1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
use crate::builder::ComponentBuilder;
use crate::encoding::types::{FunctionKey, ValtypeEncoder};
use anyhow::Result;
use indexmap::IndexSet;
use std::collections::HashMap;
use std::mem;
use url::Url;
use wasm_encoder::*;
use wit_parser::*;

/// Encodes the given `package` within `resolve` to a binary WebAssembly
/// representation.
///
/// This function is the root of the implementation of serializing a WIT package
/// into a WebAssembly representation. The wasm representation serves two
/// purposes:
///
/// * One is to be a binary encoding of a WIT document which is ideally more
///   stable than the WIT textual format itself.
/// * Another is to provide a clear mapping of all WIT features into the
///   component model through use of its binary representation.
///
/// The `resolve` provided is a "world" of packages and types and such and the
/// `package` argument is an ID within the world provided. The documents within
/// `package` will all be encoded into the binary returned.
///
/// The binary returned can be [`decode`d](crate::decode) to recover the WIT
/// package provided.
pub fn encode(resolve: &Resolve, package: PackageId) -> Result<Vec<u8>> {
    Ok(encode_component(resolve, package)?.finish())
}

/// Exactly like `encode`, except gives an unfinished `ComponentBuilder` in case you need
/// to append anything else before finishing.
pub fn encode_component(resolve: &Resolve, package: PackageId) -> Result<ComponentBuilder> {
    let mut encoder = Encoder {
        component: ComponentBuilder::default(),
        resolve,
        package,
    };
    encoder.run()?;
    Ok(encoder.component)
}

struct Encoder<'a> {
    component: ComponentBuilder,
    resolve: &'a Resolve,
    package: PackageId,
}

impl Encoder<'_> {
    fn run(&mut self) -> Result<()> {
        for (name, doc) in self.resolve.packages[self.package].documents.iter() {
            let ty = self.encode_document(*doc)?;
            let url = format!("pkg:/{name}");
            self.component
                .export(name, &url, ComponentExportKind::Type, ty, None);
        }
        Ok(())
    }

    fn encode_document(&mut self, doc: DocumentId) -> Result<u32> {
        // Build a set of interfaces reachable from this document, including the
        // interfaces in the document itself. This is used to import instances
        // into the component type we're encoding. Note that entire interfaces
        // are imported with all their types as opposed to just the needed types
        // in an interface for this document. That's done to assist with the
        // decoding process where everyone's view of a foreign document agrees
        // notably on the order that types are defined in to assist with
        // roundtripping.
        let mut interfaces = IndexSet::new();
        for (_, id) in self.resolve.documents[doc].interfaces.iter() {
            self.add_live_interfaces(&mut interfaces, *id);
        }

        // Seed the set of used names with all exported interfaces to ensure
        // that imported interfaces choose different names as the import names
        // aren't used during decoding.
        let mut used_names = IndexSet::new();
        for id in interfaces.iter() {
            let iface = &self.resolve.interfaces[*id];
            if iface.document == doc {
                let first = used_names.insert(iface.name.as_ref().unwrap().clone());
                assert!(first);
            }
        }

        // Encode all interfaces, foreign and local, into this component type.
        // Local interfaces get their functions defined as well and are
        // exported. Foreign interfaces are imported and only have their types
        // encoded.
        let mut encoder = InterfaceEncoder::new(self.resolve);
        for interface in interfaces {
            encoder.interface = Some(interface);
            let iface = &self.resolve.interfaces[interface];
            let name = iface.name.as_ref().unwrap();
            if iface.document == doc {
                let idx = encoder.encode_instance(interface)?;
                let url = format!("pkg:/{}/{name}", self.resolve.documents[doc].name);
                encoder
                    .outer
                    .export(name, &url, ComponentTypeRef::Instance(idx));
            } else {
                encoder.push_instance();
                for (_, id) in iface.types.iter() {
                    encoder.encode_valtype(self.resolve, &Type::Id(*id))?;
                }
                let instance = encoder.pop_instance();
                let idx = encoder.outer.type_count();
                encoder.outer.ty().instance(&instance);
                encoder.import_map.insert(interface, encoder.instances);
                encoder.instances += 1;

                let import_name = if used_names.insert(name.clone()) {
                    name.clone()
                } else {
                    let mut i = 2;
                    loop {
                        let name = format!("{name}{i}");
                        if used_names.insert(name.clone()) {
                            break name;
                        }
                        i += 1;
                    }
                };

