wit_component/encoding/wit.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426
use crate::encoding::types::{FunctionKey, ValtypeEncoder};
use anyhow::Result;
use indexmap::IndexSet;
use std::collections::HashMap;
use std::mem;
use wasm_encoder::*;
use wit_parser::*;
/// Encodes the given `package` within `resolve` to a binary WebAssembly
/// representation.
///
/// This function is the root of the implementation of serializing a WIT package
/// into a WebAssembly representation. The wasm representation serves two
/// purposes:
///
/// * One is to be a binary encoding of a WIT document which is ideally more
/// stable than the WIT textual format itself.
/// * Another is to provide a clear mapping of all WIT features into the
/// component model through use of its binary representation.
///
/// The `resolve` provided is a set of packages and types and such and the
/// `package` argument is an ID within the world provided. The documents within
/// `package` will all be encoded into the binary returned.
///
/// The binary returned can be [`decode`d](crate::decode) to recover the WIT
/// package provided.
pub fn encode(resolve: &Resolve, package: PackageId) -> Result<Vec<u8>> {
let mut component = encode_component(resolve, package)?;
component.raw_custom_section(&crate::base_producers().raw_custom_section());
Ok(component.finish())
}
/// Encodes the given `package` within `resolve` to a binary WebAssembly
/// representation.
///
/// This function is the root of the implementation of serializing a WIT package
/// into a WebAssembly representation. The wasm representation serves two
/// purposes:
///
/// * One is to be a binary encoding of a WIT document which is ideally more
/// stable than the WIT textual format itself.
/// * Another is to provide a clear mapping of all WIT features into the
/// component model through use of its binary representation.
///
/// The `resolve` provided is a set of packages and types and such and the
/// `package` argument is an ID within the world provided. The documents within
/// `package` will all be encoded into the binary returned.
///
/// The binary returned can be [`decode`d](crate::decode) to recover the WIT
/// package provided.
pub fn encode_component(resolve: &Resolve, package: PackageId) -> Result<ComponentBuilder> {
let mut encoder = Encoder {
component: ComponentBuilder::default(),
resolve,
package,
};
encoder.run()?;
let package_metadata = PackageMetadata::extract(resolve, package);
encoder.component.custom_section(&CustomSection {
name: PackageMetadata::SECTION_NAME.into(),
data: package_metadata.encode()?.into(),
});
Ok(encoder.component)
}
/// Encodes a `world` as a component type.
pub fn encode_world(resolve: &Resolve, world_id: WorldId) -> Result<ComponentType> {
let mut component = InterfaceEncoder::new(resolve);
let world = &resolve.worlds[world_id];
log::trace!("encoding world {}", world.name);
// This sort is similar in purpose to the sort below in
// `encode_instance`, but different in its sort. The purpose here is
// to ensure that when a document is either printed as WIT or
// encoded as wasm that decoding from those artifacts produces the
// same WIT package. Namely both encoding processes should encode
// things in the same order.
//
// When printing worlds in WIT freestanding function imports are
// printed first, then types. Resource functions are attached to
// types which means that they all come last. Sort all
// resource-related functions here to the back of the `imports` list
// while keeping everything else in front, using a stable sort to
// preserve preexisting ordering.
let mut imports = world.imports.iter().collect::<Vec<_>>();
imports.sort_by_key(|(_name, import)| match import {
WorldItem::Function(f) => match f.kind {
FunctionKind::Freestanding => 0,
_ => 1,
},
_ => 0,
});
// Encode the imports
for (name, import) in imports {
let name = resolve.name_world_key(name);
log::trace!("encoding import {name}");
let ty = match import {
WorldItem::Interface { id, .. } => {
component.interface = Some(*id);
let idx = component.encode_instance(*id)?;
ComponentTypeRef::Instance(idx)
}
WorldItem::Function(f) => {
component.interface = None;
let idx = component.encode_func_type(resolve, f)?;
ComponentTypeRef::Func(idx)
}
WorldItem::Type(t) => {
component.interface = None;
component.import_types = true;
component.encode_valtype(resolve, &Type::Id(*t))?;
component.import_types = false;
continue;
}
};
component.outer.import(&name, ty);
}
// Encode the exports
for (name, export) in world.exports.iter() {
let name = resolve.name_world_key(name);
log::trace!("encoding export {name}");
let ty = match export {
WorldItem::Interface { id, .. } => {
component.interface = Some(*id);
let idx = component.encode_instance(*id)?;
ComponentTypeRef::Instance(idx)
}
WorldItem::Function(f) => {
component.interface = None;
let idx = component.encode_func_type(resolve, f)?;
ComponentTypeRef::Func(idx)
}
WorldItem::Type(_) => unreachable!(),
};
component.outer.export(&name, ty);
}
Ok(component.outer)
}
struct Encoder<'a> {
component: ComponentBuilder,
resolve: &'a Resolve,
package: PackageId,
}
impl Encoder<'_> {
fn run(&mut self) -> Result<()> {
// Encode all interfaces as component types and then export them.
