1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104
use crate::ast::lex::Span;
use crate::ast::{parse_use_path, AstUsePath};
use crate::serde_::{serialize_arena, serialize_id_map};
use crate::{
AstItem, Docs, Error, Function, FunctionKind, Handle, IncludeName, Interface, InterfaceId,
PackageName, Results, Type, TypeDef, TypeDefKind, TypeId, TypeOwner, UnresolvedPackage, World,
WorldId, WorldItem, WorldKey,
};
use anyhow::{anyhow, bail, Context, Result};
use id_arena::{Arena, Id};
use indexmap::{IndexMap, IndexSet};
use serde_derive::Serialize;
use std::collections::{BTreeMap, HashMap, HashSet};
use std::mem;
use std::path::{Path, PathBuf};
/// Representation of a fully resolved set of WIT packages.
///
/// This structure contains a graph of WIT packages and all of their contents
/// merged together into the contained arenas. All items are sorted
/// topologically and everything here is fully resolved, so with a `Resolve` no
/// name lookups are necessary and instead everything is index-based.
///
/// Working with a WIT package requires inserting it into a `Resolve` to ensure
/// that all of its dependencies are satisfied. This will give the full picture
/// of that package's types and such.
///
/// Each item in a `Resolve` has a parent link to trace it back to the original
/// package as necessary.
#[derive(Default, Clone, Debug, Serialize)]
pub struct Resolve {
/// All knowns worlds within this `Resolve`.
///
/// Each world points at a `PackageId` which is stored below. No ordering is
/// guaranteed between this list of worlds.
#[serde(serialize_with = "serialize_arena")]
pub worlds: Arena<World>,
/// All knowns interfaces within this `Resolve`.
///
/// Each interface points at a `PackageId` which is stored below. No
/// ordering is guaranteed between this list of interfaces.
#[serde(serialize_with = "serialize_arena")]
pub interfaces: Arena<Interface>,
/// All knowns types within this `Resolve`.
///
/// Types are topologically sorted such that any type referenced from one
/// type is guaranteed to be defined previously. Otherwise though these are
/// not sorted by interface for example.
#[serde(serialize_with = "serialize_arena")]
pub types: Arena<TypeDef>,
/// All knowns packages within this `Resolve`.
///
/// This list of packages is not sorted. Sorted packages can be queried
/// through [`Resolve::topological_packages`].
#[serde(serialize_with = "serialize_arena")]
pub packages: Arena<Package>,
/// A map of package names to the ID of the package with that name.
#[serde(skip)]
pub package_names: IndexMap<PackageName, PackageId>,
}
/// A WIT package within a `Resolve`.
///
/// A package is a collection of interfaces and worlds. Packages additionally
/// have a unique identifier that affects generated components and uniquely
/// identifiers this particular package.
#[derive(Clone, Debug, Serialize)]
pub struct Package {
/// A unique name corresponding to this package.
pub name: PackageName,
/// Documentation associated with this package.
#[serde(skip_serializing_if = "Docs::is_empty")]
pub docs: Docs,
/// All interfaces contained in this packaged, keyed by the interface's
/// name.
#[serde(serialize_with = "serialize_id_map")]
pub interfaces: IndexMap<String, InterfaceId>,
/// All worlds contained in this package, keyed by the world's name.
#[serde(serialize_with = "serialize_id_map")]
pub worlds: IndexMap<String, WorldId>,
}
pub type PackageId = Id<Package>;
impl Resolve {
/// Creates a new [`Resolve`] with no packages/items inside of it.
pub fn new() -> Resolve {
Resolve::default()
}
/// Parses the filesystem directory at `path` as a WIT package and returns
/// the fully resolved [`PackageId`] as a result.
///
/// Dependencies referenced by the WIT package at `path` will be loaded from
/// a `deps/..` directory under `path`. All directories under `deps/` will
/// be parsed as a WIT package. The directory name containing each package
/// is not used as each package is otherwise self-identifying.
///
/// This function returns the [`PackageId`] of the root parsed package at
/// `path`, along with a list of all paths that were consumed during parsing
/// for the root package and all dependency packages.
pub fn push_dir(&mut self, path: &Path) -> Result<(PackageId, Vec<PathBuf>)> {
let pkg = UnresolvedPackage::parse_dir(path)
.with_context(|| format!("failed to parse package: {}", path.display()))?;
let deps = path.join("deps");
let mut deps = parse_deps_dir(&deps)
.with_context(|| format!("failed to parse dependency directory: {}", deps.display()))?;
// Perform a simple topological sort which will bail out on cycles
// and otherwise determine the order that packages must be added to
// this `Resolve`.
let mut order = IndexSet::new();
let mut visiting = HashSet::new();
for pkg in deps.values().chain([&pkg]) {
visit(&pkg, &deps, &mut order, &mut visiting)?;
}
// Using the topological ordering insert each package incrementally.
// Additionally note that the last item visited here is the root
// package, which is the one returned here.
let mut last = None;
let mut files = Vec::new();
let mut pkg = Some(pkg);
for name in order {
let pkg = deps.remove(&name).unwrap_or_else(|| pkg.take().unwrap());
files.extend(pkg.source_files().map(|p| p.to_path_buf()));
let pkgid = self.push(pkg)?;
last = Some(pkgid);
}
return Ok((last.unwrap(), files));
fn parse_deps_dir(path: &Path) -> Result<BTreeMap<PackageName, UnresolvedPackage>> {
let mut ret = BTreeMap::new();
// If there's no `deps` dir, then there's no deps, so return the
// empty set.
if !path.exists() {
return Ok(ret);
}
for dep in path.read_dir().context("failed to read directory")? {
let dep = dep.context("failed to read directory iterator")?;
let path = dep.path();
// Files in deps dir are ignored for now to avoid accidentally
// including things like `.DS_Store` files in the call below to
// `parse_dir`.
if path.is_file() {
continue;
}
let pkg = UnresolvedPackage::parse_dir(&path)
.with_context(|| format!("failed to parse package: {}", path.display()))?;
let prev = ret.insert(pkg.name.clone(), pkg);
if let Some(prev) = prev {
bail!("duplicate definitions of package `{}` found", prev.name);
}
}
Ok(ret)
}
fn visit<'a>(
pkg: &'a UnresolvedPackage,
deps: &'a BTreeMap<PackageName, UnresolvedPackage>,
order: &mut IndexSet<PackageName>,
visiting: &mut HashSet<&'a PackageName>,
) -> Result<()> {
if order.contains(&pkg.name) {
return Ok(());
}
pkg.source_map.rewrite_error(|| {
for (i, (dep, _)) in pkg.foreign_deps.iter().enumerate() {
let span = pkg.foreign_dep_spans[i];
if !visiting.insert(dep) {
bail!(Error {
span,
msg: format!("package depends on itself"),
});
}
let dep = deps.get(dep).ok_or_else(|| Error {
span,
msg: format!("failed to find package `{dep}` in `deps` directory"),
})?;
visit(dep, deps, order, visiting)?;
assert!(visiting.remove(&dep.name));
}
assert!(order.insert(pkg.name.clone()));
Ok(())
})
}
}
/// Appends a new [`UnresolvedPackage`] to this [`Resolve`], creating a
/// fully resolved package with no dangling references.
///
/// The `deps` argument indicates that the named dependencies in
/// `unresolved` to packages are resolved by the mapping specified.
