wit_parser/abi.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309
use crate::{Function, Handle, Int, Resolve, Type, TypeDefKind};
/// A core WebAssembly signature with params and results.
#[derive(Clone, Debug, Hash, Eq, PartialEq, PartialOrd, Ord)]
pub struct WasmSignature {
/// The WebAssembly parameters of this function.
pub params: Vec<WasmType>,
/// The WebAssembly results of this function.
pub results: Vec<WasmType>,
/// Whether or not this signature is passing all of its parameters
/// indirectly through a pointer within `params`.
///
/// Note that `params` still reflects the true wasm paramters of this
/// function, this is auxiliary information for code generators if
/// necessary.
pub indirect_params: bool,
/// Whether or not this signature is using a return pointer to store the
/// result of the function, which is reflected either in `params` or
/// `results` depending on the context this function is used (e.g. an import
/// or an export).
pub retptr: bool,
}
/// Enumerates wasm types used by interface types when lowering/lifting.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub enum WasmType {
I32,
I64,
F32,
F64,
/// A pointer type. In core Wasm this typically lowers to either `i32` or
/// `i64` depending on the index type of the exported linear memory,
/// however bindings can use different source-level types to preserve
/// provenance.
///
/// Users that don't do anything special for pointers can treat this as
/// `i32`.
Pointer,
/// A type for values which can be either pointers or 64-bit integers.
/// This occurs in variants, when pointers and non-pointers are unified.
///
/// Users that don't do anything special for pointers can treat this as
/// `i64`.
PointerOrI64,
/// An array length type. In core Wasm this lowers to either `i32` or `i64`
/// depending on the index type of the exported linear memory.
///
/// Users that don't do anything special for pointers can treat this as
/// `i32`.
Length,
// NOTE: we don't lower interface types to any other Wasm type,
// e.g. externref, so we don't need to define them here.
}
fn join(a: WasmType, b: WasmType) -> WasmType {
use WasmType::*;
match (a, b) {
(I32, I32)
| (I64, I64)
| (F32, F32)
| (F64, F64)
| (Pointer, Pointer)
| (PointerOrI64, PointerOrI64)
| (Length, Length) => a,
(I32, F32) | (F32, I32) => I32,
// A length is at least an `i32`, maybe more, so it wins over
// 32-bit types.
(Length, I32 | F32) => Length,
(I32 | F32, Length) => Length,
// A length might be an `i64`, but might not be, so if we have
// 64-bit types, they win.
(Length, I64 | F64) => I64,
(I64 | F64, Length) => I64,
// Pointers have provenance and are at least an `i32`, so they
// win over 32-bit and length types.
(Pointer, I32 | F32 | Length) => Pointer,
(I32 | F32 | Length, Pointer) => Pointer,
// If we need 64 bits and provenance, we need to use the special
// `PointerOrI64`.
(Pointer, I64 | F64) => PointerOrI64,
(I64 | F64, Pointer) => PointerOrI64,
// PointerOrI64 wins over everything.
(PointerOrI64, _) => PointerOrI64,
(_, PointerOrI64) => PointerOrI64,
// Otherwise, `i64` wins.
(_, I64 | F64) | (I64 | F64, _) => I64,
}
}
impl From<Int> for WasmType {
fn from(i: Int) -> WasmType {
match i {
Int::U8 | Int::U16 | Int::U32 => WasmType::I32,
Int::U64 => WasmType::I64,
}
}
}
/// We use a different ABI for wasm importing functions exported by the host
/// than for wasm exporting functions imported by the host.
///
/// Note that this reflects the flavor of ABI we generate, and not necessarily
/// the way the resulting bindings will be used by end users. See the comments
/// on the `Direction` enum in gen-core for details.
///
/// The bindings ABI has a concept of a "guest" and a "host". There are two
/// variants of the ABI, one specialized for the "guest" importing and calling
/// a function defined and exported in the "host", and the other specialized for
/// the "host" importing and calling a function defined and exported in the "guest".
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub enum AbiVariant {
/// The guest is importing and calling the function.
GuestImport,
/// The guest is defining and exporting the function.