                let url = self.url_of(interface);
                encoder
                    .outer
                    .import(&import_name, &url, ComponentTypeRef::Instance(idx));
            }
        }
        encoder.interface = None;

        let doc = &self.resolve.documents[doc];
        for (name, world) in doc.worlds.iter() {
            let world = &self.resolve.worlds[*world];
            let mut component = InterfaceEncoder::new(self.resolve);

            for (name, import) in world.imports.iter() {
                let (url, ty) = match import {
                    WorldItem::Interface(i) => {
                        component.interface = Some(*i);
                        let idx = component.encode_instance(*i)?;
                        (self.url_of(*i), ComponentTypeRef::Instance(idx))
                    }
                    WorldItem::Function(f) => {
                        component.interface = None;
                        let idx = component.encode_func_type(self.resolve, f)?;
                        (String::new(), ComponentTypeRef::Func(idx))
                    }
                    WorldItem::Type(t) => {
                        component.interface = None;
                        component.import_types = true;
                        component.encode_valtype(self.resolve, &Type::Id(*t))?;
                        component.import_types = false;
                        continue;
                    }
                };
                component.outer.import(name, &url, ty);
            }

            for (name, export) in world.exports.iter() {
                let (url, ty) = match export {
                    WorldItem::Interface(i) => {
                        component.interface = Some(*i);
                        let idx = component.encode_instance(*i)?;
                        (self.url_of(*i), ComponentTypeRef::Instance(idx))
                    }
                    WorldItem::Function(f) => {
                        component.interface = None;
                        let idx = component.encode_func_type(self.resolve, f)?;
                        (String::new(), ComponentTypeRef::Func(idx))
                    }
                    WorldItem::Type(_) => unreachable!(),
                };
                component.outer.export(name, &url, ty);
            }
            let idx = encoder.outer.type_count();
            encoder.outer.ty().component(&component.outer);
            let url = format!("pkg:/{}/{name}", doc.name);
            encoder
                .outer
                .export(&name, &url, ComponentTypeRef::Component(idx));
        }

        Ok(self.component.component_type(&encoder.outer))
    }

    /// Recursively add all live interfaces reachable from `id` into the
    /// `interfaces` set, and then add `id` to the set.
    fn add_live_interfaces(&self, interfaces: &mut IndexSet<InterfaceId>, id: InterfaceId) {
        if interfaces.contains(&id) {
            return;
        }

        // Other interfaces reachable from `id` are only reachable from defined
        // types, and only when the defined type points to another `Type::Id`.
        // Use this knowledge to filter over all types find find types of this
        // pattern.
        for (_, ty) in self.resolve.interfaces[id].types.iter() {
            let ty = match self.resolve.types[*ty].kind {
                TypeDefKind::Type(Type::Id(id)) => id,
                _ => continue,
            };
            let owner = match self.resolve.types[ty].owner {
                TypeOwner::Interface(id) => id,
                _ => continue,
            };
            if owner != id {
                self.add_live_interfaces(interfaces, owner);
            }
        }
        assert!(interfaces.insert(id));
    }

    fn url_of(&self, interface: InterfaceId) -> String {
        let iface = &self.resolve.interfaces[interface];
        let iface_name = match &iface.name {
            Some(name) => name,
            None => return String::new(),
        };
        let doc = &self.resolve.documents[iface.document];
        let pkg = doc.package.unwrap();
        let mut base = if pkg == self.package {
            Url::parse("pkg:/").unwrap()
        } else {
            let pkg = &self.resolve.packages[pkg];
            Url::parse(pkg.url.as_ref().unwrap()).unwrap()
        };
        let mut segments = base.path_segments_mut().unwrap();
        segments.push(&doc.name);
        segments.push(iface_name);
        drop(segments);
        base.to_string()
    }
}

struct InterfaceEncoder<'a> {
    resolve: &'a Resolve,
    outer: ComponentType,
    ty: Option<InstanceType>,
    func_type_map: HashMap<FunctionKey<'a>, u32>,
    type_map: HashMap<TypeId, u32>,
    saved_types: Option<(HashMap<TypeId, u32>, HashMap<FunctionKey<'a>, u32>)>,
    import_map: HashMap<InterfaceId, u32>,
    outer_type_map: HashMap<TypeId, u32>,
    instances: u32,
    import_types: bool,
    interface: Option<InterfaceId>,
}