///
/// Any dependency resolution error or otherwise world-elaboration error
/// will be returned here. If successful a package identifier is returned.
pub fn push(&mut self, mut unresolved: UnresolvedPackage) -> Result<PackageId> {
let source_map = mem::take(&mut unresolved.source_map);
source_map.rewrite_error(|| Remap::default().append(self, unresolved))
}
pub fn all_bits_valid(&self, ty: &Type) -> bool {
match ty {
Type::U8
| Type::S8
| Type::U16
| Type::S16
| Type::U32
| Type::S32
| Type::U64
| Type::S64
| Type::Float32
| Type::Float64 => true,
Type::Bool | Type::Char | Type::String => false,
Type::Id(id) => match &self.types[*id].kind {
TypeDefKind::List(_)
| TypeDefKind::Variant(_)
| TypeDefKind::Enum(_)
| TypeDefKind::Option(_)
| TypeDefKind::Result(_)
| TypeDefKind::Future(_)
| TypeDefKind::Stream(_) => false,
TypeDefKind::Type(t) => self.all_bits_valid(t),
TypeDefKind::Handle(h) => match h {
crate::Handle::Own(_) => true,
crate::Handle::Borrow(_) => true,
},
TypeDefKind::Resource => false,
TypeDefKind::Record(r) => r.fields.iter().all(|f| self.all_bits_valid(&f.ty)),
TypeDefKind::Tuple(t) => t.types.iter().all(|t| self.all_bits_valid(t)),
// FIXME: this could perhaps be `true` for multiples-of-32 but
// seems better to probably leave this as unconditionally
// `false` for now, may want to reconsider later?
TypeDefKind::Flags(_) => false,
TypeDefKind::Unknown => unreachable!(),
},
}
}
/// Merges all the contents of a different `Resolve` into this one. The
/// `Remap` structure returned provides a mapping from all old indices to
/// new indices
///
/// This operation can fail if `resolve` disagrees with `self` about the
/// packages being inserted. Otherwise though this will additionally attempt
/// to "union" packages found in `resolve` with those found in `self`.
/// Unioning packages is keyed on the name/url of packages for those with
/// URLs present. If found then it's assumed that both `Resolve` instances
/// were originally created from the same contents and are two views
/// of the same package.
pub fn merge(&mut self, resolve: Resolve) -> Result<Remap> {
log::trace!(
"merging {} packages into {} packages",
resolve.packages.len(),
self.packages.len()
);
let mut map = MergeMap::new(&resolve, &self)?;
map.build()?;
let MergeMap {
package_map,
interface_map,
type_map,
world_map,
interfaces_to_add,
worlds_to_add,
..
} = map;
// With a set of maps from ids in `resolve` to ids in `self` the next
// operation is to start moving over items and building a `Remap` to
// update ids.
//
// Each component field of `resolve` is moved into `self` so long as
// its ID is not within one of the maps above. If it's present in a map
// above then that means the item is already present in `self` so a new
// one need not be added. If it's not present in a map that means it's
// not present in `self` so it must be added to an arena.
//
// When adding an item to an arena one of the `remap.update_*` methods
// is additionally called to update all identifiers from pointers within
// `resolve` to becoming pointers within `self`.
//
// Altogether this should weave all the missing items in `self` from
// `resolve` into one structure while updating all identifiers to
// be local within `self`.
let mut remap = Remap::default();
let Resolve {
types,
worlds,
interfaces,
packages,
package_names,
} = resolve;
let mut moved_types = Vec::new();
for (id, mut ty) in types {
let new_id = type_map.get(&id).copied().unwrap_or_else(|| {
log::debug!("moving type {:?}", ty.name);
moved_types.push(id);
remap.update_typedef(self, &mut ty);
self.types.alloc(ty)
});
assert_eq!(remap.types.len(), id.index());
remap.types.push(new_id);
}
let mut moved_interfaces = Vec::new();
for (id, mut iface) in interfaces {
let new_id = interface_map.get(&id).copied().unwrap_or_else(|| {
log::debug!("moving interface {:?}", iface.name);
moved_interfaces.push(id);
remap.update_interface(self, &mut iface);
self.interfaces.alloc(iface)
});
assert_eq!(remap.interfaces.len(), id.index());
remap.interfaces.push(new_id);
}
let mut moved_worlds = Vec::new();
for (id, mut world) in worlds {
let new_id = world_map.get(&id).copied().unwrap_or_else(|| {
log::debug!("moving world {}", world.name);
moved_worlds.push(id);
let mut update = |map: &mut IndexMap<WorldKey, WorldItem>| {
for (mut name, mut item) in mem::take(map) {
remap.update_world_key(&mut name);
match &mut item {
WorldItem::Function(f) => remap.update_function(self, f),
WorldItem::Interface(i) => *i = remap.interfaces[i.index()],
WorldItem::Type(i) => *i = remap.types[i.index()],
}
map.insert(name, item);
}
};
update(&mut world.imports);
update(&mut world.exports);
self.worlds.alloc(world)
});
assert_eq!(remap.worlds.len(), id.index());
remap.worlds.push(new_id);
}
for (id, mut pkg) in packages {
let new_id = package_map.get(&id).copied().unwrap_or_else(|| {
for (_, id) in pkg.interfaces.iter_mut() {
*id = remap.interfaces[id.index()];
}
for (_, id) in pkg.worlds.iter_mut() {
*id = remap.worlds[id.index()];
}
self.packages.alloc(pkg)
});
assert_eq!(remap.packages.len(), id.index());
remap.packages.push(new_id);
}
for (name, id) in package_names {
let id = remap.packages[id.index()];
if let Some(prev) = self.package_names.insert(name, id) {
assert_eq!(prev, id);
}
}
// Fixup all "parent" links now.
//
// Note that this is only done for items that are actually moved from
// `resolve` into `self`, which is tracked by the various `moved_*`
// lists built incrementally above. The ids in the `moved_*` lists
// are ids within `resolve`, so they're translated through `remap` to
// ids within `self`.
for id in moved_worlds {
let id = remap.worlds[id.index()];
let pkg = self.worlds[id].package.as_mut().unwrap();
*pkg = remap.packages[pkg.index()];
}
for id in moved_interfaces {
let id = remap.interfaces[id.index()];
let pkg = self.interfaces[id].package.as_mut().unwrap();
*pkg = remap.packages[pkg.index()];
}
for id in moved_types {
let id = remap.types[id.index()];
match &mut self.types[id].owner {
TypeOwner::Interface(id) => *id = remap.interfaces[id.index()],
TypeOwner::World(id) => *id = remap.worlds[id.index()],
TypeOwner::None => {}
}
}
// And finally process items that were present in `resolve` but were
// not present in `self`. This is only done for merged packages as
// documents may be added to `self.documents` but wouldn't otherwise be
// present in the `documents` field of the corresponding package.
for (name, pkg, iface) in interfaces_to_add {
let prev = self.packages[pkg]
.interfaces
.insert(name, remap.interfaces[iface.index()]);
assert!(prev.is_none());
}
for (name, pkg, world) in worlds_to_add {
let prev = self.packages[pkg]
.worlds
.insert(name, remap.worlds[world.index()]);
assert!(prev.is_none());
}
log::trace!("now have {} packages", self.packages.len());
Ok(remap)
}
/// Merges the world `from` into the world `into`.
///
/// This will attempt to merge one world into another, unioning all of its
/// imports and exports together. This is an operation performed by
/// `wit-component`, for example where two different worlds from two
/// different libraries were linked into the same core wasm file and are
/// producing a singular world that will be the final component's
/// interface.
///
/// This operation can fail if the imports/exports overlap.
pub fn merge_worlds(&mut self, from: WorldId, into: WorldId) -> Result<()> {
let mut new_imports = Vec::new();
let mut new_exports = Vec::new();
let from_world = &self.worlds[from];
let into_world = &self.worlds[into];
// Build a map of the imports/exports in `into` going the reverse
// direction from what's listed. This is then consulted below to ensure
// that the same item isn't exported or imported under two different
// names which isn't allowed in the component model.
let mut into_imports_by_id = HashMap::new();
let mut into_exports_by_id = HashMap::new();
for (name, import) in into_world.imports.iter() {
if let WorldItem::Interface(id) = *import {
let prev = into_imports_by_id.insert(id, name);
assert!(prev.is_none());
}
}
for (name, export) in into_world.exports.iter() {
if let WorldItem::Interface(id) = *export {
let prev = into_exports_by_id.insert(id, name);
assert!(prev.is_none());
}
}
for (name, import) in from_world.imports.iter() {
// If the "from" world imports an interface which is already
// imported by the "into" world then this is allowed if the names
// are the same. Importing the same interface under different names
// isn't allowed, but otherwise merging imports of
// same-named-interfaces is allowed to merge them together.
if let WorldItem::Interface(id) = import {
if let Some(prev) = into_imports_by_id.get(id) {
if *prev != name {
let name = self.name_world_key(name);
let prev = self.name_world_key(prev);
bail!("import `{name}` conflicts with previous name of `{prev}`");
}
}
}
}
for (name, export) in from_world.exports.iter() {
// Note that unlike imports same-named exports are not handled here
// since if something is exported twice there's no way to "unify" it
// so it's left as an error.
if let WorldItem::Interface(id) = export {
if let Some(prev) = into_exports_by_id.get(id) {
let name = self.name_world_key(name);
let prev = self.name_world_key(prev);
bail!("export `{name}` conflicts with previous name of `{prev}`");
}
}
}
// Next walk over the interfaces imported into `from_world` and queue up
// imports to get inserted into `into_world`.
for (name, from_import) in from_world.imports.iter() {
match into_world.imports.get(name) {
Some(into_import) => match (from_import, into_import) {
// If these imports, which have the same name, are of the
// same interface then union them together at this point.
