wit_component/encoding/
wit.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
use crate::encoding::types::{FunctionKey, ValtypeEncoder};
use anyhow::Result;
use indexmap::IndexSet;
use std::collections::HashMap;
use std::mem;
use wasm_encoder::*;
use wit_parser::*;

/// Encodes the given `package` within `resolve` to a binary WebAssembly
/// representation.
///
/// This function is the root of the implementation of serializing a WIT package
/// into a WebAssembly representation. The wasm representation serves two
/// purposes:
///
/// * One is to be a binary encoding of a WIT document which is ideally more
///   stable than the WIT textual format itself.
/// * Another is to provide a clear mapping of all WIT features into the
///   component model through use of its binary representation.
///
/// The `resolve` provided is a set of packages and types and such and the
/// `package` argument is an ID within the world provided. The documents within
/// `package` will all be encoded into the binary returned.
///
/// The binary returned can be [`decode`d](crate::decode) to recover the WIT
/// package provided.
pub fn encode(resolve: &Resolve, package: PackageId) -> Result<Vec<u8>> {
    let mut component = encode_component(resolve, package)?;
    component.raw_custom_section(&crate::base_producers().raw_custom_section());
    Ok(component.finish())
}

/// Encodes the given `package` within `resolve` to a binary WebAssembly
/// representation.
///
/// This function is the root of the implementation of serializing a WIT package
/// into a WebAssembly representation. The wasm representation serves two
/// purposes:
///
/// * One is to be a binary encoding of a WIT document which is ideally more
///   stable than the WIT textual format itself.
/// * Another is to provide a clear mapping of all WIT features into the
///   component model through use of its binary representation.
///
/// The `resolve` provided is a set of packages and types and such and the
/// `package` argument is an ID within the world provided. The documents within
/// `package` will all be encoded into the binary returned.
///
/// The binary returned can be [`decode`d](crate::decode) to recover the WIT
/// package provided.
pub fn encode_component(resolve: &Resolve, package: PackageId) -> Result<ComponentBuilder> {
    let mut encoder = Encoder {
        component: ComponentBuilder::default(),
        resolve,
        package,
    };
    encoder.run()?;

    let package_metadata = PackageMetadata::extract(resolve, package);
    encoder.component.custom_section(&CustomSection {
        name: PackageMetadata::SECTION_NAME.into(),
        data: package_metadata.encode()?.into(),
    });

    Ok(encoder.component)
}

/// Encodes a `world` as a component type.
pub fn encode_world(resolve: &Resolve, world_id: WorldId) -> Result<ComponentType> {
    let mut component = InterfaceEncoder::new(resolve);
    let world = &resolve.worlds[world_id];
    log::trace!("encoding world {}", world.name);

    // This sort is similar in purpose to the sort below in
    // `encode_instance`, but different in its sort. The purpose here is
    // to ensure that when a document is either printed as WIT or
    // encoded as wasm that decoding from those artifacts produces the
    // same WIT package. Namely both encoding processes should encode
    // things in the same order.
    //
    // When printing worlds in WIT freestanding function imports are
    // printed first, then types. Resource functions are attached to
    // types which means that they all come last. Sort all
    // resource-related functions here to the back of the `imports` list
    // while keeping everything else in front, using a stable sort to
    // preserve preexisting ordering.
    let mut imports = world.imports.iter().collect::<Vec<_>>();
    imports.sort_by_key(|(_name, import)| match import {
        WorldItem::Function(f) => match f.kind {
            FunctionKind::Freestanding => 0,
            _ => 1,
        },
        _ => 0,
    });

    // Encode the imports
    for (name, import) in imports {
        let name = resolve.name_world_key(name);
        log::trace!("encoding import {name}");
        let ty = match import {
            WorldItem::Interface { id, .. } => {
                component.interface = Some(*id);
                let idx = component.encode_instance(*id)?;
                ComponentTypeRef::Instance(idx)
            }
            WorldItem::Function(f) => {
                component.interface = None;
                let idx = component.encode_func_type(resolve, f)?;
                ComponentTypeRef::Func(idx)
            }
            WorldItem::Type(t) => {
                component.interface = None;
                component.import_types = true;
                component.encode_valtype(resolve, &Type::Id(*t))?;
                component.import_types = false;
                continue;
            }
        };
        component.outer.import(&name, ty);
    }
    // Encode the exports
    for (name, export) in world.exports.iter() {
        let name = resolve.name_world_key(name);
        log::trace!("encoding export {name}");
        let ty = match export {
            WorldItem::Interface { id, .. } => {
                component.interface = Some(*id);
                let idx = component.encode_instance(*id)?;
                ComponentTypeRef::Instance(idx)
            }
            WorldItem::Function(f) => {
                component.interface = None;
                let idx = component.encode_func_type(resolve, f)?;
                ComponentTypeRef::Func(idx)
            }
            WorldItem::Type(_) => unreachable!(),
        };
        component.outer.export(&name, ty);
    }

