wit_component/encoding.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231
//! Support for encoding a core wasm module into a component.
//!
//! This module, at a high level, is tasked with transforming a core wasm
//! module into a component. This will process the imports/exports of the core
//! wasm module and translate between the `wit-parser` AST and the component
//! model binary format, producing a final component which will import
//! `*.wit` defined interfaces and export `*.wit` defined interfaces as well
//! with everything wired up internally according to the canonical ABI and such.
//!
//! This doc block here is not currently 100% complete and doesn't cover the
//! full functionality of this module.
//!
//! # Adapter Modules
//!
//! One feature of this encoding process which is non-obvious is the support for
//! "adapter modules". The general idea here is that historical host API
//! definitions have been around for quite some time, such as
//! `wasi_snapshot_preview1`, but these host API definitions are not compatible
//! with the canonical ABI or component model exactly. These APIs, however, can
//! in most situations be roughly adapted to component-model equivalents. This
//! is where adapter modules come into play, they're converting from some
//! arbitrary API/ABI into a component-model using API.
//!
//! An adapter module is a separately compiled `*.wasm` blob which will export
//! functions matching the desired ABI (e.g. exporting functions matching the
//! `wasi_snapshot_preview1` ABI). The `*.wasm` blob will then import functions
//! in the canonical ABI and internally adapt the exported functions to the
//! imported functions. The encoding support in this module is what wires
//! everything up and makes sure that everything is imported and exported to the
//! right place. Adapter modules currently always use "indirect lowerings"
//! meaning that a shim module is created and provided as the imports to the
//! main core wasm module, and the shim module is "filled in" at a later time
//! during the instantiation process.
//!
//! Adapter modules are not intended to be general purpose and are currently
//! very restrictive, namely:
//!
//! * They must import a linear memory and not define their own linear memory
//! otherwise. In other words they import memory and cannot use multi-memory.
//! * They cannot define any `elem` or `data` segments since otherwise there's
//! no knowledge ahead-of-time of where their data or element segments could
//! go. This means things like no panics, no indirect calls, etc.
//! * If the adapter uses a shadow stack, the global that points to it must be a
//! mutable `i32` named `__stack_pointer`. This stack is automatically
//! allocated with an injected `allocate_stack` function that will either use
//! the main module's `cabi_realloc` export (if present) or `memory.grow`. It
//! allocates only 64KB of stack space, and there is no protection if that
//! overflows.
//! * If the adapter has a global, mutable `i32` named `allocation_state`, it
//! will be used to keep track of stack allocation status and avoid infinite
//! recursion if the main module's `cabi_realloc` function calls back into the
//! adapter. `allocate_stack` will check this global on entry; if it is zero,
//! it will set it to one, then allocate the stack, and finally set it to two.
//! If it is non-zero, `allocate_stack` will do nothing and return immediately
//! (because either the stack has already been allocated or is in the process
//! of being allocated). If the adapter does not have an `allocation_state`,
//! `allocate_stack` will use `memory.grow` to allocate the stack; it will
//! _not_ use the main module's `cabi_realloc` even if it's available.
//! * If the adapter imports a `cabi_realloc` function, and the main module
//! exports one, they'll be linked together via an alias. If the adapter
//! imports such a function but the main module does _not_ export one, we'll
//! synthesize one based on `memory.grow` (which will trap for any size other
//! than 64KB). Note that the main module's `cabi_realloc` function may call
//! back into the adapter before the shadow stack has been allocated. In this
//! case (when `allocation_state` is zero or one), the adapter should return
//! whatever dummy value(s) it can immediately without touching the stack.
//!
//! This means that adapter modules are not meant to be written by everyone.
//! It's assumed that these will be relatively few and far between yet still a
//! crucial part of the transition process from to the component model since
//! otherwise there's no way to run a `wasi_snapshot_preview1` module within the
//! component model.
use crate::metadata::{self, Bindgen, ModuleMetadata};
use crate::validation::{Export, ExportMap, Import, ImportInstance, ImportMap};
use crate::StringEncoding;
use anyhow::{anyhow, bail, Context, Result};
use indexmap::{IndexMap, IndexSet};
use std::borrow::Cow;
use std::collections::HashMap;
use std::hash::Hash;
use std::mem;
use wasm_encoder::*;
use wasmparser::Validator;
use wit_parser::{
abi::{AbiVariant, WasmSignature, WasmType},
Function, FunctionKind, InterfaceId, LiveTypes, Resolve, Type, TypeDefKind, TypeId, TypeOwner,
WorldItem, WorldKey,
};
const INDIRECT_TABLE_NAME: &str = "$imports";
mod wit;
pub use wit::{encode, encode_world};
mod types;
use types::{InstanceTypeEncoder, RootTypeEncoder, ValtypeEncoder};
mod world;
use world::{ComponentWorld, ImportedInterface, Lowering};
fn to_val_type(ty: &WasmType) -> ValType {
match ty {
WasmType::I32 => ValType::I32,
WasmType::I64 => ValType::I64,
WasmType::F32 => ValType::F32,
WasmType::F64 => ValType::F64,
WasmType::Pointer => ValType::I32,
WasmType::PointerOrI64 => ValType::I64,
WasmType::Length => ValType::I32,
}
}
bitflags::bitflags! {
/// Options in the `canon lower` or `canon lift` required for a particular
/// function.
#[derive(Copy, Clone, Debug)]
pub struct RequiredOptions: u8 {
/// A memory must be specified, typically the "main module"'s memory
/// export.
const MEMORY = 1 << 0;
/// A `realloc` function must be specified, typically named
/// `cabi_realloc`.
const REALLOC = 1 << 1;
/// A string encoding must be specified, which is always utf-8 for now
/// today.
const STRING_ENCODING = 1 << 2;
}
}
impl RequiredOptions {
fn for_import(resolve: &Resolve, func: &Function) -> RequiredOptions {
let sig = resolve.wasm_signature(AbiVariant::GuestImport, func);
let mut ret = RequiredOptions::empty();
// Lift the params and lower the results for imports
ret.add_lift(TypeContents::for_types(
resolve,
func.params.iter().map(|(_, t)| t),
));
ret.add_lower(TypeContents::for_types(resolve, func.results.iter_types()));
// If anything is indirect then `memory` will be required to read the
// indirect values.
if sig.retptr || sig.indirect_params {
ret |= RequiredOptions::MEMORY;
}
ret
}
fn for_export(resolve: &Resolve, func: &Function) -> RequiredOptions {
let sig = resolve.wasm_signature(AbiVariant::GuestExport, func);
let mut ret = RequiredOptions::empty();
// Lower the params and lift the results for exports
ret.add_lower(TypeContents::for_types(
resolve,
func.params.iter().map(|(_, t)| t),
));
ret.add_lift(TypeContents::for_types(resolve, func.results.iter_types()));
// If anything is indirect then `memory` will be required to read the
// indirect values, but if the arguments are indirect then `realloc` is
// additionally required to allocate space for the parameters.
if sig.retptr || sig.indirect_params {
ret |= RequiredOptions::MEMORY;
if sig.indirect_params {
ret |= RequiredOptions::REALLOC;
}
}
ret
}
fn add_lower(&mut self, types: TypeContents) {
// If lists/strings are lowered into wasm then memory is required as
// usual but `realloc` is also required to allow the external caller to
// allocate space in the destination for the list/string.
if types.contains(TypeContents::LIST) {
*self |= RequiredOptions::MEMORY | RequiredOptions::REALLOC;
}
if types.contains(TypeContents::STRING) {
*self |= RequiredOptions::MEMORY
| RequiredOptions::STRING_ENCODING
| RequiredOptions::REALLOC;
}
}
fn add_lift(&mut self, types: TypeContents) {
// Unlike for `lower` when lifting a string/list all that's needed is
// memory, since the string/list already resides in memory `realloc`
// isn't needed.
if types.contains(TypeContents::LIST) {
*self |= RequiredOptions::MEMORY;
}
if types.contains(TypeContents::STRING) {
*self |= RequiredOptions::MEMORY | RequiredOptions::STRING_ENCODING;
}
}
fn into_iter(
self,
encoding: StringEncoding,
memory_index: Option<u32>,
realloc_index: Option<u32>,
) -> Result<impl ExactSizeIterator<Item = CanonicalOption>> {
#[derive(Default)]
struct Iter {
options: [Option<CanonicalOption>; 3],
current: usize,
count: usize,
}
impl Iter {
fn push(&mut self, option: CanonicalOption) {
assert!(self.count < self.options.len());
self.options[self.count] = Some(option);
self.count += 1;
}
}
impl Iterator for Iter {
type Item = CanonicalOption;
fn next(&mut self) -> Option<Self::Item> {
if self.current == self.count {
return None;
}
let option = self.options[self.current];
self.current += 1;
option
}
fn size_hint(&self) -> (usize, Option<usize>) {
(self.count - self.current, Some(self.count - self.current))
}
}
impl ExactSizeIterator for Iter {}
let mut iter = Iter::default();
if self.contains(RequiredOptions::MEMORY) {
iter.push(CanonicalOption::Memory(memory_index.ok_or_else(|| {
anyhow!("module does not export a memory named `memory`")
})?));
}
if self.contains(RequiredOptions::REALLOC) {
iter.push(CanonicalOption::Realloc(realloc_index.ok_or_else(
|| anyhow!("module does not export a function named `cabi_realloc`"),
)?));
}
if self.contains(RequiredOptions::STRING_ENCODING) {
iter.push(encoding.into());
}
Ok(iter)
}
}
bitflags::bitflags! {
/// Flags about what kinds of types are present within the recursive
/// structure of a type.
