1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377
// -*- mode: rust; -*-
//
// This file is part of x25519-dalek.
// Copyright (c) 2017-2021 isis lovecruft
// Copyright (c) 2019-2021 DebugSteven
// See LICENSE for licensing information.
//
// Authors:
// - isis agora lovecruft <isis@patternsinthevoid.net>
// - DebugSteven <debugsteven@gmail.com>
//! x25519 Diffie-Hellman key exchange
//!
//! This implements x25519 key exchange as specified by Mike Hamburg
//! and Adam Langley in [RFC7748](https://tools.ietf.org/html/rfc7748).
use curve25519_dalek::{edwards::EdwardsPoint, montgomery::MontgomeryPoint, traits::IsIdentity};
use rand_core::CryptoRng;
use rand_core::RngCore;
#[cfg(feature = "zeroize")]
use zeroize::Zeroize;
/// A Diffie-Hellman public key
///
/// We implement `Zeroize` so that downstream consumers may derive it for `Drop`
/// should they wish to erase public keys from memory. Note that this erasure
/// (in this crate) does *not* automatically happen, but either must be derived
/// for Drop or explicitly called.
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "zeroize", derive(Zeroize))]
#[derive(PartialEq, Eq, Hash, Copy, Clone, Debug)]
pub struct PublicKey(pub(crate) MontgomeryPoint);
impl From<[u8; 32]> for PublicKey {
/// Given a byte array, construct a x25519 `PublicKey`.
fn from(bytes: [u8; 32]) -> PublicKey {
PublicKey(MontgomeryPoint(bytes))
}
}
impl PublicKey {
/// Convert this public key to a byte array.
#[inline]
pub fn to_bytes(&self) -> [u8; 32] {
self.0.to_bytes()
}
/// View this public key as a byte array.
#[inline]
pub fn as_bytes(&self) -> &[u8; 32] {
self.0.as_bytes()
}
}
impl AsRef<[u8]> for PublicKey {
/// View this public key as a byte array.
#[inline]
fn as_ref(&self) -> &[u8] {
self.as_bytes()
}
}
/// A short-lived Diffie-Hellman secret key that can only be used to compute a single
/// [`SharedSecret`].
///
/// This type is identical to the `StaticSecret` type, except that the
/// [`EphemeralSecret::diffie_hellman`] method consumes and then wipes the secret key, and there
/// are no serialization methods defined. This means that [`EphemeralSecret`]s can only be
/// generated from fresh randomness where the compiler statically checks that the resulting
/// secret is used at most once.
#[cfg_attr(feature = "zeroize", derive(Zeroize))]
#[cfg_attr(feature = "zeroize", zeroize(drop))]
pub struct EphemeralSecret(pub(crate) [u8; 32]);
impl EphemeralSecret {
/// Perform a Diffie-Hellman key agreement between `self` and
/// `their_public` key to produce a [`SharedSecret`].
pub fn diffie_hellman(self, their_public: &PublicKey) -> SharedSecret {
SharedSecret(their_public.0.mul_clamped(self.0))
}
/// Generate a new [`EphemeralSecret`] with the supplied RNG.
#[deprecated(
since = "2.0.0",
note = "Renamed to `random_from_rng`. This will be removed in 2.1.0"
)]
pub fn new<T: RngCore + CryptoRng>(mut csprng: T) -> Self {
Self::random_from_rng(&mut csprng)
}
/// Generate a new [`EphemeralSecret`] with the supplied RNG.
pub fn random_from_rng<T: RngCore + CryptoRng>(mut csprng: T) -> Self {
// The secret key is random bytes. Clamping is done later.
let mut bytes = [0u8; 32];
csprng.fill_bytes(&mut bytes);
EphemeralSecret(bytes)
}
/// Generate a new [`EphemeralSecret`].
#[cfg(feature = "getrandom")]
pub fn random() -> Self {
Self::random_from_rng(&mut rand_core::OsRng)
}
}
impl<'a> From<&'a EphemeralSecret> for PublicKey {
/// Given an x25519 [`EphemeralSecret`] key, compute its corresponding [`PublicKey`].
fn from(secret: &'a EphemeralSecret) -> PublicKey {
PublicKey(EdwardsPoint::mul_base_clamped(secret.0).to_montgomery())
}
}
/// A Diffie-Hellman secret key which may be used more than once, but is
/// purposefully not serialiseable in order to discourage key-reuse. This is
/// implemented to facilitate protocols such as Noise (e.g. Noise IK key usage,
/// etc.) and X3DH which require an "ephemeral" key to conduct the
/// Diffie-Hellman operation multiple times throughout the protocol, while the
/// protocol run at a higher level is only conducted once per key.
///
/// Similarly to [`EphemeralSecret`], this type does _not_ have serialisation
/// methods, in order to discourage long-term usage of secret key material. (For
/// long-term secret keys, see `StaticSecret`.)