for (name, &id) in self.resolve.packages[self.package].interfaces.iter() {
let component_ty = self.encode_interface(id)?;
let ty = self.component.type_component(&component_ty);
self.component
.export(name.as_ref(), ComponentExportKind::Type, ty, None);
}
// For each `world` encode it directly as a component and then create a
// wrapper component that exports that component.
for (name, &world) in self.resolve.packages[self.package].worlds.iter() {
let component_ty = encode_world(self.resolve, world)?;
let world = &self.resolve.worlds[world];
let mut wrapper = ComponentType::new();
wrapper.ty().component(&component_ty);
let pkg = &self.resolve.packages[world.package.unwrap()];
wrapper.export(&pkg.name.interface_id(name), ComponentTypeRef::Component(0));
let ty = self.component.type_component(&wrapper);
self.component
.export(name.as_ref(), ComponentExportKind::Type, ty, None);
}
Ok(())
}
fn encode_interface(&mut self, id: InterfaceId) -> Result<ComponentType> {
// Build a set of interfaces reachable from this document, including the
// interfaces in the document itself. This is used to import instances
// into the component type we're encoding. Note that entire interfaces
// are imported with all their types as opposed to just the needed types
// in an interface for this document. That's done to assist with the
// decoding process where everyone's view of a foreign document agrees
// notably on the order that types are defined in to assist with
// roundtripping.
let mut interfaces = IndexSet::new();
self.add_live_interfaces(&mut interfaces, id);
// Seed the set of used names with all exported interfaces to ensure
// that imported interfaces choose different names as the import names
// aren't used during decoding.
let mut used_names = IndexSet::new();
for id in interfaces.iter() {
let iface = &self.resolve.interfaces[*id];
if iface.package == Some(self.package) {
let first = used_names.insert(iface.name.as_ref().unwrap().clone());
assert!(first);
}
}
let mut encoder = InterfaceEncoder::new(self.resolve);
for interface in interfaces {
encoder.interface = Some(interface);
let iface = &self.resolve.interfaces[interface];
let name = self.resolve.id_of(interface).unwrap();
if interface == id {
let idx = encoder.encode_instance(interface)?;
log::trace!("exporting self as {idx}");
encoder.outer.export(&name, ComponentTypeRef::Instance(idx));
} else {
encoder.push_instance();
for (_, id) in iface.types.iter() {
encoder.encode_valtype(self.resolve, &Type::Id(*id))?;
}
let instance = encoder.pop_instance();
let idx = encoder.outer.type_count();
encoder.outer.ty().instance(&instance);
encoder.import_map.insert(interface, encoder.instances);
encoder.instances += 1;
encoder.outer.import(&name, ComponentTypeRef::Instance(idx));
}
}
encoder.interface = None;
Ok(encoder.outer)
}
/// Recursively add all live interfaces reachable from `id` into the
/// `interfaces` set, and then add `id` to the set.
fn add_live_interfaces(&self, interfaces: &mut IndexSet<InterfaceId>, id: InterfaceId) {
if interfaces.contains(&id) {
return;
}
for id in self.resolve.interface_direct_deps(id) {
self.add_live_interfaces(interfaces, id);
}
assert!(interfaces.insert(id));
}
}
struct InterfaceEncoder<'a> {
resolve: &'a Resolve,
outer: ComponentType,
ty: Option<InstanceType>,
func_type_map: HashMap<FunctionKey<'a>, u32>,
type_map: HashMap<TypeId, u32>,
saved_types: Option<(HashMap<TypeId, u32>, HashMap<FunctionKey<'a>, u32>)>,
import_map: HashMap<InterfaceId, u32>,
outer_type_map: HashMap<TypeId, u32>,
instances: u32,
import_types: bool,
interface: Option<InterfaceId>,
}
impl InterfaceEncoder<'_> {
fn new(resolve: &Resolve) -> InterfaceEncoder<'_> {
InterfaceEncoder {
resolve,
outer: ComponentType::new(),
ty: None,
type_map: Default::default(),
func_type_map: Default::default(),
import_map: Default::default(),
outer_type_map: Default::default(),
instances: 0,
saved_types: None,
import_types: false,
interface: None,
}
}
fn encode_instance(&mut self, interface: InterfaceId) -> Result<u32> {
self.push_instance();
let iface = &self.resolve.interfaces[interface];
let mut type_order = IndexSet::new();
for (_, id) in iface.types.iter() {
self.encode_valtype(self.resolve, &Type::Id(*id))?;
type_order.insert(*id);
}
// Sort functions based on whether or not they're associated with
// resources.