struct TypeContents: u8 {
const STRING = 1 << 0;
const LIST = 1 << 1;
}
}
impl TypeContents {
fn for_types<'a>(resolve: &Resolve, types: impl Iterator<Item = &'a Type>) -> Self {
let mut cur = TypeContents::empty();
for ty in types {
cur |= Self::for_type(resolve, ty);
}
cur
}
fn for_optional_types<'a>(
resolve: &Resolve,
types: impl Iterator<Item = Option<&'a Type>>,
) -> Self {
Self::for_types(resolve, types.flatten())
}
fn for_optional_type(resolve: &Resolve, ty: Option<&Type>) -> Self {
match ty {
Some(ty) => Self::for_type(resolve, ty),
None => Self::empty(),
}
}
fn for_type(resolve: &Resolve, ty: &Type) -> Self {
match ty {
Type::Id(id) => match &resolve.types[*id].kind {
TypeDefKind::Handle(h) => match h {
wit_parser::Handle::Own(_) => Self::empty(),
wit_parser::Handle::Borrow(_) => Self::empty(),
},
TypeDefKind::Resource => Self::empty(),
TypeDefKind::Record(r) => Self::for_types(resolve, r.fields.iter().map(|f| &f.ty)),
TypeDefKind::Tuple(t) => Self::for_types(resolve, t.types.iter()),
TypeDefKind::Flags(_) => Self::empty(),
TypeDefKind::Option(t) => Self::for_type(resolve, t),
TypeDefKind::Result(r) => {
Self::for_optional_type(resolve, r.ok.as_ref())
| Self::for_optional_type(resolve, r.err.as_ref())
}
TypeDefKind::Variant(v) => {
Self::for_optional_types(resolve, v.cases.iter().map(|c| c.ty.as_ref()))
}
TypeDefKind::Enum(_) => Self::empty(),
TypeDefKind::List(t) => Self::for_type(resolve, t) | Self::LIST,
TypeDefKind::Type(t) => Self::for_type(resolve, t),
TypeDefKind::Future(_) => todo!("encoding for future"),
TypeDefKind::Stream(_) => todo!("encoding for stream"),
TypeDefKind::Unknown => unreachable!(),
},
Type::String => Self::STRING,
_ => Self::empty(),
}
}
}
/// State relating to encoding a component.
pub struct EncodingState<'a> {
/// The component being encoded.
component: ComponentBuilder,
/// The index into the core module index space for the inner core module.
///
/// If `None`, the core module has not been encoded.
module_index: Option<u32>,
/// The index into the core instance index space for the inner core module.
///
/// If `None`, the core module has not been instantiated.
instance_index: Option<u32>,
/// The index in the core memory index space for the exported memory.
///
/// If `None`, then the memory has not yet been aliased.
memory_index: Option<u32>,
/// The index of the shim instance used for lowering imports into the core instance.
///
/// If `None`, then the shim instance how not yet been encoded.
shim_instance_index: Option<u32>,
/// The index of the fixups module to instantiate to fill in the lowered imports.
///
/// If `None`, then a fixup module has not yet been encoded.
fixups_module_index: Option<u32>,
/// A map of named adapter modules and the index that the module was defined
/// at.
adapter_modules: IndexMap<&'a str, u32>,
/// A map of adapter module instances and the index of their instance.
adapter_instances: IndexMap<&'a str, u32>,
/// Imported instances and what index they were imported as.
imported_instances: IndexMap<InterfaceId, u32>,
imported_funcs: IndexMap<String, u32>,
exported_instances: IndexMap<InterfaceId, u32>,
/// Maps used when translating types to the component model binary format.
/// Note that imports and exports are stored in separate maps since they
/// need fresh hierarchies of types in case the same interface is both
/// imported and exported.
import_type_map: HashMap<TypeId, u32>,
import_func_type_map: HashMap<types::FunctionKey<'a>, u32>,
export_type_map: HashMap<TypeId, u32>,
export_func_type_map: HashMap<types::FunctionKey<'a>, u32>,
/// Cache of items that have been aliased from core instances.
///
/// This is a helper to reduce the number of aliases created by ensuring
/// that repeated requests for the same item return the same index of an
/// original `core alias` item.
aliased_core_items: HashMap<(u32, String), u32>,
/// Metadata about the world inferred from the input to `ComponentEncoder`.
info: &'a ComponentWorld<'a>,
}
impl<'a> EncodingState<'a> {
fn encode_core_modules(&mut self) {
assert!(self.module_index.is_none());
let idx = self.component.core_module_raw(&self.info.encoder.module);
self.module_index = Some(idx);
for (name, adapter) in self.info.adapters.iter() {
let add_meta = wasm_metadata::AddMetadata {
name: Some(if adapter.library_info.is_some() {
name.to_string()
} else {
format!("wit-component:adapter:{name}")
}),
..Default::default()
};
let wasm = add_meta
.to_wasm(&adapter.wasm)
.expect("core wasm can get name added");
let idx = self.component.core_module_raw(&wasm);
let prev = self.adapter_modules.insert(name, idx);
assert!(prev.is_none());
}
}
fn root_import_type_encoder(
&mut self,
interface: Option<InterfaceId>,
) -> RootTypeEncoder<'_, 'a> {
RootTypeEncoder {
state: self,
interface,
import_types: true,
}
}
fn root_export_type_encoder(
&mut self,
interface: Option<InterfaceId>,
) -> RootTypeEncoder<'_, 'a> {
RootTypeEncoder {
state: self,
interface,
import_types: false,
}
}
fn instance_type_encoder(&mut self, interface: InterfaceId) -> InstanceTypeEncoder<'_, 'a> {
InstanceTypeEncoder {
state: self,
interface,
type_map: Default::default(),
func_type_map: Default::default(),
ty: Default::default(),
}
}
fn encode_imports(&mut self, name_map: &HashMap<String, String>) -> Result<()> {
let mut has_funcs = false;
for (name, info) in self.info.import_map.iter() {
match name {
Some(name) => {
self.encode_interface_import(name_map.get(name).unwrap_or(name), info)?
}
None => has_funcs = true,
}
}
let resolve = &self.info.encoder.metadata.resolve;
let world = &resolve.worlds[self.info.encoder.metadata.world];
for (_name, item) in world.imports.iter() {
if let WorldItem::Type(ty) = item {
self.root_import_type_encoder(None)
.encode_valtype(resolve, &Type::Id(*ty))?;
}
}
if has_funcs {
let info = &self.info.import_map[&None];
self.encode_root_import_funcs(info)?;
}
Ok(())
}
fn encode_interface_import(&mut self, name: &str, info: &ImportedInterface) -> Result<()> {
let resolve = &self.info.encoder.metadata.resolve;
let interface_id = info.interface.as_ref().unwrap();
let interface_id = *interface_id;
let interface = &resolve.interfaces[interface_id];
log::trace!("encoding imports for `{name}` as {:?}", interface_id);
let mut encoder = self.instance_type_encoder(interface_id);
// First encode all type information
if let Some(live) = encoder.state.info.live_type_imports.get(&interface_id) {
for ty in live {
log::trace!(
"encoding extra type {ty:?} name={:?}",
resolve.types[*ty].name
);
encoder.encode_valtype(resolve, &Type::Id(*ty))?;
}
}
// Next encode all required functions from this imported interface
// into the instance type.
for (_, func) in interface.functions.iter() {
if !info.lowerings.contains_key(&func.name) {
continue;
}
log::trace!("encoding function type for `{}`", func.name);
let idx = encoder.encode_func_type(resolve, func)?;
encoder.ty.export(&func.name, ComponentTypeRef::Func(idx));
}
let ty = encoder.ty;
// Don't encode empty instance types since they're not
// meaningful to the runtime of the component anyway.