///
/// # Warning
///
/// If you're uncertain about whether you should use this, then you likely
/// should not be using this. Our strongly recommended advice is to use
/// [`EphemeralSecret`] at all times, as that type enforces at compile-time that
/// secret keys are never reused, which can have very serious security
/// implications for many protocols.
#[cfg(feature = "reusable_secrets")]
#[cfg_attr(feature = "zeroize", derive(Zeroize))]
#[cfg_attr(feature = "zeroize", zeroize(drop))]
#[derive(Clone)]
pub struct ReusableSecret(pub(crate) [u8; 32]);
#[cfg(feature = "reusable_secrets")]
impl ReusableSecret {
/// Perform a Diffie-Hellman key agreement between `self` and
/// `their_public` key to produce a [`SharedSecret`].
pub fn diffie_hellman(&self, their_public: &PublicKey) -> SharedSecret {
SharedSecret(their_public.0.mul_clamped(self.0))
}
/// Generate a new [`ReusableSecret`] with the supplied RNG.
#[deprecated(
since = "2.0.0",
note = "Renamed to `random_from_rng`. This will be removed in 2.1.0."
)]
pub fn new<T: RngCore + CryptoRng>(mut csprng: T) -> Self {
Self::random_from_rng(&mut csprng)
}
/// Generate a new [`ReusableSecret`] with the supplied RNG.
pub fn random_from_rng<T: RngCore + CryptoRng>(mut csprng: T) -> Self {
// The secret key is random bytes. Clamping is done later.
let mut bytes = [0u8; 32];
csprng.fill_bytes(&mut bytes);
ReusableSecret(bytes)
}
/// Generate a new [`ReusableSecret`].
#[cfg(feature = "getrandom")]
pub fn random() -> Self {
Self::random_from_rng(&mut rand_core::OsRng)
}
}
#[cfg(feature = "reusable_secrets")]
impl<'a> From<&'a ReusableSecret> for PublicKey {
/// Given an x25519 [`ReusableSecret`] key, compute its corresponding [`PublicKey`].
fn from(secret: &'a ReusableSecret) -> PublicKey {
PublicKey(EdwardsPoint::mul_base_clamped(secret.0).to_montgomery())
}
}
/// A Diffie-Hellman secret key that can be used to compute multiple [`SharedSecret`]s.
///
/// This type is identical to the [`EphemeralSecret`] type, except that the
/// [`StaticSecret::diffie_hellman`] method does not consume the secret key, and the type provides
/// serialization methods to save and load key material. This means that the secret may be used
/// multiple times (but does not *have to be*).
///
/// # Warning
///
/// If you're uncertain about whether you should use this, then you likely
/// should not be using this. Our strongly recommended advice is to use
/// [`EphemeralSecret`] at all times, as that type enforces at compile-time that
/// secret keys are never reused, which can have very serious security
/// implications for many protocols.
#[cfg(feature = "static_secrets")]
#[cfg_attr(feature = "serde", derive(serde::Serialize, serde::Deserialize))]
#[cfg_attr(feature = "zeroize", derive(Zeroize))]
#[cfg_attr(feature = "zeroize", zeroize(drop))]
#[derive(Clone)]
pub struct StaticSecret([u8; 32]);
#[cfg(feature = "static_secrets")]
impl StaticSecret {
/// Perform a Diffie-Hellman key agreement between `self` and
/// `their_public` key to produce a `SharedSecret`.
pub fn diffie_hellman(&self, their_public: &PublicKey) -> SharedSecret {
SharedSecret(their_public.0.mul_clamped(self.0))
}
/// Generate a new [`StaticSecret`] with the supplied RNG.
#[deprecated(
since = "2.0.0",
note = "Renamed to `random_from_rng`. This will be removed in 2.1.0"
)]
pub fn new<T: RngCore + CryptoRng>(mut csprng: T) -> Self {
Self::random_from_rng(&mut csprng)
}
/// Generate a new [`StaticSecret`] with the supplied RNG.
pub fn random_from_rng<T: RngCore + CryptoRng>(mut csprng: T) -> Self {
// The secret key is random bytes. Clamping is done later.
let mut bytes = [0u8; 32];
csprng.fill_bytes(&mut bytes);
StaticSecret(bytes)
}
/// Generate a new [`StaticSecret`].
#[cfg(feature = "getrandom")]
pub fn random() -> Self {
Self::random_from_rng(&mut rand_core::OsRng)
}
/// Extract this key's bytes for serialization.
#[inline]
pub fn to_bytes(&self) -> [u8; 32] {
self.0
}
/// View this key as a byte array.
#[inline]
pub fn as_bytes(&self) -> &[u8; 32] {
&self.0
}
}
#[cfg(feature = "static_secrets")]
impl From<[u8; 32]> for StaticSecret {
/// Load a secret key from a byte array.
fn from(bytes: [u8; 32]) -> StaticSecret {
StaticSecret(bytes)
}
}
#[cfg(feature = "static_secrets")]
impl<'a> From<&'a StaticSecret> for PublicKey {
/// Given an x25519 [`StaticSecret`] key, compute its corresponding [`PublicKey`].
fn from(secret: &'a StaticSecret) -> PublicKey {
PublicKey(EdwardsPoint::mul_base_clamped(secret.0).to_montgomery())
}
}
#[cfg(feature = "static_secrets")]
impl AsRef<[u8]> for StaticSecret {
/// View this key as a byte array.