GuestExport,
}
impl Resolve {
/// Get the WebAssembly type signature for this interface function
///
/// The first entry returned is the list of parameters and the second entry
/// is the list of results for the wasm function signature.
pub fn wasm_signature(&self, variant: AbiVariant, func: &Function) -> WasmSignature {
const MAX_FLAT_PARAMS: usize = 16;
const MAX_FLAT_RESULTS: usize = 1;
let mut params = Vec::new();
let mut indirect_params = false;
for (_, param) in func.params.iter() {
self.push_flat(param, &mut params);
}
if params.len() > MAX_FLAT_PARAMS {
params.truncate(0);
params.push(WasmType::Pointer);
indirect_params = true;
} else {
if matches!(
(&func.kind, variant),
(crate::FunctionKind::Method(_), AbiVariant::GuestExport)
) {
// Guest exported methods always receive resource rep as first argument
//
// TODO: Ideally you would distinguish between imported and exported
// resource Handles and then use either I32 or Pointer in abi::push_flat().
// But this contextual information isn't available, yet.
// See https://github.com/bytecodealliance/wasm-tools/pull/1438 for more details.
assert!(matches!(params[0], WasmType::I32));
params[0] = WasmType::Pointer;
}
}
let mut results = Vec::new();
for ty in func.results.iter_types() {
self.push_flat(ty, &mut results)
}
let mut retptr = false;
// Rust/C don't support multi-value well right now, so if a function
// would have multiple results then instead truncate it. Imports take a
// return pointer to write into and exports return a pointer they wrote
// into.
if results.len() > MAX_FLAT_RESULTS {
retptr = true;
results.truncate(0);
match variant {
AbiVariant::GuestImport => {
params.push(WasmType::Pointer);
}
AbiVariant::GuestExport => {
results.push(WasmType::Pointer);
}
}
}
WasmSignature {
params,
indirect_params,
results,
retptr,
}
}
/// Appends the flat wasm types representing `ty` onto the `result`
/// list provided.
pub fn push_flat(&self, ty: &Type, result: &mut Vec<WasmType>) {
match ty {
Type::Bool
| Type::S8
| Type::U8
| Type::S16
| Type::U16
| Type::S32
| Type::U32
| Type::Char => result.push(WasmType::I32),
Type::U64 | Type::S64 => result.push(WasmType::I64),
Type::F32 => result.push(WasmType::F32),
Type::F64 => result.push(WasmType::F64),
Type::String => {
result.push(WasmType::Pointer);
result.push(WasmType::Length);
}
Type::Id(id) => match &self.types[*id].kind {
TypeDefKind::Type(t) => self.push_flat(t, result),
TypeDefKind::Handle(Handle::Own(_) | Handle::Borrow(_)) => {
result.push(WasmType::I32);
}
TypeDefKind::Resource => todo!(),
TypeDefKind::Record(r) => {
for field in r.fields.iter() {
self.push_flat(&field.ty, result);
}
}
TypeDefKind::Tuple(t) => {
for ty in t.types.iter() {
self.push_flat(ty, result);
}
}
TypeDefKind::Flags(r) => {
for _ in 0..r.repr().count() {
result.push(WasmType::I32);
}
}
TypeDefKind::List(_) => {
result.push(WasmType::Pointer);
result.push(WasmType::Length);
}
TypeDefKind::Variant(v) => {
result.push(v.tag().into());
self.push_flat_variants(v.cases.iter().map(|c| c.ty.as_ref()), result);
}
TypeDefKind::Enum(e) => result.push(e.tag().into()),
TypeDefKind::Option(t) => {
result.push(WasmType::I32);
self.push_flat_variants([None, Some(t)], result);
}
TypeDefKind::Result(r) => {
result.push(WasmType::I32);
self.push_flat_variants([r.ok.as_ref(), r.err.as_ref()], result);
}
TypeDefKind::Future(_) => {
result.push(WasmType::I32);
}
TypeDefKind::Stream(_) => {
result.push(WasmType::I32);
}
TypeDefKind::Unknown => unreachable!(),
},
}
}
fn push_flat_variants<'a>(
&self,
tys: impl IntoIterator<Item = Option<&'a Type>>,
result: &mut Vec<WasmType>,
) {
let mut temp = Vec::new();
let start = result.len();
// Push each case's type onto a temporary vector, and then
// merge that vector into our final list starting at
// `start`. Note that this requires some degree of
// "unification" so we can handle things like `Result<i32,
// f32>` where that turns into `[i32 i32]` where the second
// `i32` might be the `f32` bitcasted.
for ty in tys {
if let Some(ty) = ty {
self.push_flat(ty, &mut temp);
for (i, ty) in temp.drain(..).enumerate() {
match result.get_mut(start + i) {
Some(prev) => *prev = join(*prev, ty),
None => result.push(ty),
}
}
}
}
}
}