wit_parser/
abi.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
use crate::{Function, Handle, Int, Resolve, Type, TypeDefKind};

/// A core WebAssembly signature with params and results.
#[derive(Clone, Debug, Hash, Eq, PartialEq, PartialOrd, Ord)]
pub struct WasmSignature {
    /// The WebAssembly parameters of this function.
    pub params: Vec<WasmType>,

    /// The WebAssembly results of this function.
    pub results: Vec<WasmType>,

    /// Whether or not this signature is passing all of its parameters
    /// indirectly through a pointer within `params`.
    ///
    /// Note that `params` still reflects the true wasm paramters of this
    /// function, this is auxiliary information for code generators if
    /// necessary.
    pub indirect_params: bool,

    /// Whether or not this signature is using a return pointer to store the
    /// result of the function, which is reflected either in `params` or
    /// `results` depending on the context this function is used (e.g. an import
    /// or an export).
    pub retptr: bool,
}

/// Enumerates wasm types used by interface types when lowering/lifting.
#[derive(Debug, Copy, Clone, PartialEq, Eq, Hash, PartialOrd, Ord)]
pub enum WasmType {
    I32,
    I64,
    F32,
    F64,

    /// A pointer type. In core Wasm this typically lowers to either `i32` or
    /// `i64` depending on the index type of the exported linear memory,
    /// however bindings can use different source-level types to preserve
    /// provenance.
    ///
    /// Users that don't do anything special for pointers can treat this as
    /// `i32`.
    Pointer,

    /// A type for values which can be either pointers or 64-bit integers.
    /// This occurs in variants, when pointers and non-pointers are unified.
    ///
    /// Users that don't do anything special for pointers can treat this as
    /// `i64`.
    PointerOrI64,

    /// An array length type. In core Wasm this lowers to either `i32` or `i64`
    /// depending on the index type of the exported linear memory.
    ///
    /// Users that don't do anything special for pointers can treat this as
    /// `i32`.
    Length,
    // NOTE: we don't lower interface types to any other Wasm type,
    // e.g. externref, so we don't need to define them here.
}

fn join(a: WasmType, b: WasmType) -> WasmType {
    use WasmType::*;

    match (a, b) {
        (I32, I32)
        | (I64, I64)
        | (F32, F32)
        | (F64, F64)
        | (Pointer, Pointer)
        | (PointerOrI64, PointerOrI64)
        | (Length, Length) => a,

        (I32, F32) | (F32, I32) => I32,

        // A length is at least an `i32`, maybe more, so it wins over
        // 32-bit types.
        (Length, I32 | F32) => Length,
        (I32 | F32, Length) => Length,

        // A length might be an `i64`, but might not be, so if we have
        // 64-bit types, they win.
        (Length, I64 | F64) => I64,
        (I64 | F64, Length) => I64,

        // Pointers have provenance and are at least an `i32`, so they
        // win over 32-bit and length types.
        (Pointer, I32 | F32 | Length) => Pointer,
        (I32 | F32 | Length, Pointer) => Pointer,

        // If we need 64 bits and provenance, we need to use the special
        // `PointerOrI64`.
        (Pointer, I64 | F64) => PointerOrI64,
        (I64 | F64, Pointer) => PointerOrI64,

        // PointerOrI64 wins over everything.
        (PointerOrI64, _) => PointerOrI64,
        (_, PointerOrI64) => PointerOrI64,

        // Otherwise, `i64` wins.
        (_, I64 | F64) | (I64 | F64, _) => I64,
    }
}

impl From<Int> for WasmType {
    fn from(i: Int) -> WasmType {
        match i {
            Int::U8 | Int::U16 | Int::U32 => WasmType::I32,
            Int::U64 => WasmType::I64,
        }
    }
}

/// We use a different ABI for wasm importing functions exported by the host
/// than for wasm exporting functions imported by the host.
///
/// Note that this reflects the flavor of ABI we generate, and not necessarily
/// the way the resulting bindings will be used by end users. See the comments
/// on the `Direction` enum in gen-core for details.
///
/// The bindings ABI has a concept of a "guest" and a "host". There are two
/// variants of the ABI, one specialized for the "guest" importing and calling
/// a function defined and exported in the "host", and the other specialized for
/// the "host" importing and calling a function defined and exported in the "guest".
#[derive(Clone, Copy, PartialEq, Eq, Debug)]
pub enum AbiVariant {
    /// The guest is importing and calling the function.
    GuestImport,
    /// The guest is defining and exporting the function.
    GuestExport,
}

impl Resolve {
    /// Get the WebAssembly type signature for this interface function
    ///
    /// The first entry returned is the list of parameters and the second entry
    /// is the list of results for the wasm function signature.
    pub fn wasm_signature(&self, variant: AbiVariant, func: &Function) -> WasmSignature {
        const MAX_FLAT_PARAMS: usize = 16;
        const MAX_FLAT_RESULTS: usize = 1;