(WorldItem::Interface(from), WorldItem::Interface(into)) if from == into => {
continue
}
_ => {
let name = self.name_world_key(name);
bail!("duplicate import found for interface `{name}`");
}
},
None => new_imports.push((name.clone(), from_import.clone())),
}
}
// All exports at this time must be unique. For example the same
// interface exported from two locations can't really be resolved to one
// canonical definition, so make sure that merging worlds only succeeds
// if the worlds have disjoint sets of exports.
for (name, export) in from_world.exports.iter() {
match into_world.exports.get(name) {
Some(_) => {
let name = self.name_world_key(name);
bail!("duplicate export found for interface `{name}`");
}
None => new_exports.push((name.clone(), export.clone())),
}
}
// Insert any new imports and new exports found first.
let into = &mut self.worlds[into];
for (name, import) in new_imports {
let prev = into.imports.insert(name, import);
assert!(prev.is_none());
}
for (name, export) in new_exports {
let prev = into.exports.insert(name, export);
assert!(prev.is_none());
}
Ok(())
}
/// Returns the ID of the specified `interface`.
///
/// Returns `None` for unnamed interfaces.
pub fn id_of(&self, interface: InterfaceId) -> Option<String> {
let interface = &self.interfaces[interface];
Some(self.id_of_name(interface.package.unwrap(), interface.name.as_ref()?))
}
/// Returns the ID of the specified `name` within the `pkg`.
pub fn id_of_name(&self, pkg: PackageId, name: &str) -> String {
let package = &self.packages[pkg];
let mut base = String::new();
base.push_str(&package.name.namespace);
base.push_str(":");
base.push_str(&package.name.name);
base.push_str("/");
base.push_str(name);
if let Some(version) = &package.name.version {
base.push_str(&format!("@{version}"));
}
base
}
/// Attempts to locate a world given the "default" package `pkg` and the
/// optional string specifier `world`.
///
/// This method is intended to be used by bindings generation tools to
/// select a world from either `pkg` or a package in this `Resolve`.
///
/// If `world` is `None` then `pkg` must have precisely one world which will
/// be returned.
///
/// If `world` is `Some` then it can either be:
///
/// * A kebab-name of a world contained within `pkg` which is being
/// selected, such as `"the-world"`.
///
/// * An ID-based form of a world which is selected within this `Resolve`,
/// ignoring `pkg`. For example `"wasi:http/proxy"`.
///
/// If successful the corresponding `WorldId` is returned, otherwise an
/// error is returned.
pub fn select_world(&self, pkg: PackageId, world: Option<&str>) -> Result<WorldId> {
let world = match world {
Some(world) => world,
None => {
let pkg = &self.packages[pkg];
match pkg.worlds.len() {
0 => bail!("no worlds found in package `{}`", pkg.name),
1 => return Ok(*pkg.worlds.values().next().unwrap()),
_ => bail!(
"multiple worlds found in package `{}`: one must be explicitly chosen",
pkg.name
),
}
}
};
let path = parse_use_path(world)
.with_context(|| format!("failed to parse world specifier `{world}`"))?;
let (pkg, world) = match path {
AstUsePath::Name(name) => (pkg, name),
AstUsePath::Package(pkg, interface) => {
let pkg = match self.package_names.get(&pkg) {
Some(pkg) => *pkg,
None => {
let mut candidates = self.package_names.iter().filter(|(name, _)| {
pkg.version.is_none()
&& pkg.name == name.name
&& pkg.namespace == name.namespace
&& name.version.is_some()
});
let candidate = candidates.next();
if let Some((c2, _)) = candidates.next() {
let (c1, _) = candidate.unwrap();
bail!(
"package name `{pkg}` is available at both \
versions {} and {} but which is not specified",
c1.version.as_ref().unwrap(),
c2.version.as_ref().unwrap(),
);
}
match candidate {
Some((_, id)) => *id,
None => bail!("unknown package `{pkg}`"),
}
}
};
(pkg, interface)
}
};
let pkg = &self.packages[pkg];
pkg.worlds
.get(&world)
.copied()
.ok_or_else(|| anyhow!("no world named `{world}` in package"))
}
/// Assigns a human readable name to the `WorldKey` specified.
pub fn name_world_key(&self, key: &WorldKey) -> String {
match key {
WorldKey::Name(s) => s.to_string(),
WorldKey::Interface(i) => self.id_of(*i).expect("unexpected anonymous interface"),
}
}
/// Returns the interface that `id` uses a type from, if it uses a type from
/// a different interface than `id` is defined within.
///
/// If `id` is not a use-of-a-type or it's using a type in the same
/// interface then `None` is returned.
pub fn type_interface_dep(&self, id: TypeId) -> Option<InterfaceId> {
let ty = &self.types[id];
let dep = match ty.kind {
TypeDefKind::Type(Type::Id(id)) => id,
_ => return None,
};
let other = &self.types[dep];
if ty.owner == other.owner {
None
} else {
match other.owner {
TypeOwner::Interface(id) => Some(id),
_ => unreachable!(),
}
}
}
/// Returns an iterator of all interfaces that the interface `id` depends
/// on.
///
/// Interfaces may depend on others for type information to resolve type
/// imports.
///
/// Note that the returned iterator may yield the same interface as a
/// dependency multiple times. Additionally only direct dependencies of `id`
/// are yielded, not transitive dependencies.
pub fn interface_direct_deps(&self, id: InterfaceId) -> impl Iterator<Item = InterfaceId> + '_ {
self.interfaces[id]
.types
.iter()
.filter_map(move |(_name, ty)| self.type_interface_dep(*ty))
}
/// Returns an iterator of all packages that the package `id` depends
/// on.
///
/// Packages may depend on others for type information to resolve type
/// imports or interfaces to resolve worlds.
///
/// Note that the returned iterator may yield the same package as a
/// dependency multiple times. Additionally only direct dependencies of `id`
/// are yielded, not transitive dependencies.
pub fn package_direct_deps(&self, id: PackageId) -> impl Iterator<Item = PackageId> + '_ {
let pkg = &self.packages[id];
pkg.interfaces
.iter()
.flat_map(move |(_name, id)| self.interface_direct_deps(*id))
.chain(pkg.worlds.iter().flat_map(move |(_name, id)| {
let world = &self.worlds[*id];
world
.imports
.iter()
.chain(world.exports.iter())
.filter_map(move |(_name, item)| match item {
WorldItem::Interface(id) => Some(*id),
WorldItem::Function(_) => None,
WorldItem::Type(t) => self.type_interface_dep(*t),
})
}))
.filter_map(move |iface_id| {
let pkg = self.interfaces[iface_id].package?;
if pkg == id {
None
} else {
Some(pkg)
}
})
}
/// Returns a topological ordering of packages contained in this `Resolve`.