if ty.is_empty() {
return Ok(());
}
let instance_type_idx = self.component.type_instance(&ty);
let instance_idx = self
.component
.import(name, ComponentTypeRef::Instance(instance_type_idx));
let prev = self.imported_instances.insert(interface_id, instance_idx);
assert!(prev.is_none());
Ok(())
}
fn encode_root_import_funcs(&mut self, info: &ImportedInterface) -> Result<()> {
let resolve = &self.info.encoder.metadata.resolve;
let world = self.info.encoder.metadata.world;
for (name, item) in resolve.worlds[world].imports.iter() {
let func = match item {
WorldItem::Function(f) => f,
WorldItem::Interface { .. } | WorldItem::Type(_) => continue,
};
let name = resolve.name_world_key(name);
if !info.lowerings.contains_key(&name) {
continue;
}
log::trace!("encoding function type for `{}`", func.name);
let idx = self
.root_import_type_encoder(None)
.encode_func_type(resolve, func)?;
let func_idx = self.component.import(&name, ComponentTypeRef::Func(idx));
let prev = self.imported_funcs.insert(name, func_idx);
assert!(prev.is_none());
}
Ok(())
}
fn alias_imported_type(&mut self, interface: InterfaceId, id: TypeId) -> u32 {
let ty = &self.info.encoder.metadata.resolve.types[id];
let name = ty.name.as_ref().expect("type must have a name");
let instance = self.imported_instances[&interface];
self.component
.alias_export(instance, name, ComponentExportKind::Type)
}
fn alias_exported_type(&mut self, interface: InterfaceId, id: TypeId) -> u32 {
let ty = &self.info.encoder.metadata.resolve.types[id];
let name = ty.name.as_ref().expect("type must have a name");
let instance = self.exported_instances[&interface];
self.component
.alias_export(instance, name, ComponentExportKind::Type)
}
fn encode_core_instantiation(&mut self) -> Result<()> {
// Encode a shim instantiation if needed
let shims = self.encode_shim_instantiation()?;
// Next declare all exported resource types. This populates
// `export_type_map` and will additionally be used for imports to
// modules instantiated below.
self.declare_exported_resources(&shims);
// Next instantiate the main module. This provides the linear memory to
// use for all future adapters and enables creating indirect lowerings
// at the end.
self.instantiate_main_module(&shims)?;
// Separate the adapters according which should be instantiated before
// and after indirect lowerings are encoded.
let (before, after) = self
.info
.adapters
.iter()
.partition::<Vec<_>, _>(|(_, adapter)| {
!matches!(
adapter.library_info,
Some(LibraryInfo {
instantiate_after_shims: true,
..
})
)
});
for (name, _adapter) in before {
self.instantiate_adapter_module(&shims, name)?;
}
// With all the relevant core wasm instances in play now the original shim
// module, if present, can be filled in with lowerings/adapters/etc.
self.encode_indirect_lowerings(&shims)?;
for (name, _adapter) in after {
self.instantiate_adapter_module(&shims, name)?;
}
self.encode_initialize_with_start()?;
Ok(())
}
fn lookup_resource_index(&mut self, id: TypeId) -> u32 {
let resolve = &self.info.encoder.metadata.resolve;
let ty = &resolve.types[id];
match ty.owner {
// If this resource is owned by a world then it's a top-level
// resource which means it must have already been translated so
// it's available for lookup in `import_type_map`.
TypeOwner::World(_) => self.import_type_map[&id],
TypeOwner::Interface(i) => {
let instance = self.imported_instances[&i];
let name = ty.name.as_ref().expect("resources must be named");
self.component
.alias_export(instance, name, ComponentExportKind::Type)
}
TypeOwner::None => panic!("resources must have an owner"),
}
}
fn encode_exports(&mut self, module: CustomModule) -> Result<()> {
let resolve = &self.info.encoder.metadata.resolve;
let exports = match module {
CustomModule::Main => &self.info.encoder.main_module_exports,
CustomModule::Adapter(name) => &self.info.encoder.adapters[name].required_exports,
};
if exports.is_empty() {
return Ok(());
}
let mut interface_func_core_names = IndexMap::new();
let mut world_func_core_names = IndexMap::new();
for (core_name, export) in self.info.exports_for(module).iter() {
match export {
Export::WorldFunc(name) => {
let prev = world_func_core_names.insert(name, core_name);
assert!(prev.is_none());
}
Export::InterfaceFunc(id, name) => {
let prev = interface_func_core_names
.entry(id)
.or_insert(IndexMap::new())
.insert(name.as_str(), core_name);
assert!(prev.is_none());
}
Export::WorldFuncPostReturn(..)
| Export::InterfaceFuncPostReturn(..)
| Export::ResourceDtor(..)
| Export::Memory
| Export::GeneralPurposeRealloc
| Export::GeneralPurposeExportRealloc
| Export::GeneralPurposeImportRealloc
| Export::Initialize
| Export::ReallocForAdapter => continue,
}
}
let world = &resolve.worlds[self.info.encoder.metadata.world];
for export_name in exports {
let export_string = resolve.name_world_key(export_name);
match &world.exports[export_name] {
WorldItem::Function(func) => {
let ty = self
.root_import_type_encoder(None)
.encode_func_type(resolve, func)?;
let core_name = world_func_core_names[&func.name];
let idx = self.encode_lift(module, &core_name, export_name, func, ty)?;
self.component
.export(&export_string, ComponentExportKind::Func, idx, None);
}
WorldItem::Interface { id, .. } => {
let core_names = interface_func_core_names.get(id);
self.encode_interface_export(
&export_string,
module,
export_name,
*id,
core_names,
)?;
}
WorldItem::Type(_) => unreachable!(),
}
}
Ok(())
}
fn encode_interface_export(
&mut self,
export_name: &str,
module: CustomModule<'_>,
key: &WorldKey,
export: InterfaceId,
interface_func_core_names: Option<&IndexMap<&str, &str>>,
) -> Result<()> {
log::trace!("encode interface export `{export_name}`");
let resolve = &self.info.encoder.metadata.resolve;
// First execute a `canon lift` for all the functions in this interface
// from the core wasm export. This requires type information but notably
// not exported type information since we don't want to export this
// interface's types from the root of the component. Each lifted
// function is saved off into an `imports` array to get imported into
// the nested component synthesized below.
let mut imports = Vec::new();
let mut root = self.root_export_type_encoder(Some(export));
for (_, func) in &resolve.interfaces[export].functions {
let core_name = interface_func_core_names.unwrap()[func.name.as_str()];
let ty = root.encode_func_type(resolve, func)?;
let func_index = root.state.encode_lift(module, &core_name, key, func, ty)?;
imports.push((
import_func_name(func),
ComponentExportKind::Func,
func_index,
));
}
// Next a nested component is created which will import the functions
// above and then reexport them. The purpose of them is to "re-type" the
// functions through type ascription on each `func` item.
let mut nested = NestedComponentTypeEncoder {
component: ComponentBuilder::default(),
type_map: Default::default(),
func_type_map: Default::default(),
export_types: false,
interface: export,
state: self,
imports: IndexMap::new(),
};
// Import all transitively-referenced types from other interfaces into
// this component. This temporarily switches the `interface` listed to
// the interface of the referred-to-type to generate the import. After
// this loop `interface` is rewritten to `export`.
//
// Each component is a standalone "island" so the necessary type
// information needs to be rebuilt within this component. This ensures
// that we're able to build a valid component and additionally connect
// all the type information to the outer context.
let mut types_to_import = LiveTypes::default();
types_to_import.add_interface(resolve, export);
let exports_used = &nested.state.info.exports_used[&export];
for ty in types_to_import.iter() {
if let TypeOwner::Interface(owner) = resolve.types[ty].owner {
if owner == export {
// Here this deals with the current exported interface which
// is handled below.
continue;
}
// Ensure that `self` has encoded this type before. If so this
// is a noop but otherwise it generates the type here.
let mut encoder = if exports_used.contains(&owner) {
nested.state.root_export_type_encoder(Some(export))
} else {
nested.state.root_import_type_encoder(Some(export))
};
encoder.encode_valtype(resolve, &Type::Id(ty))?;
// Next generate the same type but this time within the
// component itself. The type generated above (or prior) will be
// used to satisfy this type import.
nested.interface = owner;
nested.encode_valtype(resolve, &Type::Id(ty))?;
}
}
nested.interface = export;
// Record the map of types imported to their index at where they were
// imported. This is used after imports are encoded as exported types
// will refer to these.
let imported_types = nested.type_map.clone();
// Handle resource types for this instance specially, namely importing
// them into the nested component. This models how the resource is
// imported from its definition in the outer component to get reexported
// internally. This chiefly avoids creating a second resource which is
// not desired in this situation.
let mut resources = HashMap::new();
for (_name, ty) in resolve.interfaces[export].types.iter() {
if !matches!(resolve.types[*ty].kind, TypeDefKind::Resource) {
continue;
}
let idx = match nested.encode_valtype(resolve, &Type::Id(*ty))? {
ComponentValType::Type(idx) => idx,
_ => unreachable!(),
};
resources.insert(*ty, idx);
}
// Next import each function of this interface. This will end up
// defining local types as necessary or using the types as imported
// above.