    Ok(component.outer)
}

struct Encoder<'a> {
    component: ComponentBuilder,
    resolve: &'a Resolve,
    package: PackageId,
}

impl Encoder<'_> {
    fn run(&mut self) -> Result<()> {
        // Encode all interfaces as component types and then export them.
        for (name, &id) in self.resolve.packages[self.package].interfaces.iter() {
            let component_ty = self.encode_interface(id)?;
            let ty = self.component.type_component(&component_ty);
            self.component
                .export(name.as_ref(), ComponentExportKind::Type, ty, None);
        }

        // For each `world` encode it directly as a component and then create a
        // wrapper component that exports that component.
        for (name, &world) in self.resolve.packages[self.package].worlds.iter() {
            let component_ty = encode_world(self.resolve, world)?;

            let world = &self.resolve.worlds[world];
            let mut wrapper = ComponentType::new();
            wrapper.ty().component(&component_ty);
            let pkg = &self.resolve.packages[world.package.unwrap()];
            wrapper.export(&pkg.name.interface_id(name), ComponentTypeRef::Component(0));

            let ty = self.component.type_component(&wrapper);
            self.component
                .export(name.as_ref(), ComponentExportKind::Type, ty, None);
        }

        Ok(())
    }

    fn encode_interface(&mut self, id: InterfaceId) -> Result<ComponentType> {
        // Build a set of interfaces reachable from this document, including the
        // interfaces in the document itself. This is used to import instances
        // into the component type we're encoding. Note that entire interfaces
        // are imported with all their types as opposed to just the needed types
        // in an interface for this document. That's done to assist with the
        // decoding process where everyone's view of a foreign document agrees
        // notably on the order that types are defined in to assist with
        // roundtripping.
        let mut interfaces = IndexSet::new();
        self.add_live_interfaces(&mut interfaces, id);

        // Seed the set of used names with all exported interfaces to ensure
        // that imported interfaces choose different names as the import names
        // aren't used during decoding.
        let mut used_names = IndexSet::new();
        for id in interfaces.iter() {
            let iface = &self.resolve.interfaces[*id];
            if iface.package == Some(self.package) {
                let first = used_names.insert(iface.name.as_ref().unwrap().clone());
                assert!(first);
            }
        }

        let mut encoder = InterfaceEncoder::new(self.resolve);
        for interface in interfaces {
            encoder.interface = Some(interface);
            let iface = &self.resolve.interfaces[interface];
            let name = self.resolve.id_of(interface).unwrap();
            if interface == id {
                let idx = encoder.encode_instance(interface)?;
                log::trace!("exporting self as {idx}");
                encoder.outer.export(&name, ComponentTypeRef::Instance(idx));
            } else {
                encoder.push_instance();
                for (_, id) in iface.types.iter() {
                    encoder.encode_valtype(self.resolve, &Type::Id(*id))?;
                }
                let instance = encoder.pop_instance();
                let idx = encoder.outer.type_count();
                encoder.outer.ty().instance(&instance);
                encoder.import_map.insert(interface, encoder.instances);
                encoder.instances += 1;
                encoder.outer.import(&name, ComponentTypeRef::Instance(idx));
            }
        }

        encoder.interface = None;

        Ok(encoder.outer)
    }

    /// Recursively add all live interfaces reachable from `id` into the
    /// `interfaces` set, and then add `id` to the set.
    fn add_live_interfaces(&self, interfaces: &mut IndexSet<InterfaceId>, id: InterfaceId) {
        if interfaces.contains(&id) {
            return;
        }
        for id in self.resolve.interface_direct_deps(id) {
            self.add_live_interfaces(interfaces, id);
        }
        assert!(interfaces.insert(id));
    }
}

struct InterfaceEncoder<'a> {
    resolve: &'a Resolve,
    outer: ComponentType,
    ty: Option<InstanceType>,
    func_type_map: HashMap<FunctionKey<'a>, u32>,
    type_map: HashMap<TypeId, u32>,
    saved_types: Option<(HashMap<TypeId, u32>, HashMap<FunctionKey<'a>, u32>)>,
    import_map: HashMap<InterfaceId, u32>,
    outer_type_map: HashMap<TypeId, u32>,
    instances: u32,
    import_types: bool,
    interface: Option<InterfaceId>,
}

impl InterfaceEncoder<'_> {
    fn new(resolve: &Resolve) -> InterfaceEncoder<'_> {
        InterfaceEncoder {
            resolve,
            outer: ComponentType::new(),
            ty: None,
            type_map: Default::default(),
            func_type_map: Default::default(),
            import_map: Default::default(),
            outer_type_map: Default::default(),
            instances: 0,
            saved_types: None,
            import_types: false,
            interface: None,
        }
    }

    fn encode_instance(&mut self, interface: InterfaceId) -> Result<u32> {
        self.push_instance();
        let iface = &self.resolve.interfaces[interface];
        let mut type_order = IndexSet::new();
        for (_, id) in iface.types.iter() {
            self.encode_valtype(self.resolve, &Type::Id(*id))?;
            type_order.insert(*id);
        }