///
/// This returns a list of `PackageId` such that when visited in order it's
/// guaranteed that all dependencies will have been defined by prior items
/// in the list.
pub fn topological_packages(&self) -> Vec<PackageId> {
let mut pushed = vec![false; self.packages.len()];
let mut order = Vec::new();
for (id, _) in self.packages.iter() {
self.build_topological_package_ordering(id, &mut pushed, &mut order);
}
order
}
fn build_topological_package_ordering(
&self,
id: PackageId,
pushed: &mut Vec<bool>,
order: &mut Vec<PackageId>,
) {
if pushed[id.index()] {
return;
}
for dep in self.package_direct_deps(id) {
self.build_topological_package_ordering(dep, pushed, order);
}
order.push(id);
pushed[id.index()] = true;
}
#[doc(hidden)]
pub fn assert_valid(&self) {
let mut package_interfaces = Vec::new();
let mut package_worlds = Vec::new();
for (id, pkg) in self.packages.iter() {
let mut interfaces = HashSet::new();
for (name, iface) in pkg.interfaces.iter() {
assert!(interfaces.insert(*iface));
let iface = &self.interfaces[*iface];
assert_eq!(name, iface.name.as_ref().unwrap());
assert_eq!(iface.package.unwrap(), id);
}
package_interfaces.push(pkg.interfaces.values().copied().collect::<HashSet<_>>());
let mut worlds = HashSet::new();
for (name, world) in pkg.worlds.iter() {
assert!(worlds.insert(*world));
let world = &self.worlds[*world];
assert_eq!(*name, world.name);
assert_eq!(world.package.unwrap(), id);
}
package_worlds.push(pkg.worlds.values().copied().collect::<HashSet<_>>());
}
let mut interface_types = Vec::new();
for (id, iface) in self.interfaces.iter() {
assert!(self.packages.get(iface.package.unwrap()).is_some());
if iface.name.is_some() {
assert!(package_interfaces[iface.package.unwrap().index()].contains(&id));
}
for (name, ty) in iface.types.iter() {
let ty = &self.types[*ty];
assert_eq!(ty.name.as_ref(), Some(name));
assert_eq!(ty.owner, TypeOwner::Interface(id));
}
interface_types.push(iface.types.values().copied().collect::<HashSet<_>>());
for (name, f) in iface.functions.iter() {
assert_eq!(*name, f.name);
}
}
let mut world_types = Vec::new();
for (id, world) in self.worlds.iter() {
log::debug!("validating world {}", &world.name);
assert!(self.packages.get(world.package.unwrap()).is_some());
assert!(package_worlds[world.package.unwrap().index()].contains(&id));
let mut types = HashSet::new();
for (name, item) in world.imports.iter().chain(world.exports.iter()) {
log::debug!("validating world item: {}", self.name_world_key(name));
match item {
WorldItem::Interface(_) => {}
WorldItem::Function(f) => {
assert_eq!(f.name, name.clone().unwrap_name());
}
WorldItem::Type(ty) => {
assert!(types.insert(*ty));
let ty = &self.types[*ty];
assert_eq!(ty.name, Some(name.clone().unwrap_name()));
// TODO: `Resolve::merge_worlds` doesn't uphold this
// invariant, and that should be fixed.
if false {
assert_eq!(ty.owner, TypeOwner::World(id));
}
}
}
}
world_types.push(types);
}
for (ty_id, ty) in self.types.iter() {
match ty.owner {
TypeOwner::Interface(id) => {
assert!(self.interfaces.get(id).is_some());
assert!(interface_types[id.index()].contains(&ty_id));
}
TypeOwner::World(id) => {
assert!(self.worlds.get(id).is_some());
assert!(world_types[id.index()].contains(&ty_id));
}
TypeOwner::None => {}
}
}
self.assert_topologically_sorted();
}
fn assert_topologically_sorted(&self) {
let mut positions = IndexMap::new();
for id in self.topological_packages() {
let pkg = &self.packages[id];
log::debug!("pkg {}", pkg.name);
let prev = positions.insert(Some(id), IndexSet::new());
assert!(prev.is_none());
}
positions.insert(None, IndexSet::new());
for (id, iface) in self.interfaces.iter() {
log::debug!("iface {:?}", iface.name);
let ok = positions.get_mut(&iface.package).unwrap().insert(id);
assert!(ok);
}
for (_, world) in self.worlds.iter() {
log::debug!("world {:?}", world.name);
let my_package = world.package;
let my_package_pos = positions.get_index_of(&my_package).unwrap();
for (_, item) in world.imports.iter().chain(&world.exports) {
let id = match item {
WorldItem::Interface(id) => *id,
_ => continue,
};
let other_package = self.interfaces[id].package;
let other_package_pos = positions.get_index_of(&other_package).unwrap();
assert!(other_package_pos <= my_package_pos);
}
}
for (_id, ty) in self.types.iter() {
log::debug!("type {:?} {:?}", ty.name, ty.owner);
let other_id = match ty.kind {
TypeDefKind::Type(Type::Id(ty)) => ty,
_ => continue,
};
let other = &self.types[other_id];
if ty.kind == other.kind {
continue;
}
let my_interface = match ty.owner {
TypeOwner::Interface(id) => id,
_ => continue,
};
let other_interface = match other.owner {
TypeOwner::Interface(id) => id,
_ => continue,
};
let my_package = self.interfaces[my_interface].package;
let other_package = self.interfaces[other_interface].package;
let my_package_pos = positions.get_index_of(&my_package).unwrap();
let other_package_pos = positions.get_index_of(&other_package).unwrap();
if my_package_pos == other_package_pos {
let interfaces = &positions[&my_package];
let my_interface_pos = interfaces.get_index_of(&my_interface).unwrap();
let other_interface_pos = interfaces.get_index_of(&other_interface).unwrap();
assert!(other_interface_pos <= my_interface_pos);
} else {
assert!(other_package_pos < my_package_pos);
}
}
}
}
/// Structure returned by [`Resolve::merge`] which contains mappings from
/// old-ids to new-ids after the merge.
#[derive(Default)]
pub struct Remap {
pub types: Vec<TypeId>,
pub interfaces: Vec<InterfaceId>,
pub worlds: Vec<WorldId>,
pub packages: Vec<PackageId>,
/// A cache of anonymous `own<T>` handles for resource types.
///
/// The appending operation of `Remap` is the one responsible for
/// translating references to `T` where `T` is a resource into `own<T>`
/// instead. This map is used to deduplicate the `own<T>` types generated
/// to generate as few as possible.
///
/// The key of this map is the resource id `T` in the new resolve, and
/// the value is the `own<T>` type pointing to `T`.
own_handles: HashMap<TypeId, TypeId>,
}
impl Remap {
fn append(
&mut self,
resolve: &mut Resolve,
unresolved: UnresolvedPackage,
) -> Result<PackageId> {
self.process_foreign_deps(resolve, &unresolved)?;
let foreign_types = self.types.len();
let foreign_interfaces = self.interfaces.len();
let foreign_worlds = self.worlds.len();
// Copy over all types first, updating any intra-type references. Note
// that types are sorted topologically which means this iteration
// order should be sufficient. Also note though that the interface
// owner of a type isn't updated here due to interfaces not being known
// yet.
for (id, mut ty) in unresolved.types.into_iter().skip(foreign_types) {
self.update_typedef(resolve, &mut ty);
let new_id = resolve.types.alloc(ty);
assert_eq!(self.types.len(), id.index());
let new_id = match resolve.types[new_id] {
// If this is an `own<T>` handle then either replace it with a
// preexisting `own<T>` handle which may have been generated in
// `update_ty`. If that doesn't exist though then insert it into
// the `own_handles` cache.
TypeDef {
name: None,
owner: TypeOwner::None,
kind: TypeDefKind::Handle(Handle::Own(id)),
docs: _,
} => *self.own_handles.entry(id).or_insert(new_id),
// Everything not-related to `own<T>` doesn't get its ID
// modified.
_ => new_id,
};
self.types.push(new_id);
}
// Next transfer all interfaces into `Resolve`, updating type ids
// referenced along the way.
for (id, mut iface) in unresolved.interfaces.into_iter().skip(foreign_interfaces) {
self.update_interface(resolve, &mut iface);
let new_id = resolve.interfaces.alloc(iface);
assert_eq!(self.interfaces.len(), id.index());
self.interfaces.push(new_id);
}
// Now that interfaces are identified go back through the types and
// update their interface owners.
for id in self.types.iter().skip(foreign_types) {
match &mut resolve.types[*id].owner {
TypeOwner::Interface(id) => *id = self.interfaces[id.index()],
TypeOwner::World(_) | TypeOwner::None => {}
}
}
// Perform a weighty step of full resolution of worlds. This will fully
// expand imports/exports for a world and create the topological
// ordering necessary for this.