for (_, func) in resolve.interfaces[export].functions.iter() {
let ty = nested.encode_func_type(resolve, func)?;
nested
.component
.import(&import_func_name(func), ComponentTypeRef::Func(ty));
}
// Swap the `nested.type_map` which was previously from `TypeId` to
// `u32` to instead being from `u32` to `TypeId`. This reverse map is
// then used in conjunction with `self.type_map` to satisfy all type
// imports of the nested component generated. The type import's index in
// the inner component is translated to a `TypeId` via `reverse_map`
// which is then translated back to our own index space via `type_map`.
let reverse_map = nested
.type_map
.drain()
.map(|p| (p.1, p.0))
.collect::<HashMap<_, _>>();
for (name, idx) in nested.imports.drain(..) {
let id = reverse_map[&idx];
let owner = match resolve.types[id].owner {
TypeOwner::Interface(id) => id,
_ => unreachable!(),
};
let idx = if owner == export || exports_used.contains(&owner) {
log::trace!("consulting exports for {id:?}");
nested.state.export_type_map[&id]
} else {
log::trace!("consulting imports for {id:?}");
nested.state.import_type_map[&id]
};
imports.push((name, ComponentExportKind::Type, idx))
}
// Before encoding exports reset the type map to what all was imported
// from foreign interfaces. This will enable any encoded types below to
// refer to imports which, after type substitution, will point to the
// correct type in the outer component context.
nested.type_map = imported_types;
// Next the component reexports all of its imports, but notably uses the
// type ascription feature to change the type of the function. Note that
// no structural change is happening to the types here but instead types
// are getting proper names and such now that this nested component is a
// new type index space. Hence the `export_types = true` flag here which
// flows through the type encoding and when types are emitted.
nested.export_types = true;
nested.func_type_map.clear();
// To start off all type information is encoded. This will be used by
// functions below but notably this also has special handling for
// resources. Resources reexport their imported resource type under
// the final name which achieves the desired goal of threading through
// the original resource without creating a new one.
for (_, id) in resolve.interfaces[export].types.iter() {
let ty = &resolve.types[*id];
match ty.kind {
TypeDefKind::Resource => {
let idx = nested.component.export(
ty.name.as_ref().expect("resources must be named"),
ComponentExportKind::Type,
resources[id],
None,
);
nested.type_map.insert(*id, idx);
}
_ => {
nested.encode_valtype(resolve, &Type::Id(*id))?;
}
}
}
for (i, (_, func)) in resolve.interfaces[export].functions.iter().enumerate() {
let ty = nested.encode_func_type(resolve, func)?;
nested.component.export(
&func.name,
ComponentExportKind::Func,
i as u32,
Some(ComponentTypeRef::Func(ty)),
);
}
// Embed the component within our component and then instantiate it with
// the lifted functions. That final instance is then exported under the
// appropriate name as the final typed export of this component.
let component = nested.component;
let component_index = self.component.component(component);
let instance_index = self.component.instantiate(component_index, imports);
let idx = self.component.export(
export_name,
ComponentExportKind::Instance,
instance_index,
None,
);
let prev = self.exported_instances.insert(export, idx);
assert!(prev.is_none());
// After everything is all said and done remove all the type information
// about type exports of this interface. Any entries in the map
// currently were used to create the instance above but aren't the
// actual copy of the exported type since that comes from the exported
// instance itself. Entries will be re-inserted into this map as
// necessary via aliases from the exported instance which is the new
// source of truth for all these types.
for (_name, id) in resolve.interfaces[export].types.iter() {
self.export_type_map.remove(id);
}
return Ok(());
struct NestedComponentTypeEncoder<'state, 'a> {
component: ComponentBuilder,
type_map: HashMap<TypeId, u32>,
func_type_map: HashMap<types::FunctionKey<'a>, u32>,
export_types: bool,
interface: InterfaceId,
state: &'state mut EncodingState<'a>,
imports: IndexMap<String, u32>,
}
impl<'a> ValtypeEncoder<'a> for NestedComponentTypeEncoder<'_, 'a> {
fn defined_type(&mut self) -> (u32, ComponentDefinedTypeEncoder<'_>) {
self.component.type_defined()
}
fn define_function_type(&mut self) -> (u32, ComponentFuncTypeEncoder<'_>) {
self.component.type_function()
}
fn export_type(&mut self, idx: u32, name: &'a str) -> Option<u32> {
if self.export_types {
Some(
self.component
.export(name, ComponentExportKind::Type, idx, None),
)
} else {
let name = self.unique_import_name(name);
let ret = self
.component
.import(&name, ComponentTypeRef::Type(TypeBounds::Eq(idx)));
self.imports.insert(name, ret);
Some(ret)
}
}
fn export_resource(&mut self, name: &'a str) -> u32 {
if self.export_types {
panic!("resources should already be exported")
} else {
let name = self.unique_import_name(name);
let ret = self
.component
.import(&name, ComponentTypeRef::Type(TypeBounds::SubResource));
self.imports.insert(name, ret);
ret
}
}
fn import_type(&mut self, _: InterfaceId, _id: TypeId) -> u32 {
unreachable!()
}
fn type_map(&mut self) -> &mut HashMap<TypeId, u32> {
&mut self.type_map
}
fn func_type_map(&mut self) -> &mut HashMap<types::FunctionKey<'a>, u32> {
&mut self.func_type_map
}
fn interface(&self) -> Option<InterfaceId> {
Some(self.interface)
}
}
impl NestedComponentTypeEncoder<'_, '_> {
fn unique_import_name(&mut self, name: &str) -> String {
let mut name = format!("import-type-{name}");
let mut n = 0;
while self.imports.contains_key(&name) {
name = format!("{name}{n}");
n += 1;
}
name
}
}
fn import_func_name(f: &Function) -> String {
match f.kind {
FunctionKind::Freestanding => {
format!("import-func-{}", f.name)
}
// transform `[method]foo.bar` into `import-method-foo-bar` to
// have it be a valid kebab-name which can't conflict with
// anything else.
//
// There's probably a better and more "formal" way to do this
// but quick-and-dirty string manipulation should work well
// enough for now hopefully.
FunctionKind::Method(_)
| FunctionKind::Static(_)
| FunctionKind::Constructor(_) => {
format!(
"import-{}",
f.name.replace('[', "").replace([']', '.'], "-")
)
}
}
}
}
fn encode_lift(
&mut self,
module: CustomModule<'_>,
core_name: &str,
key: &WorldKey,
func: &Function,
ty: u32,
) -> Result<u32> {
let resolve = &self.info.encoder.metadata.resolve;
let metadata = self.info.module_metadata_for(module);
let instance_index = self.instance_for(module);
let core_func_index = self.core_alias_export(instance_index, core_name, ExportKind::Func);
let options = RequiredOptions::for_export(resolve, func);
let encoding = metadata
.export_encodings
.get(resolve, key, &func.name)
.unwrap();
let exports = self.info.exports_for(module);
let realloc_index = exports
.export_realloc_for(key, func)
.map(|name| self.core_alias_export(instance_index, name, ExportKind::Func));
let mut options = options
.into_iter(encoding, self.memory_index, realloc_index)?
.collect::<Vec<_>>();
if let Some(post_return) = exports.post_return(key, func) {
let post_return = self.core_alias_export(instance_index, post_return, ExportKind::Func);
options.push(CanonicalOption::PostReturn(post_return));
}
let func_index = self.component.lift_func(core_func_index, ty, options);
Ok(func_index)
}
fn encode_shim_instantiation(&mut self) -> Result<Shims<'a>> {
let mut ret = Shims::default();
ret.append_indirect(self.info, CustomModule::Main)
.context("failed to register indirect shims for main module")?;
// For all required adapter modules a shim is created for each required
// function and additionally a set of shims are created for the
// interface imported into the shim module itself.
for (adapter_name, _adapter) in self.info.adapters.iter() {
ret.append_indirect(self.info, CustomModule::Adapter(adapter_name))
.with_context(|| {
format!("failed to register indirect shims for adapter {adapter_name}")
})?;
}
if ret.shims.is_empty() {
return Ok(ret);
}
assert!(self.shim_instance_index.is_none());
assert!(self.fixups_module_index.is_none());
// This function encodes two modules:
// - A shim module that defines a table and exports functions
// that indirectly call through the table.