        // Sort functions based on whether or not they're associated with
        // resources.
        //
        // This is done here to ensure that when a WIT package is printed as WIT
        // then decoded, or if it's printed as Wasm then decoded, the final
        // result is the same. When printing via WIT resource methods are
        // attached to the resource types themselves meaning that they'll appear
        // intermingled with the rest of the types, namely first before all
        // other functions. The purpose of this sort is to perform a stable sort
        // over all functions by shuffling the resource-related functions first,
        // in order of when their associated resource was encoded, and putting
        // freestanding functions last.
        //
        // Note that this is not actually required for correctness, it's
        // basically here to make fuzzing happy.
        let mut funcs = iface.functions.iter().collect::<Vec<_>>();
        funcs.sort_by_key(|(_name, func)| match func.kind {
            FunctionKind::Freestanding => type_order.len(),
            FunctionKind::Method(id) | FunctionKind::Constructor(id) | FunctionKind::Static(id) => {
                type_order.get_index_of(&id).unwrap()
            }
        });

        for (name, func) in funcs {
            let ty = self.encode_func_type(self.resolve, func)?;
            self.ty
                .as_mut()
                .unwrap()
                .export(name, ComponentTypeRef::Func(ty));
        }
        let instance = self.pop_instance();
        let idx = self.outer.type_count();
        self.outer.ty().instance(&instance);
        self.import_map.insert(interface, self.instances);
        self.instances += 1;
        Ok(idx)
    }

    fn push_instance(&mut self) {
        assert!(self.ty.is_none());
        assert!(self.saved_types.is_none());
        self.saved_types = Some((
            mem::take(&mut self.type_map),
            mem::take(&mut self.func_type_map),
        ));
        self.ty = Some(InstanceType::default());
    }

    fn pop_instance(&mut self) -> InstanceType {
        let (types, funcs) = self.saved_types.take().unwrap();
        self.type_map = types;
        self.func_type_map = funcs;
        mem::take(&mut self.ty).unwrap()
    }
}

impl<'a> ValtypeEncoder<'a> for InterfaceEncoder<'a> {
    fn defined_type(&mut self) -> (u32, ComponentDefinedTypeEncoder<'_>) {
        match &mut self.ty {
            Some(ty) => (ty.type_count(), ty.ty().defined_type()),
            None => (self.outer.type_count(), self.outer.ty().defined_type()),
        }
    }
    fn define_function_type(&mut self) -> (u32, ComponentFuncTypeEncoder<'_>) {
        match &mut self.ty {
            Some(ty) => (ty.type_count(), ty.ty().function()),
            None => (self.outer.type_count(), self.outer.ty().function()),
        }
    }
    fn export_type(&mut self, index: u32, name: &'a str) -> Option<u32> {
        match &mut self.ty {
            Some(ty) => {
                assert!(!self.import_types);
                let ret = ty.type_count();
                ty.export(name, ComponentTypeRef::Type(TypeBounds::Eq(index)));
                Some(ret)
            }
            None => {
                let ret = self.outer.type_count();
                if self.import_types {
                    self.outer
                        .import(name, ComponentTypeRef::Type(TypeBounds::Eq(index)));
                } else {
                    self.outer
                        .export(name, ComponentTypeRef::Type(TypeBounds::Eq(index)));
                }
                Some(ret)
            }
        }
    }
    fn export_resource(&mut self, name: &'a str) -> u32 {
        let type_ref = ComponentTypeRef::Type(TypeBounds::SubResource);
        match &mut self.ty {
            Some(ty) => {
                assert!(!self.import_types);
                ty.export(name, type_ref);
                ty.type_count() - 1
            }
            None => {
                if self.import_types {
                    self.outer.import(name, type_ref);
                } else {
                    self.outer.export(name, type_ref);
                }
                self.outer.type_count() - 1
            }
        }
    }
    fn type_map(&mut self) -> &mut HashMap<TypeId, u32> {
        &mut self.type_map
    }
    fn interface(&self) -> Option<InterfaceId> {
        self.interface
    }
    fn import_type(&mut self, owner: InterfaceId, id: TypeId) -> u32 {
        let ty = &self.resolve.types[id];
        let instance = self.import_map[&owner];
        let outer_idx = *self.outer_type_map.entry(id).or_insert_with(|| {
            let ret = self.outer.type_count();
            self.outer.alias(Alias::InstanceExport {
                instance,
                name: ty.name.as_ref().unwrap(),
                kind: ComponentExportKind::Type,
            });
            ret
        });
        match &mut self.ty {
            Some(ty) => {
                let ret = ty.type_count();
                ty.alias(Alias::Outer {
                    count: 1,
                    index: outer_idx,
                    kind: ComponentOuterAliasKind::Type,
                });
                ret
            }
            None => outer_idx,
        }
    }
    fn func_type_map(&mut self) -> &mut HashMap<FunctionKey<'a>, u32> {
        &mut self.func_type_map
    }
}