//
// This is done after types/interfaces are fully settled so the
// transitive relation between interfaces, through types, is understood
// here.
assert_eq!(unresolved.worlds.len(), unresolved.world_item_spans.len());
let include_world_spans = unresolved.include_world_spans;
for ((id, mut world), (import_spans, export_spans)) in unresolved
.worlds
.into_iter()
.zip(unresolved.world_item_spans)
.skip(foreign_worlds)
{
self.update_world(
&mut world,
resolve,
&import_spans,
&export_spans,
&include_world_spans,
)?;
let new_id = resolve.worlds.alloc(world);
assert_eq!(self.worlds.len(), id.index());
self.worlds.push(new_id);
}
// As with interfaces, now update the ids of world-owned types.
for id in self.types.iter().skip(foreign_types) {
match &mut resolve.types[*id].owner {
TypeOwner::World(id) => *id = self.worlds[id.index()],
TypeOwner::Interface(_) | TypeOwner::None => {}
}
}
// Fixup "parent" ids now that everything has been identified
let pkgid = resolve.packages.alloc(Package {
name: unresolved.name.clone(),
docs: unresolved.docs.clone(),
interfaces: Default::default(),
worlds: Default::default(),
});
let prev = resolve.package_names.insert(unresolved.name.clone(), pkgid);
assert!(prev.is_none());
for id in self.interfaces.iter().skip(foreign_interfaces) {
let iface = &mut resolve.interfaces[*id];
iface.package = Some(pkgid);
if let Some(name) = &iface.name {
let prev = resolve.packages[pkgid].interfaces.insert(name.clone(), *id);
assert!(prev.is_none());
}
}
for id in self.worlds.iter().skip(foreign_worlds) {
let world = &mut resolve.worlds[*id];
world.package = Some(pkgid);
let prev = resolve.packages[pkgid]
.worlds
.insert(world.name.clone(), *id);
assert!(prev.is_none());
}
Ok(pkgid)
}
fn process_foreign_deps(
&mut self,
resolve: &mut Resolve,
unresolved: &UnresolvedPackage,
) -> Result<()> {
// Invert the `foreign_deps` map to be keyed by world id to get
// used in the loops below.
let mut world_to_package = HashMap::new();
let mut interface_to_package = HashMap::new();
for (i, (pkg_name, worlds_or_ifaces)) in unresolved.foreign_deps.iter().enumerate() {
for (name, item) in worlds_or_ifaces {
match item {
AstItem::Interface(unresolved_interface_id) => {
let prev = interface_to_package.insert(
*unresolved_interface_id,
(pkg_name, name, unresolved.foreign_dep_spans[i]),
);
assert!(prev.is_none());
}
AstItem::World(unresolved_world_id) => {
let prev = world_to_package.insert(
*unresolved_world_id,
(pkg_name, name, unresolved.foreign_dep_spans[i]),
);
assert!(prev.is_none());
}
}
}
}
// Connect all interfaces referred to in `interface_to_package`, which
// are at the front of `unresolved.interfaces`, to interfaces already
// contained within `resolve`.
self.process_foreign_interfaces(unresolved, &interface_to_package, resolve)?;
// Connect all worlds referred to in `world_to_package`, which
// are at the front of `unresolved.worlds`, to worlds already
// contained within `resolve`.
self.process_foreign_worlds(unresolved, &world_to_package, resolve)?;
// Finally, iterate over all foreign-defined types and determine
// what they map to.
self.process_foreign_types(unresolved, resolve)?;
for (id, span) in unresolved.required_resource_types.iter() {
let mut id = self.types[id.index()];
loop {
match resolve.types[id].kind {
TypeDefKind::Type(Type::Id(i)) => id = i,
TypeDefKind::Resource => break,
_ => bail!(Error {
span: *span,
msg: format!("type used in a handle must be a resource"),
}),
}
}
}
Ok(())
}
fn process_foreign_interfaces(
&mut self,
unresolved: &UnresolvedPackage,
interface_to_package: &HashMap<InterfaceId, (&PackageName, &String, Span)>,
resolve: &mut Resolve,
) -> Result<(), anyhow::Error> {
for (unresolved_iface_id, unresolved_iface) in unresolved.interfaces.iter() {
let (pkg_name, interface, span) = match interface_to_package.get(&unresolved_iface_id) {
Some(items) => *items,
// All foreign interfaces are defined first, so the first one
// which is defined in a non-foreign document means that all
// further interfaces will be non-foreign as well.
None => break,
};
let pkgid = resolve
.package_names
.get(pkg_name)
.copied()
.ok_or_else(|| Error {
span,
msg: format!("package not found"),
})?;
// Functions can't be imported so this should be empty.
assert!(unresolved_iface.functions.is_empty());
let pkg = &resolve.packages[pkgid];
let span = unresolved.interface_spans[unresolved_iface_id.index()];
let iface_id = pkg
.interfaces
.get(interface)
.copied()
.ok_or_else(|| Error {
span,
msg: format!("interface not found in package"),
})?;
assert_eq!(self.interfaces.len(), unresolved_iface_id.index());
self.interfaces.push(iface_id);
}
for (id, _) in unresolved.interfaces.iter().skip(self.interfaces.len()) {
assert!(
interface_to_package.get(&id).is_none(),
"found foreign interface after local interface"
);
}
Ok(())
}
fn process_foreign_worlds(
&mut self,
unresolved: &UnresolvedPackage,
world_to_package: &HashMap<WorldId, (&PackageName, &String, Span)>,
resolve: &mut Resolve,
) -> Result<(), anyhow::Error> {
for (unresolved_world_id, _) in unresolved.worlds.iter() {
let (pkg_name, world, span) = match world_to_package.get(&unresolved_world_id) {
Some(items) => *items,
// Same as above, all worlds are foreign until we find a
// non-foreign one.
None => break,
};
let pkgid = resolve
.package_names
.get(pkg_name)
.copied()
.ok_or_else(|| Error {
span,
msg: format!("package not found"),
})?;
let pkg = &resolve.packages[pkgid];
let span = unresolved.world_spans[unresolved_world_id.index()];
let world_id = pkg.worlds.get(world).copied().ok_or_else(|| Error {
span,
msg: format!("world not found in package"),
})?;
assert_eq!(self.worlds.len(), unresolved_world_id.index());
self.worlds.push(world_id);
}
for (id, _) in unresolved.worlds.iter().skip(self.worlds.len()) {
assert!(
world_to_package.get(&id).is_none(),
"found foreign world after local world"
);
}
Ok(())
}
fn process_foreign_types(
&mut self,
unresolved: &UnresolvedPackage,
resolve: &mut Resolve,
) -> Result<(), anyhow::Error> {
for (unresolved_type_id, unresolved_ty) in unresolved.types.iter() {
// All "Unknown" types should appear first so once we're no longer
// in unknown territory it's package-defined types so break out of
// this loop.
match unresolved_ty.kind {
TypeDefKind::Unknown => {}
_ => break,
}
let unresolved_iface_id = match unresolved_ty.owner {
TypeOwner::Interface(id) => id,
_ => unreachable!(),
};
let iface_id = self.interfaces[unresolved_iface_id.index()];
let name = unresolved_ty.name.as_ref().unwrap();
let span = unresolved.unknown_type_spans[unresolved_type_id.index()];
let type_id = *resolve.interfaces[iface_id]
.types
.get(name)
.ok_or_else(|| Error {
span,
msg: format!("type `{name}` not defined in interface"),
})?;
assert_eq!(self.types.len(), unresolved_type_id.index());
self.types.push(type_id);
}
for (_, ty) in unresolved.types.iter().skip(self.types.len()) {
if let TypeDefKind::Unknown = ty.kind {
panic!("unknown type after defined type");
}
}
Ok(())
}
fn update_typedef(&mut self, resolve: &mut Resolve, ty: &mut TypeDef) {
// NB: note that `ty.owner` is not updated here since interfaces
// haven't been mapped yet and that's done in a separate step.