// - A fixup module that imports that table and a set of functions
// and populates the imported table via active element segments. The
// fixup module is used to populate the shim's table once the
// imported functions have been lowered.
let mut types = TypeSection::new();
let mut tables = TableSection::new();
let mut functions = FunctionSection::new();
let mut exports = ExportSection::new();
let mut code = CodeSection::new();
let mut sigs = IndexMap::new();
let mut imports_section = ImportSection::new();
let mut elements = ElementSection::new();
let mut func_indexes = Vec::new();
let mut func_names = NameMap::new();
for (i, shim) in ret.shims.values().enumerate() {
let i = i as u32;
let type_index = *sigs.entry(&shim.sig).or_insert_with(|| {
let index = types.len();
types.ty().function(
shim.sig.params.iter().map(to_val_type),
shim.sig.results.iter().map(to_val_type),
);
index
});
functions.function(type_index);
Self::encode_shim_function(type_index, i, &mut code, shim.sig.params.len() as u32);
exports.export(&shim.name, ExportKind::Func, i);
imports_section.import("", &shim.name, EntityType::Function(type_index));
func_indexes.push(i);
func_names.append(i, &shim.debug_name);
}
let mut names = NameSection::new();
names.module("wit-component:shim");
names.functions(&func_names);
let table_type = TableType {
element_type: RefType::FUNCREF,
minimum: ret.shims.len() as u64,
maximum: Some(ret.shims.len() as u64),
table64: false,
shared: false,
};
tables.table(table_type);
exports.export(INDIRECT_TABLE_NAME, ExportKind::Table, 0);
imports_section.import("", INDIRECT_TABLE_NAME, table_type);
elements.active(
None,
&ConstExpr::i32_const(0),
Elements::Functions(func_indexes.into()),
);
let mut shim = Module::new();
shim.section(&types);
shim.section(&functions);
shim.section(&tables);
shim.section(&exports);
shim.section(&code);
shim.section(&RawCustomSection(
&crate::base_producers().raw_custom_section(),
));
shim.section(&names);
let mut fixups = Module::default();
fixups.section(&types);
fixups.section(&imports_section);
fixups.section(&elements);
fixups.section(&RawCustomSection(
&crate::base_producers().raw_custom_section(),
));
let mut names = NameSection::new();
names.module("wit-component:fixups");
fixups.section(&names);
let shim_module_index = self.component.core_module(&shim);
self.fixups_module_index = Some(self.component.core_module(&fixups));
self.shim_instance_index = Some(self.component.core_instantiate(shim_module_index, []));
return Ok(ret);
}
fn encode_shim_function(
type_index: u32,
func_index: u32,
code: &mut CodeSection,
param_count: u32,
) {
let mut func = wasm_encoder::Function::new(std::iter::empty());
for i in 0..param_count {
func.instruction(&Instruction::LocalGet(i));
}
func.instruction(&Instruction::I32Const(func_index as i32));
func.instruction(&Instruction::CallIndirect {
type_index,
table_index: 0,
});
func.instruction(&Instruction::End);
code.function(&func);
}
fn encode_indirect_lowerings(&mut self, shims: &Shims<'_>) -> Result<()> {
if shims.shims.is_empty() {
return Ok(());
}
let shim_instance_index = self
.shim_instance_index
.expect("must have an instantiated shim");
let table_index =
self.core_alias_export(shim_instance_index, INDIRECT_TABLE_NAME, ExportKind::Table);
let mut exports = Vec::new();
exports.push((INDIRECT_TABLE_NAME, ExportKind::Table, table_index));
for shim in shims.shims.values() {
let core_func_index = match &shim.kind {
// Indirect lowerings are a `canon lower`'d function with
// options specified from a previously instantiated instance.
// This previous instance could either be the main module or an
// adapter module, which affects the `realloc` option here.
// Currently only one linear memory is supported so the linear
// memory always comes from the main module.
ShimKind::IndirectLowering {
interface,
index,
realloc,
encoding,
} => {
let interface = &self.info.import_map[interface];
let (name, _) = interface.lowerings.get_index(*index).unwrap();
let func_index = match &interface.interface {
Some(interface_id) => {
let instance_index = self.imported_instances[interface_id];
self.component.alias_export(
instance_index,
name,
ComponentExportKind::Func,
)
}
None => self.imported_funcs[name],
};
let realloc = self
.info
.exports_for(*realloc)
.import_realloc_for(interface.interface, name)
.map(|name| {
let instance = self.instance_for(*realloc);
self.core_alias_export(instance, name, ExportKind::Func)
});
self.component.lower_func(
func_index,
shim.options
.into_iter(*encoding, self.memory_index, realloc)?,
)
}
// Adapter shims are defined by an export from an adapter
// instance, so use the specified name here and the previously
// created instances to get the core item that represents the
// shim.
ShimKind::Adapter { adapter, func } => {
self.core_alias_export(self.adapter_instances[adapter], func, ExportKind::Func)
}
// Resources are required for a module to be instantiated
// meaning that any destructor for the resource must be called
// indirectly due to the otherwise circular dependency between
// the module and the resource itself.
ShimKind::ResourceDtor { module, export } => {
self.core_alias_export(self.instance_for(*module), export, ExportKind::Func)
}
};
exports.push((shim.name.as_str(), ExportKind::Func, core_func_index));
}
let instance_index = self.component.core_instantiate_exports(exports);
self.component.core_instantiate(
self.fixups_module_index.expect("must have fixup module"),
[("", ModuleArg::Instance(instance_index))],
);
Ok(())
}
/// This is a helper function that will declare, in the component itself,
/// all exported resources.
///
/// These resources later on get packaged up into instances and such. The
/// main thing that this handles is that it registers the right destructor
/// from `shims`, if needed, for each resource.
fn declare_exported_resources(&mut self, shims: &Shims<'_>) {
let resolve = &self.info.encoder.metadata.resolve;
let world = &resolve.worlds[self.info.encoder.metadata.world];
// Iterate over the main module's exports and the exports of all
// adapters. Look for exported interfaces that themselves have
// resources.
let main_module_keys = self.info.encoder.main_module_exports.iter();
let main_module_keys = main_module_keys.map(|key| (CustomModule::Main, key));
let adapter_keys = self.info.encoder.adapters.iter().flat_map(|(name, info)| {
info.required_exports
.iter()
.map(move |key| (CustomModule::Adapter(name), key))
});
for (for_module, key) in main_module_keys.chain(adapter_keys) {
let id = match &world.exports[key] {
WorldItem::Interface { id, .. } => *id,
WorldItem::Type { .. } => unreachable!(),
WorldItem::Function(_) => continue,
};
for ty in resolve.interfaces[id].types.values() {
match resolve.types[*ty].kind {
TypeDefKind::Resource => {}
_ => continue,
}
// Load the destructor, previously detected in module
// validation, if one is present.
let exports = self.info.exports_for(for_module);
let dtor = exports.resource_dtor(*ty).map(|name| {
let name = &shims.shims[&ShimKind::ResourceDtor {
module: for_module,
export: name,
}]
.name;
let shim = self.shim_instance_index.unwrap();
self.core_alias_export(shim, name, ExportKind::Func)
});
// Declare the resource with this destructor and register it in
// our internal map. This should be the first and only time this
// type is inserted into this map.
let resource_idx = self.component.type_resource(ValType::I32, dtor);
let prev = self.export_type_map.insert(*ty, resource_idx);
assert!(prev.is_none());
}
}
}
/// Helper to instantiate the main module and record various results of its
/// instantiation within `self`.
fn instantiate_main_module(&mut self, shims: &Shims<'_>) -> Result<()> {
assert!(self.instance_index.is_none());
let instance_index = self.instantiate_core_module(shims, CustomModule::Main)?;
if let Some(memory) = self.info.info.exports.memory() {
self.memory_index =
Some(self.core_alias_export(instance_index, memory, ExportKind::Memory));
}
self.instance_index = Some(instance_index);
Ok(())
}
/// This function will instantiate the specified adapter module, which may
/// depend on previously-instantiated modules.
fn instantiate_adapter_module(&mut self, shims: &Shims<'_>, name: &'a str) -> Result<()> {
let instance = self.instantiate_core_module(shims, CustomModule::Adapter(name))?;
self.adapter_instances.insert(name, instance);
Ok(())
}
/// Generic helper to instantiate a module.
///
/// The `for_module` provided will have all of its imports satisfied from
/// either previous instantiations or the `shims` module present. This
/// iterates over the metadata produced during validation to determine what
/// hooks up to what import.
fn instantiate_core_module(
&mut self,
shims: &Shims,
for_module: CustomModule<'_>,
) -> Result<u32> {
let module = self.module_for(for_module);
let mut args = Vec::new();
for (core_wasm_name, instance) in self.info.imports_for(for_module).modules() {
match instance {
// For import modules that are a "bag of names" iterate over
// each name and materialize it into this component with the
// `materialize_import` helper. This is then all bottled up into
// a bag-of-exports instances which is then used for
// instantiation.
ImportInstance::Names(names) => {
let mut exports = Vec::new();
for (name, import) in names {
let (kind, index) = self
.materialize_import(&shims, for_module, core_wasm_name, name, import)
.with_context(|| {
format!("failed to satisfy import `{core_wasm_name}::{name}`")
})?;
exports.push((name.as_str(), kind, index));
}
let index = self.component.core_instantiate_exports(exports);
args.push((core_wasm_name.as_str(), ModuleArg::Instance(index)));
}
// Some imports are entire instances, so use the instance for
// the module identifier as the import.
ImportInstance::Whole(which) => {
let instance = self.instance_for(which.to_custom_module());
args.push((core_wasm_name.as_str(), ModuleArg::Instance(instance)));
}
}
}
// And with all arguments prepared now, instantiate the module.