        let mut params = Vec::new();
        let mut indirect_params = false;
        for (_, param) in func.params.iter() {
            self.push_flat(param, &mut params);
        }

        if params.len() > MAX_FLAT_PARAMS {
            params.truncate(0);
            params.push(WasmType::Pointer);
            indirect_params = true;
        } else {
            if matches!(
                (&func.kind, variant),
                (crate::FunctionKind::Method(_), AbiVariant::GuestExport)
            ) {
                // Guest exported methods always receive resource rep as first argument
                //
                // TODO: Ideally you would distinguish between imported and exported
                // resource Handles and then use either I32 or Pointer in abi::push_flat().
                // But this contextual information isn't available, yet.
                // See https://github.com/bytecodealliance/wasm-tools/pull/1438 for more details.
                assert!(matches!(params[0], WasmType::I32));
                params[0] = WasmType::Pointer;
            }
        }

        let mut results = Vec::new();
        for ty in func.results.iter_types() {
            self.push_flat(ty, &mut results)
        }

        let mut retptr = false;

        // Rust/C don't support multi-value well right now, so if a function
        // would have multiple results then instead truncate it. Imports take a
        // return pointer to write into and exports return a pointer they wrote
        // into.
        if results.len() > MAX_FLAT_RESULTS {
            retptr = true;
            results.truncate(0);
            match variant {
                AbiVariant::GuestImport => {
                    params.push(WasmType::Pointer);
                }
                AbiVariant::GuestExport => {
                    results.push(WasmType::Pointer);
                }
            }
        }

        WasmSignature {
            params,
            indirect_params,
            results,
            retptr,
        }
    }

    /// Appends the flat wasm types representing `ty` onto the `result`
    /// list provided.
    pub fn push_flat(&self, ty: &Type, result: &mut Vec<WasmType>) {
        match ty {
            Type::Bool
            | Type::S8
            | Type::U8
            | Type::S16
            | Type::U16
            | Type::S32
            | Type::U32
            | Type::Char => result.push(WasmType::I32),

            Type::U64 | Type::S64 => result.push(WasmType::I64),
            Type::F32 => result.push(WasmType::F32),
            Type::F64 => result.push(WasmType::F64),
            Type::String => {
                result.push(WasmType::Pointer);
                result.push(WasmType::Length);
            }

            Type::Id(id) => match &self.types[*id].kind {
                TypeDefKind::Type(t) => self.push_flat(t, result),

                TypeDefKind::Handle(Handle::Own(_) | Handle::Borrow(_)) => {
                    result.push(WasmType::I32);
                }

                TypeDefKind::Resource => todo!(),

                TypeDefKind::Record(r) => {
                    for field in r.fields.iter() {
                        self.push_flat(&field.ty, result);
                    }
                }

                TypeDefKind::Tuple(t) => {
                    for ty in t.types.iter() {
                        self.push_flat(ty, result);
                    }
                }

                TypeDefKind::Flags(r) => {
                    for _ in 0..r.repr().count() {
                        result.push(WasmType::I32);
                    }
                }

                TypeDefKind::List(_) => {
                    result.push(WasmType::Pointer);
                    result.push(WasmType::Length);
                }

                TypeDefKind::Variant(v) => {
                    result.push(v.tag().into());
                    self.push_flat_variants(v.cases.iter().map(|c| c.ty.as_ref()), result);
                }

                TypeDefKind::Enum(e) => result.push(e.tag().into()),

                TypeDefKind::Option(t) => {
                    result.push(WasmType::I32);
                    self.push_flat_variants([None, Some(t)], result);
                }

                TypeDefKind::Result(r) => {
                    result.push(WasmType::I32);
                    self.push_flat_variants([r.ok.as_ref(), r.err.as_ref()], result);
                }

                TypeDefKind::Future(_) => {
                    result.push(WasmType::I32);
                }

                TypeDefKind::Stream(_) => {
                    result.push(WasmType::I32);
                }

                TypeDefKind::Unknown => unreachable!(),
            },
        }
    }

    fn push_flat_variants<'a>(
        &self,
        tys: impl IntoIterator<Item = Option<&'a Type>>,
        result: &mut Vec<WasmType>,
    ) {
        let mut temp = Vec::new();
        let start = result.len();

        // Push each case's type onto a temporary vector, and then
        // merge that vector into our final list starting at
        // `start`. Note that this requires some degree of
        // "unification" so we can handle things like `Result<i32,
        // f32>` where that turns into `[i32 i32]` where the second
        // `i32` might be the `f32` bitcasted.
        for ty in tys {
            if let Some(ty) = ty {
                self.push_flat(ty, &mut temp);

                for (i, ty) in temp.drain(..).enumerate() {
                    match result.get_mut(start + i) {
                        Some(prev) => *prev = join(*prev, ty),
                        None => result.push(ty),
                    }
                }
            }
        }
    }
}