use crate::TypeDefKind::*;
match &mut ty.kind {
Handle(handle) => match handle {
crate::Handle::Own(ty) | crate::Handle::Borrow(ty) => self.update_type_id(ty),
},
Resource => {}
Record(r) => {
for field in r.fields.iter_mut() {
self.update_ty(resolve, &mut field.ty);
}
}
Tuple(t) => {
for ty in t.types.iter_mut() {
self.update_ty(resolve, ty);
}
}
Variant(v) => {
for case in v.cases.iter_mut() {
if let Some(t) = &mut case.ty {
self.update_ty(resolve, t);
}
}
}
Option(t) => self.update_ty(resolve, t),
Result(r) => {
if let Some(ty) = &mut r.ok {
self.update_ty(resolve, ty);
}
if let Some(ty) = &mut r.err {
self.update_ty(resolve, ty);
}
}
List(t) => self.update_ty(resolve, t),
Future(Some(t)) => self.update_ty(resolve, t),
Stream(t) => {
if let Some(ty) = &mut t.element {
self.update_ty(resolve, ty);
}
if let Some(ty) = &mut t.end {
self.update_ty(resolve, ty);
}
}
// Note that `update_ty` is specifically not used here as typedefs
// because for the `type a = b` form that doesn't force `a` to be a
// handle type if `b` is a resource type, instead `a` is
// simultaneously usable as a resource and a handle type
Type(crate::Type::Id(id)) => self.update_type_id(id),
Type(_) => {}
// nothing to do for these as they're just names or empty
Flags(_) | Enum(_) | Future(None) => {}
Unknown => unreachable!(),
}
}
fn update_ty(&mut self, resolve: &mut Resolve, ty: &mut Type) {
let id = match ty {
Type::Id(id) => id,
_ => return,
};
self.update_type_id(id);
// If `id` points to a `Resource` type then this means that what was
// just discovered was a reference to what will implicitly become an
// `own<T>` handle. This `own` handle is implicitly allocated here
// and handled during the merging process.
let mut cur = *id;
let points_to_resource = loop {
match resolve.types[cur].kind {
TypeDefKind::Type(Type::Id(id)) => cur = id,
TypeDefKind::Resource => break true,
_ => break false,
}
};
if points_to_resource {
*id = *self.own_handles.entry(*id).or_insert_with(|| {
resolve.types.alloc(TypeDef {
name: None,
owner: TypeOwner::None,
kind: TypeDefKind::Handle(Handle::Own(*id)),
docs: Default::default(),
})
});
}
}
fn update_type_id(&self, id: &mut TypeId) {
*id = self.types[id.index()];
}
fn update_interface(&mut self, resolve: &mut Resolve, iface: &mut Interface) {
// NB: note that `iface.doc` is not updated here since interfaces
// haven't been mapped yet and that's done in a separate step.
for (_name, ty) in iface.types.iter_mut() {
self.update_type_id(ty);
}
for (_, func) in iface.functions.iter_mut() {
self.update_function(resolve, func);
}
}
fn update_function(&mut self, resolve: &mut Resolve, func: &mut Function) {
match &mut func.kind {
FunctionKind::Freestanding => {}
FunctionKind::Method(id) | FunctionKind::Constructor(id) | FunctionKind::Static(id) => {
self.update_type_id(id);
}
}
for (_, ty) in func.params.iter_mut() {
self.update_ty(resolve, ty);
}
match &mut func.results {
Results::Named(named) => {
for (_, ty) in named.iter_mut() {
self.update_ty(resolve, ty);
}
}
Results::Anon(ty) => self.update_ty(resolve, ty),
}
}
fn update_world(
&mut self,
world: &mut World,
resolve: &mut Resolve,
import_spans: &[Span],
export_spans: &[Span],
include_world_spans: &[Span],
) -> Result<()> {
// NB: this function is more more complicated than the prior versions
// of merging an item because this is the location that elaboration of
// imports/exports of a world are fully resolved. With full transitive
// knowledge of all interfaces a worlds imports, for example, are
// expanded fully to ensure that all transitive items are necessarily
// imported.
assert_eq!(world.imports.len(), import_spans.len());
assert_eq!(world.exports.len(), export_spans.len());
// First up, process all the `imports` of the world. Note that this
// starts by gutting the list of imports stored in `world` to get
// rebuilt iteratively below.
//
// Here each import of an interface is recorded and then additionally
// explicitly named imports of interfaces are recorded as well for
// determining names later on.
let mut import_funcs = Vec::new();
let mut import_types = Vec::new();
for ((mut name, item), span) in mem::take(&mut world.imports).into_iter().zip(import_spans)
{
self.update_world_key(&mut name);
match item {
WorldItem::Interface(id) => {
let id = self.interfaces[id.index()];
self.add_world_import(resolve, world, name, id);
}
WorldItem::Function(mut f) => {
self.update_function(resolve, &mut f);
import_funcs.push((name.unwrap_name(), f, *span));
}
WorldItem::Type(id) => {
let id = self.types[id.index()];
import_types.push((name.unwrap_name(), id, *span));
}
}
}
for (_name, id, _span) in import_types.iter() {
if let TypeDefKind::Type(Type::Id(other)) = resolve.types[*id].kind {
if let TypeOwner::Interface(owner) = resolve.types[other].owner {
let name = WorldKey::Interface(owner);
self.add_world_import(resolve, world, name, owner);
}
}
}
let mut export_funcs = Vec::new();
let mut export_interfaces = IndexMap::new();
for ((mut name, item), span) in mem::take(&mut world.exports).into_iter().zip(export_spans)
{
self.update_world_key(&mut name);
match item {
WorldItem::Interface(id) => {
let id = self.interfaces[id.index()];
let prev = export_interfaces.insert(id, (name, *span));
assert!(prev.is_none());
}
WorldItem::Function(mut f) => {
self.update_function(resolve, &mut f);
let name = match name {
WorldKey::Name(name) => name,
WorldKey::Interface(_) => unreachable!(),
};
export_funcs.push((name, f, *span));
}
WorldItem::Type(_) => unreachable!(),
}
}
self.add_world_exports(resolve, world, &export_interfaces)?;
// Resolve all includes of the world
let includes = mem::take(&mut world.includes);
let include_names = mem::take(&mut world.include_names);
for (index, include_world) in includes.into_iter().enumerate() {
let span = include_world_spans[index];
let names = &include_names[index];
self.resolve_include(world, include_world, names, span, resolve)?;
}
for (name, id, span) in import_types {
let prev = world
.imports
.insert(WorldKey::Name(name.clone()), WorldItem::Type(id));
if prev.is_some() {
bail!(Error {
msg: format!("export of type `{name}` shadows previously imported interface"),
span,
})
}
}
for (name, func, span) in import_funcs {
let prev = world
.imports
.insert(WorldKey::Name(name.clone()), WorldItem::Function(func));
if prev.is_some() {
bail!(Error {
msg: format!(
"import of function `{name}` shadows previously imported interface"
),
span,
})
}
}
for (name, func, span) in export_funcs {
let prev = world
.exports
.insert(WorldKey::Name(name.clone()), WorldItem::Function(func));
if prev.is_some() {
bail!(Error {
msg: format!(
"export of function `{name}` shadows previously exported interface"
),
span,
})
}
}
// After all that sort functions in exports to come before interfaces in
// exports. This is not strictly required for correctness but make
// iterating over a world much easier for consumers. Exported functions
// are guaranteed to use types from either imported interfaces or
// imported types into the world itself. Currently there is no means by
// which an export function, at the root, can use types from any other
// exported interfaces (can't be modeled syntactically in WIT). This
// means that by placing all functions first it guarantees that visitors
// which visit imports first then exports will walk over types and
// references in the order of what they're actually using.