Ok(self.component.core_instantiate(module, args))
}
/// Helper function to materialize an import into a core module within the
/// component being built.
///
/// This function is called for individual imports and uses the results of
/// validation, notably the `Import` type, to determine what WIT-level or
/// component-level construct is being hooked up.
fn materialize_import(
&mut self,
shims: &Shims<'_>,
for_module: CustomModule<'_>,
module: &str,
field: &str,
import: &Import,
) -> Result<(ExportKind, u32)> {
log::trace!("attempting to materialize import of `{module}::{field}` for {for_module:?}");
let resolve = &self.info.encoder.metadata.resolve;
let name_tmp;
let (key, name, interface_key) = match import {
// Main module dependencies on an adapter in use are done with an
// indirection here, so load the shim function and use that.
Import::AdapterExport(_) => {
assert!(self.info.encoder.adapters.contains_key(module));
let shim_instance = self
.shim_instance_index
.expect("shim should be instantiated");
let index = self.core_alias_export(
shim_instance,
&shims.shims[&ShimKind::Adapter {
adapter: module,
func: field,
}]
.name,
ExportKind::Func,
);
return Ok((ExportKind::Func, index));
}
// Adapters might uset he main module's memory, in which case it
// should have been previously instantiated.
Import::MainModuleMemory => {
let index = self
.memory_index
.ok_or_else(|| anyhow!("main module cannot import memory"))?;
return Ok((ExportKind::Memory, index));
}
// Grab-bag of "this adapter wants this thing from the main module".
Import::MainModuleExport { name, kind } => {
let instance = self.instance_index.unwrap();
let index = self.core_alias_export(instance, name, *kind);
return Ok((*kind, index));
}
// A similar grab-bag to above but with a slightly different
// structure. Should probably refactor to make these two the same in
// the future.
Import::Item(item) => {
let instance = self.instance_for(item.which.to_custom_module());
let index = self.core_alias_export(instance, &item.name, item.kind);
return Ok((item.kind, index));
}
// Resource intrinsics related to exported resources. Despite being
// an exported resource the component still provides necessary
// intrinsics for manipulating resource state. These are all
// handled here using the resource types created during
// `declare_exported_resources` above.
Import::ExportedResourceDrop(_key, id) => {
let index = self.component.resource_drop(self.export_type_map[id]);
return Ok((ExportKind::Func, index));
}
Import::ExportedResourceRep(_key, id) => {
let index = self.component.resource_rep(self.export_type_map[id]);
return Ok((ExportKind::Func, index));
}
Import::ExportedResourceNew(_key, id) => {
let index = self.component.resource_new(self.export_type_map[id]);
return Ok((ExportKind::Func, index));
}
// And finally here at the end these cases are going to all fall
// through to the code below. This is where these are connected to a
// WIT `ImportedInterface` one way or another with the name that was
// detected during validation.
Import::ImportedResourceDrop(key, iface, id) => {
let ty = &resolve.types[*id];
let name = ty.name.as_ref().unwrap();
name_tmp = format!("{name}_drop");
(key, &name_tmp, iface.map(|_| resolve.name_world_key(key)))
}
Import::WorldFunc(key, name) => (key, name, None),
Import::InterfaceFunc(key, _, name) => (key, name, Some(resolve.name_world_key(key))),
};
let import = &self.info.import_map[&interface_key];
let (index, _, lowering) = import.lowerings.get_full(name).unwrap();
let metadata = self.info.module_metadata_for(for_module);
let index = match lowering {
// All direct lowerings can be `canon lower`'d here immediately
// and passed as arguments.
Lowering::Direct => {
let func_index = match &import.interface {
Some(interface) => {
let instance_index = self.imported_instances[interface];
self.component
.alias_export(instance_index, name, ComponentExportKind::Func)
}
None => self.imported_funcs[name],
};
self.component.lower_func(func_index, [])
}
// Indirect lowerings come from the shim that was previously
// created, so the specific export is loaded here and used as an
// import.
Lowering::Indirect { .. } => {
let encoding = metadata.import_encodings.get(resolve, key, name).unwrap();
self.core_alias_export(
self.shim_instance_index
.expect("shim should be instantiated"),
&shims.shims[&ShimKind::IndirectLowering {
interface: interface_key,
index,
realloc: for_module,
encoding,
}]
.name,
ExportKind::Func,
)
}
// A "resource drop" intrinsic only needs to find the index of the
// resource type itself and then the intrinsic is declared.
Lowering::ResourceDrop(id) => {
let resource_idx = self.lookup_resource_index(*id);
self.component.resource_drop(resource_idx)
}
};
Ok((ExportKind::Func, index))
}
/// Generates component bits that are responsible for executing
/// `_initialize`, if found, in the original component.
///
/// The `_initialize` function was a part of WASIp1 where it generally is
/// intended to run after imports and memory and such are all "hooked up"
/// and performs other various initialization tasks. This is additionally
/// specified in https://github.com/WebAssembly/component-model/pull/378
/// to be part of the component model lowerings as well.
///
/// This implements this functionality by encoding a core module that
/// imports a function and then registers a `start` section with that
/// imported function. This is all encoded after the
/// imports/lowerings/tables/etc are all filled in above meaning that this
/// is the last piece to run. That means that when this is running
/// everything should be hooked up for all imported functions to work.
///
/// Note that at this time `_initialize` is only detected in the "main
/// module", not adapters/libraries.
fn encode_initialize_with_start(&mut self) -> Result<()> {
let initialize = match self.info.info.exports.initialize() {
Some(name) => name,
// If this core module didn't have `_initialize` or similar, then
// there's nothing to do here.
None => return Ok(()),
};
let initialize_index =
self.core_alias_export(self.instance_index.unwrap(), initialize, ExportKind::Func);
let mut shim = Module::default();
let mut section = TypeSection::new();
section.ty().function([], []);
shim.section(§ion);
let mut section = ImportSection::new();
section.import("", "", EntityType::Function(0));
shim.section(§ion);
shim.section(&StartSection { function_index: 0 });
// Declare the core module within the component, create a dummy core
// instance with one export of our `_initialize` function, and then use
// that to instantiate the module we emit to run the `start` function in
// core wasm to run `_initialize`.
let shim_module_index = self.component.core_module(&shim);
let shim_args_instance_index =
self.component
.core_instantiate_exports([("", ExportKind::Func, initialize_index)]);
self.component.core_instantiate(
shim_module_index,
[("", ModuleArg::Instance(shim_args_instance_index))],
);
Ok(())
}
/// Convenience function to go from `CustomModule` to the instance index
/// corresponding to what that points to.
fn instance_for(&self, module: CustomModule) -> u32 {
match module {
CustomModule::Main => self.instance_index.expect("instantiated by now"),
CustomModule::Adapter(name) => self.adapter_instances[name],
}
}
/// Convenience function to go from `CustomModule` to the module index
/// corresponding to what that points to.
fn module_for(&self, module: CustomModule) -> u32 {
match module {
CustomModule::Main => self.module_index.unwrap(),
CustomModule::Adapter(name) => self.adapter_modules[name],
}
}
/// Convenience function which caches aliases created so repeated calls to
/// this function will all return the same index.
fn core_alias_export(&mut self, instance: u32, name: &str, kind: ExportKind) -> u32 {
*self
.aliased_core_items
.entry((instance, name.to_string()))
.or_insert_with(|| self.component.core_alias_export(instance, name, kind))
}
}
/// A list of "shims" which start out during the component instantiation process
/// as functions which immediately trap due to a `call_indirect`-to-`null` but
/// will get filled in by the time the component instantiation process
/// completes.
///
/// Shims currently include:
///
/// * "Indirect functions" lowered from imported instances where the lowering
/// requires an item exported from the main module. These are indirect due to
/// the circular dependency between the module needing an import and the
/// import needing the module.
///
/// * Adapter modules which convert from a historical ABI to the component
/// model's ABI (e.g. wasi preview1 to preview2) get a shim since the adapters
/// are currently indicated as always requiring the memory of the main module.
///
/// This structure is created by `encode_shim_instantiation`.
#[derive(Default)]
struct Shims<'a> {
/// The list of all shims that a module will require.
shims: IndexMap<ShimKind<'a>, Shim<'a>>,
}
struct Shim<'a> {
/// Canonical ABI options required by this shim, used during `canon lower`
/// operations.
options: RequiredOptions,
/// The name, in the shim instance, of this shim.
///
/// Currently this is `"0"`, `"1"`, ...
name: String,
/// A human-readable debugging name for this shim, used in a core wasm
/// `name` section.
debug_name: String,
/// Precise information about what this shim is a lowering of.
kind: ShimKind<'a>,
/// Wasm type of this shim.
sig: WasmSignature,
}
#[derive(Debug, Clone, Hash, Eq, PartialEq)]
enum ShimKind<'a> {
/// This shim is a late indirect lowering of an imported function in a
/// component which is only possible after prior core wasm modules are
/// instantiated so their memories and functions are available.