//
// This is done here to ensure that when a WIT package is printed as WIT
// then decoded, or if it's printed as Wasm then decoded, the final
// result is the same. When printing via WIT resource methods are
// attached to the resource types themselves meaning that they'll appear
// intermingled with the rest of the types, namely first before all
// other functions. The purpose of this sort is to perform a stable sort
// over all functions by shuffling the resource-related functions first,
// in order of when their associated resource was encoded, and putting
// freestanding functions last.
//
// Note that this is not actually required for correctness, it's
// basically here to make fuzzing happy.
let mut funcs = iface.functions.iter().collect::<Vec<_>>();
funcs.sort_by_key(|(_name, func)| match func.kind {
FunctionKind::Freestanding => type_order.len(),
FunctionKind::Method(id) | FunctionKind::Constructor(id) | FunctionKind::Static(id) => {
type_order.get_index_of(&id).unwrap()
}
});
for (name, func) in funcs {
let ty = self.encode_func_type(self.resolve, func)?;
self.ty
.as_mut()
.unwrap()
.export(name, ComponentTypeRef::Func(ty));
}
let instance = self.pop_instance();
let idx = self.outer.type_count();
self.outer.ty().instance(&instance);
self.import_map.insert(interface, self.instances);
self.instances += 1;
Ok(idx)
}
fn push_instance(&mut self) {
assert!(self.ty.is_none());
assert!(self.saved_types.is_none());
self.saved_types = Some((
mem::take(&mut self.type_map),
mem::take(&mut self.func_type_map),
));
self.ty = Some(InstanceType::default());
}
fn pop_instance(&mut self) -> InstanceType {
let (types, funcs) = self.saved_types.take().unwrap();
self.type_map = types;
self.func_type_map = funcs;
mem::take(&mut self.ty).unwrap()
}
}
impl<'a> ValtypeEncoder<'a> for InterfaceEncoder<'a> {
fn defined_type(&mut self) -> (u32, ComponentDefinedTypeEncoder<'_>) {
match &mut self.ty {
Some(ty) => (ty.type_count(), ty.ty().defined_type()),
None => (self.outer.type_count(), self.outer.ty().defined_type()),
}
}
fn define_function_type(&mut self) -> (u32, ComponentFuncTypeEncoder<'_>) {
match &mut self.ty {
Some(ty) => (ty.type_count(), ty.ty().function()),
None => (self.outer.type_count(), self.outer.ty().function()),
}
}
fn export_type(&mut self, index: u32, name: &'a str) -> Option<u32> {
match &mut self.ty {
Some(ty) => {
assert!(!self.import_types);
let ret = ty.type_count();
ty.export(name, ComponentTypeRef::Type(TypeBounds::Eq(index)));
Some(ret)
}
None => {
let ret = self.outer.type_count();
if self.import_types {
self.outer
.import(name, ComponentTypeRef::Type(TypeBounds::Eq(index)));
} else {
self.outer
.export(name, ComponentTypeRef::Type(TypeBounds::Eq(index)));
}
Some(ret)
}
}
}
fn export_resource(&mut self, name: &'a str) -> u32 {
let type_ref = ComponentTypeRef::Type(TypeBounds::SubResource);
match &mut self.ty {
Some(ty) => {
assert!(!self.import_types);
ty.export(name, type_ref);
ty.type_count() - 1
}
None => {
if self.import_types {
self.outer.import(name, type_ref);
} else {
self.outer.export(name, type_ref);
}
self.outer.type_count() - 1
}
}
}
fn type_map(&mut self) -> &mut HashMap<TypeId, u32> {
&mut self.type_map
}
fn interface(&self) -> Option<InterfaceId> {
self.interface
}
fn import_type(&mut self, owner: InterfaceId, id: TypeId) -> u32 {
let ty = &self.resolve.types[id];
let instance = self.import_map[&owner];
let outer_idx = *self.outer_type_map.entry(id).or_insert_with(|| {
let ret = self.outer.type_count();
self.outer.alias(Alias::InstanceExport {
instance,
name: ty.name.as_ref().unwrap(),
kind: ComponentExportKind::Type,
});
ret
});
match &mut self.ty {
Some(ty) => {
let ret = ty.type_count();
ty.alias(Alias::Outer {
count: 1,
index: outer_idx,
kind: ComponentOuterAliasKind::Type,
});
ret
}
None => outer_idx,
}
}
fn func_type_map(&mut self) -> &mut HashMap<FunctionKey<'a>, u32> {
&mut self.func_type_map
}
}