//
// For example if an interface is both imported and exported and an
// exported function uses a type from that interface, then a visitor
// should visit the imported interface, then the exported function, then
// the exported interface. That way tables about "where was this type
// defined" will be correct as the last-inserted item will be used and
// correctly account for this.
world.exports.sort_by(|_, a, _, b| {
let rank = |item: &WorldItem| match item {
WorldItem::Type(_) => unreachable!(),
WorldItem::Function(_) => 0,
WorldItem::Interface(_) => 1,
};
rank(a).cmp(&rank(b))
});
log::trace!("imports = {:?}", world.imports);
log::trace!("exports = {:?}", world.exports);
Ok(())
}
fn update_world_key(&self, key: &mut WorldKey) {
match key {
WorldKey::Name(_) => {}
WorldKey::Interface(id) => {
*id = self.interfaces[id.index()];
}
}
}
fn add_world_import(
&self,
resolve: &Resolve,
world: &mut World,
key: WorldKey,
id: InterfaceId,
) {
if world.imports.contains_key(&key) {
return;
}
for dep in resolve.interface_direct_deps(id) {
self.add_world_import(resolve, world, WorldKey::Interface(dep), dep);
}
let prev = world.imports.insert(key, WorldItem::Interface(id));
assert!(prev.is_none());
}
/// This function adds all of the interfaces in `export_interfaces` to the
/// list of exports of the `world` specified.
///
/// This method is more involved than adding imports because it is fallible.
/// Chiefly what can happen is that the dependencies of all exports must be
/// satisfied by other exports or imports, but not both. For example given a
/// situation such as:
///
/// ```wit
/// interface a {
/// type t = u32
/// }
/// interface b {
/// use a.{t}
/// }
/// interface c {
/// use a.{t}
/// use b.{t as t2}
/// }
/// ```
///
/// where `c` depends on `b` and `a` where `b` depends on `a`, then the
/// purpose of this method is to reject this world:
///
/// ```wit
/// world foo {
/// export a
/// export c
/// }
/// ```
///
/// The reasoning here is unfortunately subtle and is additionally the
/// subject of WebAssembly/component-model#208. Effectively the `c`
/// interface depends on `b`, but it's not listed explicitly as an import,
/// so it's then implicitly added as an import. This then transitively
/// depends on `a` so it's also added as an import. At this point though `c`
/// also depends on `a`, and it's also exported, so naively it should depend
/// on the export and not implicitly add an import. This means though that
/// `c` has access to two copies of `a`, one imported and one exported. This
/// is not valid, especially in the face of resource types.
///
/// Overall this method is tasked with rejecting the above world by walking
/// over all the exports and adding their dependencies. Each dependency is
/// recorded with whether it's required to be imported, and then if an
/// export is added for something that's required to be an error then the
/// operation fails.
fn add_world_exports(
&self,
resolve: &Resolve,
world: &mut World,
export_interfaces: &IndexMap<InterfaceId, (WorldKey, Span)>,
) -> Result<()> {
let mut required_imports = HashSet::new();
for (id, (key, span)) in export_interfaces.iter() {
let ok = add_world_export(
resolve,
world,
export_interfaces,
&mut required_imports,
*id,
key,
true,
);
if !ok {
bail!(Error {
// FIXME: this is not a great error message and basically no
// one will know what to do when it gets printed. Improving
// this error message, however, is a chunk of work that may
// not be best spent doing this at this time, so I'm writing
// this comment instead.
//
// More-or-less what should happen here is that a "path"
// from this interface to the conflicting interface should
// be printed. It should be explained why an import is being
// injected, why that's conflicting with an export, and
// ideally with a suggestion of "add this interface to the
// export list to fix this error".
//
// That's a lot of info that's not easy to get at without
// more refactoring, so it's left to a future date in the
// hopes that most folks won't actually run into this for
// the time being.
msg: format!(
"interface transitively depends on an interface in \
incompatible ways",
),
span: *span,
});
}
}
return Ok(());
fn add_world_export(
resolve: &Resolve,
world: &mut World,
export_interfaces: &IndexMap<InterfaceId, (WorldKey, Span)>,
required_imports: &mut HashSet<InterfaceId>,
id: InterfaceId,
key: &WorldKey,
add_export: bool,
) -> bool {
if world.exports.contains_key(key) {
if add_export {
return true;
} else {
return false;
}
}
// If this is an import and it's already in the `required_imports`
// set then we can skip it as we've already visited this interface.
if !add_export && required_imports.contains(&id) {
return true;
}
let ok = resolve.interface_direct_deps(id).all(|dep| {
let key = WorldKey::Interface(dep);
let add_export = add_export && export_interfaces.contains_key(&dep);
add_world_export(
resolve,
world,
export_interfaces,
required_imports,
dep,
&key,
add_export,
)
});
if !ok {
return false;
}
if add_export {
if required_imports.contains(&id) {
return false;
}
world.exports.insert(key.clone(), WorldItem::Interface(id));
} else {
required_imports.insert(id);
world.imports.insert(key.clone(), WorldItem::Interface(id));
}
true
}
}
fn resolve_include(
&self,
world: &mut World,
include_world: WorldId,
names: &[IncludeName],
span: Span,
resolve: &Resolve,
) -> Result<()> {
let include_world_id = self.worlds[include_world.index()];
let include_world = &resolve.worlds[include_world_id];
let mut names_ = names.to_owned();
// remove all imports and exports that match the names we're including
for import in include_world.imports.iter() {
self.remove_matching_name(import, &mut names_);
}
for export in include_world.exports.iter() {
self.remove_matching_name(export, &mut names_);
}
if !names_.is_empty() {
bail!(Error {
msg: format!("no import or export kebab-name `{}`. Note that an ID does not support renaming", names_[0].name),
span: span,
});
}
// copy the imports and exports from the included world into the current world
for import in include_world.imports.iter() {
self.resolve_include_item(names, &mut world.imports, import, span, "import")?;
}
for export in include_world.exports.iter() {
self.resolve_include_item(names, &mut world.exports, export, span, "export")?;
}
Ok(())
}
fn resolve_include_item(
&self,
names: &[IncludeName],
items: &mut IndexMap<WorldKey, WorldItem>,
item: (&WorldKey, &WorldItem),
span: Span,
item_type: &str,
) -> Result<()> {
match item.0 {
WorldKey::Name(n) => {
let n = if let Some(found) = names
.into_iter()
.find(|include_name| include_name.name == n.clone())
{
found.as_.clone()
} else {
n.clone()
};
let prev = items.insert(WorldKey::Name(n.clone()), item.1.clone());
if prev.is_some() {
bail!(Error {
msg: format!("{item_type} of `{n}` shadows previously {item_type}ed items"),
span,
})
}
}
key => {
let prev = items.insert(key.clone(), item.1.clone());
if let Some(prev) = prev {
assert_eq!(prev, item.1.clone());
}
}
};
Ok(())
}
fn remove_matching_name(&self, item: (&WorldKey, &WorldItem), names: &mut Vec<IncludeName>) {
match item.0 {
WorldKey::Name(n) => {
names.retain(|name| name.name != n.clone());
}
_ => {}
}
}
}
struct MergeMap<'a> {
/// A map of package ids in `from` to those in `into` for those that are
/// found to be equivalent.
package_map: HashMap<PackageId, PackageId>,
/// A map of interface ids in `from` to those in `into` for those that are
/// found to be equivalent.
interface_map: HashMap<InterfaceId, InterfaceId>,
/// A map of type ids in `from` to those in `into` for those that are
/// found to be equivalent.
type_map: HashMap<TypeId, TypeId>,
/// A map of world ids in `from` to those in `into` for those that are
/// found to be equivalent.
world_map: HashMap<WorldId, WorldId>,
/// A list of documents that need to be added to packages in `into`.
///
/// The elements here are:
///
/// * The name of the interface/world
/// * The ID within `into` of the package being added to
/// * The ID within `from` of the item being added.
interfaces_to_add: Vec<(String, PackageId, InterfaceId)>,
worlds_to_add: Vec<(String, PackageId, WorldId)>,
/// Which `Resolve` is being merged from.
from: &'a Resolve,
/// Which `Resolve` is being merged into.
into: &'a Resolve,
}
impl<'a> MergeMap<'a> {
fn new(from: &'a Resolve, into: &'a Resolve) -> Result<MergeMap<'a>> {
Ok(MergeMap {
package_map: Default::default(),
interface_map: Default::default(),
type_map: Default::default(),
world_map: Default::default(),
interfaces_to_add: Default::default(),
worlds_to_add: Default::default(),
from,
into,
})
}
fn build(&mut self) -> Result<()> {
for from_id in self.from.topological_packages() {
let from = &self.from.packages[from_id];
let into_id = match self.into.package_names.get(&from.name) {
Some(id) => *id,
// This package, according to its name and url, is not present
// in `self` so it needs to get added below.
