &Type) -> Result<()> {
let wasm = match wasm {
types::ComponentValType::Type(wasm) => *wasm,
types::ComponentValType::Primitive(_wasm) => {
assert!(!matches!(wit, Type::Id(_)));
return Ok(());
}
};
let wit = match wit {
Type::Id(id) => *id,
_ => bail!("expected id-based type"),
};
let prev = match self.type_map.insert(wasm.into(), wit) {
Some(prev) => prev,
None => {
let wasm = &self.types[wasm];
return self.defined(wit, wasm);
}
};
// If `wit` matches `prev` then we've just rediscovered what we already
// knew which is that the `wasm` id maps to the `wit` id.
//
// If, however, `wit` is not equal to `prev` then that's more
// interesting. Consider a component such as:
//
// ```wasm
// (component
// (import (interface "a:b/name") (instance
// (type $l (list string))
// (type $foo (variant (case "l" $l)))
// (export "foo" (type (eq $foo)))
// ))
// (component $c
// (type $l (list string))
// (type $bar (variant (case "n" u16) (case "l" $l)))
// (export "bar" (type $bar))
// (type $foo (variant (case "l" $l)))
// (export "foo" (type $foo))
// )
// (instance $i (instantiate $c))
// (export (interface "a:b/name") (instance $i))
// )
// ```
//
// This roughly corresponds to:
//
// ```wit
// package a:b
//
// interface name {
// variant bar {
// n(u16),
// l(list<string>),
// }
//
// variant foo {
// l(list<string>),
// }
// }
//
// world module {
// import name
// export name
// }
// ```
//
// In this situation first we'll see the `import` which records type
// information for the `foo` type in `interface name`. Later on the full
// picture of `interface name` becomes apparent with the export of a
// component which has full type information. When walking over this
// first `bar` is seen and its recursive structure.
//
// The problem arises when walking over the `foo` type. In this
// situation the code path we're currently on will be hit because
// there's a preexisting definition of `foo` from the import and it's
// now going to be unified with what we've seen in the export. When
// visiting the `list<string>` case of the `foo` variant this ends up
// being different than the `list<string>` used by the `bar` variant. The
// reason for this is that when visiting `bar` the wasm-defined `(list
// string)` hasn't been seen before so a new type is allocated. Later
// though this same wasm type is unified with the first `(list string)`
// type in the `import`.
//
// All-in-all this ends up meaning that it's possible for `prev` to not
// match `wit`. In this situation it means the decoded WIT interface
// will have duplicate definitions of `list<string>`. This is,
// theoretically, not that big of a problem because the same underlying
// definition is still there and the meaning of the type is the same.
// This can, however, perhaps be a problem for consumers where it's
// assumed that all `list<string>` are equal and there's only one. For
// example a bindings generator for C may assume that `list<string>`
// will only appear once and generate a single name for it, but with two
// different types in play here it may generate two types of the same
// name (or something like that).
//
// For now though this is left for a future refactoring. Fixing this
// issue would require tracking anonymous types during type translation
// so the decoding process for the `bar` export would reuse the
// `list<string>` type created from decoding the `foo` import. That's
// somewhat nontrivial at this time, so it's left for a future
// refactoring.
let _ = prev;
Ok(())
}
}
pub(crate) trait InterfaceNameExt {
fn to_package_name(&self) -> PackageName;
}
impl InterfaceNameExt for wasmparser::names::InterfaceName<'_> {
fn to_package_name(&self) -> PackageName {
PackageName {
namespace: self.namespace().to_string(),
name: self.package().to_string(),
version: self.version(),
}
}
}