IndirectLowering {
/// The name of the interface that's being lowered.
interface: Option<String>,
/// The index within the `lowerings` array of the function being lowered.
index: usize,
/// Which instance to pull the `realloc` function from, if necessary.
realloc: CustomModule<'a>,
/// The string encoding that this lowering is going to use.
encoding: StringEncoding,
},
/// This shim is a core wasm function defined in an adapter module but isn't
/// available until the adapter module is itself instantiated.
Adapter {
/// The name of the adapter module this shim comes from.
adapter: &'a str,
/// The name of the export in the adapter module this shim points to.
func: &'a str,
},
/// A shim used as the destructor for a resource which allows defining the
/// resource before the core module being instantiated.
ResourceDtor {
/// Which instance to pull the destructor function from.
module: CustomModule<'a>,
/// The exported function name of this destructor in the core module.
export: &'a str,
},
}
/// Indicator for which module is being used for a lowering or where options
/// like `realloc` are drawn from.
///
/// This is necessary for situations such as an imported function being lowered
/// into the main module and additionally into an adapter module. For example an
/// adapter might adapt from preview1 to preview2 for the standard library of a
/// programming language but the main module's custom application code may also
/// explicitly import from preview2. These two different lowerings of a preview2
/// function are parameterized by this enumeration.
#[derive(Debug, Copy, Clone, Hash, Eq, PartialEq)]
enum CustomModule<'a> {
/// This points to the "main module" which is generally the "output of LLVM"
/// or what a user wrote.
Main,
/// This is selecting an adapter module, identified by name here, where
/// something is being lowered into.
Adapter(&'a str),
}
impl<'a> Shims<'a> {
/// Adds all shims necessary for the instantiation of `for_module`.
///
/// This function will iterate over all the imports required by this module
/// and for those that require a shim they're registered here.
fn append_indirect(
&mut self,
world: &'a ComponentWorld<'a>,
for_module: CustomModule<'a>,
) -> Result<()> {
let module_imports = world.imports_for(for_module);
let module_exports = world.exports_for(for_module);
let metadata = world.module_metadata_for(for_module);
let resolve = &world.encoder.metadata.resolve;
for (module, field, import) in module_imports.imports() {
let (key, name, interface_key) = match import {
// These imports don't require shims, they can be satisfied
// as-needed when required.
Import::ImportedResourceDrop(..)
| Import::MainModuleMemory
| Import::MainModuleExport { .. }
| Import::Item(_)
| Import::ExportedResourceDrop(..)
| Import::ExportedResourceRep(..)
| Import::ExportedResourceNew(..) => continue,
// Adapter imports into the main module must got through an
// indirection, so that's registered here.
Import::AdapterExport(ty) => {
let name = self.shims.len().to_string();
log::debug!("shim {name} is adapter `{module}::{field}`");
self.push(Shim {
name,
debug_name: format!("adapt-{module}-{field}"),
// Pessimistically assume that all adapters require
// memory in one form or another. While this isn't
// technically true it's true enough for WASI.
options: RequiredOptions::MEMORY,
kind: ShimKind::Adapter {
adapter: module,
func: field,
},
sig: WasmSignature {
params: ty.params().iter().map(to_wasm_type).collect(),
results: ty.results().iter().map(to_wasm_type).collect(),
indirect_params: false,
retptr: false,
},
});
continue;
fn to_wasm_type(ty: &wasmparser::ValType) -> WasmType {
match ty {
wasmparser::ValType::I32 => WasmType::I32,
wasmparser::ValType::I64 => WasmType::I64,
wasmparser::ValType::F32 => WasmType::F32,
wasmparser::ValType::F64 => WasmType::F64,
_ => unreachable!(),
}
}
}
// WIT-level functions may require an indirection, so yield some
// metadata out of this `match` to the loop below to figure that
// out.
Import::InterfaceFunc(key, _, name) => {
(key, name, Some(resolve.name_world_key(key)))
}
Import::WorldFunc(key, name) => (key, name, None),
};
let interface = &world.import_map[&interface_key];
let (index, _, lowering) = interface.lowerings.get_full(name).unwrap();
let shim_name = self.shims.len().to_string();
match lowering {
Lowering::Direct | Lowering::ResourceDrop(_) => {}
Lowering::Indirect { sig, options } => {
log::debug!(
"shim {shim_name} is import `{module}::{field}` lowering {index} `{name}`",
);
let encoding = metadata
.import_encodings
.get(resolve, key, name)
.ok_or_else(|| {
anyhow::anyhow!(
"missing component metadata for import of \
`{module}::{field}`"
)
})?;
self.push(Shim {
name: shim_name,
debug_name: format!("indirect-{module}-{field}"),
options: *options,
kind: ShimKind::IndirectLowering {
interface: interface_key,
index,
realloc: for_module,
encoding,
},
sig: sig.clone(),
});
}
}
}
// In addition to all the shims added for imports above this module also
// requires shims for resource destructors that it exports. Resource
// types are declared before the module is instantiated so the actual
// destructor is registered as a shim (defined here) and it's then
// filled in with the module's exports later.
for (export_name, export) in module_exports.iter() {
let id = match export {
Export::ResourceDtor(id) => id,
_ => continue,
};
let resource = resolve.types[*id].name.as_ref().unwrap();
let name = self.shims.len().to_string();
self.push(Shim {
name,
debug_name: format!("dtor-{resource}"),
options: RequiredOptions::empty(),
kind: ShimKind::ResourceDtor {
module: for_module,
export: export_name,
},
sig: WasmSignature {
params: vec![WasmType::I32],
results: Vec::new(),
indirect_params: false,
retptr: false,
},
});
}
Ok(())
}
fn push(&mut self, shim: Shim<'a>) {
// Only one shim per `ShimKind` is retained, so if it's already present
// don't overwrite it. If it's not present though go ahead and insert
// it.
if !self.shims.contains_key(&shim.kind) {
self.shims.insert(shim.kind.clone(), shim);
}
}
}
/// Alias argument to an instantiation
#[derive(Clone, Debug)]
pub struct Item {
pub alias: String,
pub kind: ExportKind,
pub which: MainOrAdapter,
pub name: String,
}
/// Module argument to an instantiation
#[derive(Debug, PartialEq, Clone)]
pub enum MainOrAdapter {
Main,
Adapter(String),
}
impl MainOrAdapter {
fn to_custom_module(&self) -> CustomModule<'_> {
match self {
MainOrAdapter::Main => CustomModule::Main,
MainOrAdapter::Adapter(s) => CustomModule::Adapter(s),
}
}
}
/// Module instantiation argument
#[derive(Clone)]
pub enum Instance {
/// Module argument
MainOrAdapter(MainOrAdapter),
/// Alias argument
Items(Vec<Item>),
}
/// Provides fine-grained control of how a library module is instantiated
/// relative to other module instances
#[derive(Clone)]
pub struct LibraryInfo {
/// If true, instantiate any shims prior to this module
pub instantiate_after_shims: bool,
/// Instantiation arguments
pub arguments: Vec<(String, Instance)>,
}
/// Represents an adapter or library to be instantiated as part of the component
pub(super) struct Adapter {
/// The wasm of the module itself, with `component-type` sections stripped
wasm: Vec<u8>,
/// The metadata for the adapter
metadata: ModuleMetadata,
/// The set of exports from the final world which are defined by this
/// adapter or library
required_exports: IndexSet<WorldKey>,
/// If present, treat this module as a library rather than a "minimal" adapter
///
/// TODO: We should refactor how various flavors of module are represented
/// and differentiated to avoid mistaking one for another.
library_info: Option<LibraryInfo>,
}
/// An encoder of components based on `wit` interface definitions.
#[derive(Default)]
pub struct ComponentEncoder {
module: Vec<u8>,
pub(super) metadata: Bindgen,
validate: bool,
pub(super) main_module_exports: IndexSet<WorldKey>,
pub(super) adapters: IndexMap<String, Adapter>,
import_name_map: HashMap<String, String>,
realloc_via_memory_grow: bool,
merge_imports_based_on_semver: Option<bool>,
pub(super) reject_legacy_names: bool,
}
impl ComponentEncoder {
/// Set the core module to encode as a component.
/// This method will also parse any component type information stored in custom sections
/// inside the module, and add them as the interface, imports, and exports.
/// It will also add any producers information inside the component type information to the
/// core module.
pub fn module(mut self, module: &[u8]) -> Result<Self> {
let (wasm, metadata) = self.decode(module)?;
let exports = self
.merge_metadata(metadata)
.context("failed merge WIT metadata for module with previous metadata")?;
self.main_module_exports.extend(exports);
self.module = if let Some(producers) = &self.metadata.producers {
producers.add_to_wasm(&wasm)?