None => {
log::trace!("adding unique package {}", from.name);
continue;
}
};
log::trace!("merging duplicate package {}", from.name);
self.build_package(from_id, into_id).with_context(|| {
format!("failed to merge package `{}` into existing copy", from.name)
})?;
}
Ok(())
}
fn build_package(&mut self, from_id: PackageId, into_id: PackageId) -> Result<()> {
let prev = self.package_map.insert(from_id, into_id);
assert!(prev.is_none());
let from = &self.from.packages[from_id];
let into = &self.into.packages[into_id];
// If an interface is present in `from_id` but not present in `into_id`
// then it can be copied over wholesale. That copy is scheduled to
// happen within the `self.interfaces_to_add` list.
for (name, from_interface_id) in from.interfaces.iter() {
let into_interface_id = match into.interfaces.get(name) {
Some(id) => *id,
None => {
log::trace!("adding unique interface {}", name);
self.interfaces_to_add
.push((name.clone(), into_id, *from_interface_id));
continue;
}
};
log::trace!("merging duplicate interfaces {}", name);
self.build_interface(*from_interface_id, into_interface_id)
.with_context(|| format!("failed to merge interface `{name}`"))?;
}
for (name, from_world_id) in from.worlds.iter() {
let into_world_id = match into.worlds.get(name) {
Some(id) => *id,
None => {
log::trace!("adding unique world {}", name);
self.worlds_to_add
.push((name.clone(), into_id, *from_world_id));
continue;
}
};
log::trace!("merging duplicate worlds {}", name);
self.build_world(*from_world_id, into_world_id)
.with_context(|| format!("failed to merge world `{name}`"))?;
}
Ok(())
}
fn build_interface(&mut self, from_id: InterfaceId, into_id: InterfaceId) -> Result<()> {
let prev = self.interface_map.insert(from_id, into_id);
assert!(prev.is_none());
let from_interface = &self.from.interfaces[from_id];
let into_interface = &self.into.interfaces[into_id];
// Unlike documents/interfaces above if an interface in `from`
// differs from the interface in `into` then that's considered an
// error. Changing interfaces can reflect changes in imports/exports
// which may not be expected so it's currently required that all
// interfaces, when merged, exactly match.
//
// One case to consider here, for example, is that if a world in
// `into` exports the interface `into_id` then if `from_id` were to
// add more items into `into` then it would unexpectedly require more
// items to be exported which may not work. In an import context this
// might work since it's "just more items available for import", but
// for now a conservative route of "interfaces must match" is taken.
for (name, from_type_id) in from_interface.types.iter() {
let into_type_id = *into_interface
.types
.get(name)
.ok_or_else(|| anyhow!("expected type `{name}` to be present"))?;
let prev = self.type_map.insert(*from_type_id, into_type_id);
assert!(prev.is_none());
// FIXME: ideally the types should be "structurally
// equal" but that's not trivial to do in the face of
// resources.
}
for (name, _) in from_interface.functions.iter() {
if !into_interface.functions.contains_key(name) {
bail!("expected function `{name}` to be present");
}
// FIXME: ideally the functions should be "structurally
// equal" but that's not trivial to do in the face of
// resources.
}
Ok(())
}
fn build_world(&mut self, from_id: WorldId, into_id: WorldId) -> Result<()> {
let prev = self.world_map.insert(from_id, into_id);
assert!(prev.is_none());
let from_world = &self.from.worlds[from_id];
let into_world = &self.into.worlds[into_id];
// Same as interfaces worlds are expected to exactly match to avoid
// unexpectedly changing a particular component's view of imports and
// exports.
//
// FIXME: this should probably share functionality with
// `Resolve::merge_worlds` to support adding imports but not changing
// exports.
if from_world.imports.len() != into_world.imports.len() {
bail!("world contains different number of imports than expected");
}
if from_world.exports.len() != into_world.exports.len() {
bail!("world contains different number of exports than expected");
}
for (from_name, from) in from_world.imports.iter() {
let into_name = self.map_name(from_name);
let name_str = self.from.name_world_key(from_name);
let into = into_world
.imports
.get(&into_name)
.ok_or_else(|| anyhow!("import `{name_str}` not found in target world"))?;
self.match_world_item(from, into)
.with_context(|| format!("import `{name_str}` didn't match target world"))?;
}
for (from_name, from) in from_world.exports.iter() {
let into_name = self.map_name(from_name);
let name_str = self.from.name_world_key(from_name);
let into = into_world
.exports
.get(&into_name)
.ok_or_else(|| anyhow!("export `{name_str}` not found in target world"))?;
self.match_world_item(from, into)
.with_context(|| format!("export `{name_str}` didn't match target world"))?;
}
Ok(())
}
fn map_name(&self, from_name: &WorldKey) -> WorldKey {
match from_name {
WorldKey::Name(s) => WorldKey::Name(s.clone()),
WorldKey::Interface(id) => {
WorldKey::Interface(self.interface_map.get(id).copied().unwrap_or(*id))
}
}
}
fn match_world_item(&mut self, from: &WorldItem, into: &WorldItem) -> Result<()> {
match (from, into) {
(WorldItem::Interface(from), WorldItem::Interface(into)) => {
match (
&self.from.interfaces[*from].name,
&self.into.interfaces[*into].name,
) {
// If one interface is unnamed then they must both be
// unnamed and they must both have the same structure for
// now.
(None, None) => self.build_interface(*from, *into)?,
// Otherwise both interfaces must be named and they must
// have been previously found to be equivalent. Note that
// if either is unnamed it won't be present in
// `interface_map` so this'll return an error.
_ => {
if self.interface_map.get(&from) != Some(&into) {
bail!("interfaces are not the same");
}
}
}
}
(WorldItem::Function(from), WorldItem::Function(into)) => {
let _ = (from, into);
// FIXME: should assert an check that `from` structurally
// matches `into`
}
(WorldItem::Type(from), WorldItem::Type(into)) => {
// FIXME: should assert an check that `from` structurally
// matches `into`
let prev = self.type_map.insert(*from, *into);
assert!(prev.is_none());
}
(WorldItem::Interface(_), _)
| (WorldItem::Function(_), _)
| (WorldItem::Type(_), _) => {
bail!("world items do not have the same type")
}
}
Ok(())
}
}
#[cfg(test)]
mod tests {
use crate::{PackageId, Resolve};
#[test]
fn select_world() {
let mut resolve = Resolve::default();
parse_into(
&mut resolve,
r#"
package foo:bar@0.1.0;
world foo {}
"#,
);
parse_into(
&mut resolve,
r#"
package foo:baz@0.1.0;
world foo {}
"#,
);
parse_into(
&mut resolve,
r#"
package foo:baz@0.2.0;
world foo {}
"#,
);
let dummy = parse_into(
&mut resolve,
r#"
package foo:dummy;
world foo {}
"#,
);
assert!(resolve.select_world(dummy, None).is_ok());
assert!(resolve.select_world(dummy, Some("xx")).is_err());
assert!(resolve.select_world(dummy, Some("")).is_err());
assert!(resolve.select_world(dummy, Some("foo:bar/foo")).is_ok());
assert!(resolve
.select_world(dummy, Some("foo:bar/foo@0.1.0"))
.is_ok());
assert!(resolve.select_world(dummy, Some("foo:baz/foo")).is_err());
assert!(resolve
.select_world(dummy, Some("foo:baz/foo@0.1.0"))
.is_ok());
assert!(resolve
.select_world(dummy, Some("foo:baz/foo@0.2.0"))
.is_ok());
}
fn parse_into(resolve: &mut Resolve, wit: &str) -> PackageId {
let pkg = crate::UnresolvedPackage::parse("input.wit".as_ref(), wit).unwrap();
resolve.push(pkg).unwrap()
}
}