#[inline]
fn as_ref(&self) -> &[u8] {
self.as_bytes()
}
}
/// The result of a Diffie-Hellman key exchange.
///
/// Each party computes this using their [`EphemeralSecret`] or [`StaticSecret`] and their
/// counterparty's [`PublicKey`].
#[cfg_attr(feature = "zeroize", derive(Zeroize))]
#[cfg_attr(feature = "zeroize", zeroize(drop))]
pub struct SharedSecret(pub(crate) MontgomeryPoint);
impl SharedSecret {
/// Convert this shared secret to a byte array.
#[inline]
pub fn to_bytes(&self) -> [u8; 32] {
self.0.to_bytes()
}
/// View this shared secret key as a byte array.
#[inline]
pub fn as_bytes(&self) -> &[u8; 32] {
self.0.as_bytes()
}
/// Ensure in constant-time that this shared secret did not result from a
/// key exchange with non-contributory behaviour.
///
/// In some more exotic protocols which need to guarantee "contributory"
/// behaviour for both parties, that is, that each party contributed a public
/// value which increased the security of the resulting shared secret.
/// To take an example protocol attack where this could lead to undesirable
/// results [from Thái "thaidn" Dương](https://vnhacker.blogspot.com/2015/09/why-not-validating-curve25519-public.html):
///
/// > If Mallory replaces Alice's and Bob's public keys with zero, which is
/// > a valid Curve25519 public key, he would be able to force the ECDH
/// > shared value to be zero, which is the encoding of the point at infinity,
/// > and thus get to dictate some publicly known values as the shared
/// > keys. It still requires an active man-in-the-middle attack to pull the
/// > trick, after which, however, not only Mallory can decode Alice's data,
/// > but everyone too! It is also impossible for Alice and Bob to detect the
/// > intrusion, as they still share the same keys, and can communicate with
/// > each other as normal.
///
/// The original Curve25519 specification argues that checks for
/// non-contributory behaviour are "unnecessary for Diffie-Hellman".
/// Whether this check is necessary for any particular given protocol is
/// often a matter of debate, which we will not re-hash here, but simply
/// cite some of the [relevant] [public] [discussions].
///
/// # Returns
///
/// Returns `true` if the key exchange was contributory (good), and `false`
/// otherwise (can be bad for some protocols).
///
/// [relevant]: https://tools.ietf.org/html/rfc7748#page-15
/// [public]: https://vnhacker.blogspot.com/2015/09/why-not-validating-curve25519-public.html
/// [discussions]: https://vnhacker.blogspot.com/2016/08/the-internet-of-broken-protocols.html
#[must_use]
pub fn was_contributory(&self) -> bool {
!self.0.is_identity()
}
}
impl AsRef<[u8]> for SharedSecret {
/// View this shared secret key as a byte array.
#[inline]
fn as_ref(&self) -> &[u8] {
self.as_bytes()
}
}
/// The bare, byte-oriented x25519 function, exactly as specified in RFC7748.
///
/// This can be used with [`X25519_BASEPOINT_BYTES`] for people who
/// cannot use the better, safer, and faster ephemeral DH API.
///
/// # Example
#[cfg_attr(feature = "static_secrets", doc = "```")]
#[cfg_attr(not(feature = "static_secrets"), doc = "```ignore")]
/// use rand_core::OsRng;
/// use rand_core::RngCore;
///
/// use x25519_dalek::x25519;
/// use x25519_dalek::StaticSecret;
/// use x25519_dalek::PublicKey;
///
/// // Generate Alice's key pair.
/// let alice_secret = StaticSecret::random_from_rng(&mut OsRng);
/// let alice_public = PublicKey::from(&alice_secret);
///
/// // Generate Bob's key pair.
/// let bob_secret = StaticSecret::random_from_rng(&mut OsRng);
/// let bob_public = PublicKey::from(&bob_secret);
///
/// // Alice and Bob should now exchange their public keys.
///
/// // Once they've done so, they may generate a shared secret.
/// let alice_shared = x25519(alice_secret.to_bytes(), bob_public.to_bytes());
/// let bob_shared = x25519(bob_secret.to_bytes(), alice_public.to_bytes());
///
/// assert_eq!(alice_shared, bob_shared);
/// ```
pub fn x25519(k: [u8; 32], u: [u8; 32]) -> [u8; 32] {
MontgomeryPoint(u).mul_clamped(k).to_bytes()
}
/// The X25519 basepoint, for use with the bare, byte-oriented x25519
/// function. This is provided for people who cannot use the typed
/// DH API for some reason.
pub const X25519_BASEPOINT_BYTES: [u8; 32] = [
9, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
];