} else {
wasm.to_vec()
};
Ok(self)
}
fn decode<'a>(&self, wasm: &'a [u8]) -> Result<(Cow<'a, [u8]>, Bindgen)> {
let (bytes, metadata) = metadata::decode(wasm)?;
match bytes {
Some(wasm) => Ok((Cow::Owned(wasm), metadata)),
None => Ok((Cow::Borrowed(wasm), metadata)),
}
}
fn merge_metadata(&mut self, metadata: Bindgen) -> Result<IndexSet<WorldKey>> {
self.metadata.merge(metadata)
}
/// Sets whether or not the encoder will validate its output.
pub fn validate(mut self, validate: bool) -> Self {
self.validate = validate;
self
}
/// Sets whether to merge imports based on semver to the specified value.
///
/// This affects how when to WIT worlds are merged together, for example
/// from two different libraries, whether their imports are unified when the
/// semver version ranges for interface allow it.
///
/// This is enabled by default.
pub fn merge_imports_based_on_semver(mut self, merge: bool) -> Self {
self.merge_imports_based_on_semver = Some(merge);
self
}
/// Sets whether to reject the historical mangling/name scheme for core wasm
/// imports/exports as they map to the component model.
///
/// The `wit-component` crate supported a different set of names prior to
/// WebAssembly/component-model#378 and this can be used to disable this
/// support.
///
/// This is disabled by default.
pub fn reject_legacy_names(mut self, reject: bool) -> Self {
self.reject_legacy_names = reject;
self
}
/// Specifies a new adapter which is used to translate from a historical
/// wasm ABI to the canonical ABI and the `interface` provided.
///
/// This is primarily used to polyfill, for example,
/// `wasi_snapshot_preview1` with a component-model using interface. The
/// `name` provided is the module name of the adapter that is being
/// polyfilled, for example `"wasi_snapshot_preview1"`.
///
/// The `bytes` provided is a core wasm module which implements the `name`
/// interface in terms of the `interface` interface. This core wasm module
/// is severely restricted in its shape, for example it cannot have any data
/// segments or element segments.
///
/// The `interface` provided is the component-model-using-interface that the
/// wasm module specified by `bytes` imports. The `bytes` will then import
/// `interface` and export functions to get imported from the module `name`
/// in the core wasm that's being wrapped.
pub fn adapter(self, name: &str, bytes: &[u8]) -> Result<Self> {
self.library_or_adapter(name, bytes, None)
}
/// Specifies a shared-everything library to link into the component.
///
/// Unlike adapters, libraries _may_ have data and/or element segments, but
/// they must operate on an imported memory and table, respectively. In
/// this case, the correct amount of space is presumed to have been
/// statically allocated in the main module's memory and table at the
/// offsets which the segments target, e.g. as arranged by
/// [super::linking::Linker].
///
/// Libraries are treated similarly to adapters, except that they are not
/// "minified" the way adapters are, and instantiation is controlled
/// declaratively via the `library_info` parameter.
pub fn library(self, name: &str, bytes: &[u8], library_info: LibraryInfo) -> Result<Self> {
self.library_or_adapter(name, bytes, Some(library_info))
}
fn library_or_adapter(
mut self,
name: &str,
bytes: &[u8],
library_info: Option<LibraryInfo>,
) -> Result<Self> {
let (wasm, mut metadata) = self.decode(bytes)?;
// Merge the adapter's document into our own document to have one large
// document, and then afterwards merge worlds as well.
//
// Note that the `metadata` tracking import/export encodings is removed
// since this adapter can get different lowerings and is allowed to
// differ from the main module. This is then tracked within the
// `Adapter` structure produced below.
let adapter_metadata = mem::take(&mut metadata.metadata);
let exports = self.merge_metadata(metadata).with_context(|| {
format!("failed to merge WIT packages of adapter `{name}` into main packages")
})?;
if let Some(library_info) = &library_info {
// Validate that all referenced modules can be resolved.
for (_, instance) in &library_info.arguments {
let resolve = |which: &_| match which {
MainOrAdapter::Main => Ok(()),
MainOrAdapter::Adapter(name) => {
if self.adapters.contains_key(name.as_str()) {
Ok(())
} else {
Err(anyhow!("instance refers to unknown adapter `{name}`"))
}
}
};
match instance {
Instance::MainOrAdapter(which) => resolve(which)?,
Instance::Items(items) => {
for item in items {
resolve(&item.which)?;
}
}
}
}
}
self.adapters.insert(
name.to_string(),
Adapter {
wasm: wasm.to_vec(),
metadata: adapter_metadata,
required_exports: exports,
library_info,
},
);
Ok(self)
}
/// True if the realloc and stack allocation should use memory.grow
/// The default is to use the main module realloc
/// Can be useful if cabi_realloc cannot be called before the host
/// runtime is initialized.
pub fn realloc_via_memory_grow(mut self, value: bool) -> Self {
self.realloc_via_memory_grow = value;
self
}
/// The instance import name map to use.
///
/// This is used to rename instance imports in the final component.
///
/// For example, if there is an instance import `foo:bar/baz` and it is
/// desired that the import actually be an `unlocked-dep` name, then
/// `foo:bar/baz` can be mapped to `unlocked-dep=<a:b/c@{>=x.y.z}>`.
///
/// Note: the replacement names are not validated during encoding unless
/// the `validate` option is set to true.
pub fn import_name_map(mut self, map: HashMap<String, String>) -> Self {
self.import_name_map = map;
self
}
/// Encode the component and return the bytes.
pub fn encode(&mut self) -> Result<Vec<u8>> {
if self.module.is_empty() {
bail!("a module is required when encoding a component");
}
if self.merge_imports_based_on_semver.unwrap_or(true) {
self.metadata
.resolve
.merge_world_imports_based_on_semver(self.metadata.world)?;
}
let world = ComponentWorld::new(self).context("failed to decode world from module")?;
let mut state = EncodingState {
component: ComponentBuilder::default(),
module_index: None,
instance_index: None,
memory_index: None,
shim_instance_index: None,
fixups_module_index: None,
adapter_modules: IndexMap::new(),
adapter_instances: IndexMap::new(),
import_type_map: HashMap::new(),
import_func_type_map: HashMap::new(),
export_type_map: HashMap::new(),
export_func_type_map: HashMap::new(),
imported_instances: Default::default(),
imported_funcs: Default::default(),
exported_instances: Default::default(),
aliased_core_items: Default::default(),
info: &world,
};
state.encode_imports(&self.import_name_map)?;
state.encode_core_modules();
state.encode_core_instantiation()?;
state.encode_exports(CustomModule::Main)?;
for name in self.adapters.keys() {
state.encode_exports(CustomModule::Adapter(name))?;
}
state
.component
.raw_custom_section(&crate::base_producers().raw_custom_section());
let bytes = state.component.finish();
if self.validate {
Validator::new()
.validate_all(&bytes)
.context("failed to validate component output")?;
}
Ok(bytes)
}
}
impl ComponentWorld<'_> {
/// Convenience function to lookup a module's import map.
fn imports_for(&self, module: CustomModule) -> &ImportMap {
match module {
CustomModule::Main => &self.info.imports,
CustomModule::Adapter(name) => &self.adapters[name].info.imports,
}
}
/// Convenience function to lookup a module's export map.
fn exports_for(&self, module: CustomModule) -> &ExportMap {
match module {
CustomModule::Main => &self.info.exports,
CustomModule::Adapter(name) => &self.adapters[name].info.exports,
}
}
/// Convenience function to lookup a module's metadata.
fn module_metadata_for(&self, module: CustomModule) -> &ModuleMetadata {
match module {
CustomModule::Main => &self.encoder.metadata.metadata,
CustomModule::Adapter(name) => &self.encoder.adapters[name].metadata,
}
}
}
#[cfg(all(test, feature = "dummy-module"))]
mod test {
use super::*;
use crate::{dummy_module, embed_component_metadata};
use wit_parser::Mangling;
#[test]
fn it_renames_imports() {
let mut resolve = Resolve::new();
let pkg = resolve
.push_str(
"test.wit",
r#"
package test:wit;
interface i {
f: func();
}
world test {
import i;
import foo: interface {
f: func();
}
}
"#,
)
.unwrap();
let world = resolve.select_world(pkg, None).unwrap();
let mut module = dummy_module(&resolve, world, Mangling::Standard32);
embed_component_metadata(&mut module, &resolve, world, StringEncoding::UTF8).unwrap();
let encoded = ComponentEncoder::default()
.import_name_map(HashMap::from([
(
"foo".to_string(),
"unlocked-dep=<foo:bar/foo@{>=1.0.0 <1.1.0}>".to_string(),
),
(
"test:wit/i".to_string(),
"locked-dep=<foo:bar/i@1.2.3>".to_string(),
),
]))
.module(&module)
.unwrap()
.validate(true)
.encode()
.unwrap();
let wat = wasmprinter::print_bytes(encoded).unwrap();
assert!(wat.contains("unlocked-dep=<foo:bar/foo@{>=1.0.0 <1.1.0}>"));
assert!(wat.contains("locked-dep=<foo:bar/i@1.2.3>"));
}
}