impl InterfaceEncoder<'_> {
    fn new(resolve: &Resolve) -> InterfaceEncoder<'_> {
        InterfaceEncoder {
            resolve,
            outer: ComponentType::new(),
            ty: None,
            type_map: Default::default(),
            func_type_map: Default::default(),
            import_map: Default::default(),
            outer_type_map: Default::default(),
            instances: 0,
            saved_types: None,
            import_types: false,
            interface: None,
        }
    }

    fn encode_instance(&mut self, interface: InterfaceId) -> Result<u32> {
        self.push_instance();
        let iface = &self.resolve.interfaces[interface];
        for (_, id) in iface.types.iter() {
            self.encode_valtype(self.resolve, &Type::Id(*id))?;
        }
        for (name, func) in iface.functions.iter() {
            let ty = self.encode_func_type(self.resolve, func)?;
            self.ty
                .as_mut()
                .unwrap()
                .export(name, "", ComponentTypeRef::Func(ty));
        }
        let instance = self.pop_instance();
        let idx = self.outer.type_count();
        self.outer.ty().instance(&instance);
        self.import_map.insert(interface, self.instances);
        self.instances += 1;
        Ok(idx)
    }

    fn push_instance(&mut self) {
        assert!(self.ty.is_none());
        assert!(self.saved_types.is_none());
        self.saved_types = Some((
            mem::take(&mut self.type_map),
            mem::take(&mut self.func_type_map),
        ));
        self.ty = Some(InstanceType::default());
    }

    fn pop_instance(&mut self) -> InstanceType {
        let (types, funcs) = self.saved_types.take().unwrap();
        self.type_map = types;
        self.func_type_map = funcs;
        mem::take(&mut self.ty).unwrap()
    }
}

impl<'a> ValtypeEncoder<'a> for InterfaceEncoder<'a> {
    fn defined_type(&mut self) -> (u32, ComponentDefinedTypeEncoder<'_>) {
        match &mut self.ty {
            Some(ty) => (ty.type_count(), ty.ty().defined_type()),
            None => (self.outer.type_count(), self.outer.ty().defined_type()),
        }
    }
    fn define_function_type(&mut self) -> (u32, ComponentFuncTypeEncoder<'_>) {
        match &mut self.ty {
            Some(ty) => (ty.type_count(), ty.ty().function()),
            None => (self.outer.type_count(), self.outer.ty().function()),
        }
    }
    fn export_type(&mut self, index: u32, name: &'a str) -> Option<u32> {
        match &mut self.ty {
            Some(ty) => {
                assert!(!self.import_types);
                let ret = ty.type_count();
                ty.export(name, "", ComponentTypeRef::Type(TypeBounds::Eq, index));
                Some(ret)
            }
            None => {
                let ret = self.outer.type_count();
                if self.import_types {
                    self.outer
                        .import(name, "", ComponentTypeRef::Type(TypeBounds::Eq, index));
                } else {
                    self.outer
                        .export(name, "", ComponentTypeRef::Type(TypeBounds::Eq, index));
                }
                Some(ret)
            }
        }
    }
    fn type_map(&mut self) -> &mut HashMap<TypeId, u32> {
        &mut self.type_map
    }
    fn interface(&self) -> Option<InterfaceId> {
        self.interface
    }
    fn import_type(&mut self, owner: InterfaceId, id: TypeId) -> u32 {
        let ty = &self.resolve.types[id];
        let instance = self.import_map[&owner];
        let outer_idx = *self.outer_type_map.entry(id).or_insert_with(|| {
            let ret = self.outer.type_count();
            self.outer.alias(Alias::InstanceExport {
                instance,
                name: ty.name.as_ref().unwrap(),
                kind: ComponentExportKind::Type,
            });
            ret
        });
        match &mut self.ty {
            Some(ty) => {
                let ret = ty.type_count();
                ty.alias(Alias::Outer {
                    count: 1,
                    index: outer_idx,
                    kind: ComponentOuterAliasKind::Type,
                });
                ret
            }
            None => outer_idx,
        }
    }
    fn func_type_map(&mut self) -> &mut HashMap<FunctionKey<'a>, u32> {
        &mut self.func_type_map
    }
}