x509_certificate/certificate.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216
// This Source Code Form is subject to the terms of the Mozilla Public
// License, v. 2.0. If a copy of the MPL was not distributed with this
// file, You can obtain one at https://mozilla.org/MPL/2.0/.
//! Defines high-level interface to X.509 certificates.
use {
crate::{
algorithm::DigestAlgorithm, asn1time::Time, rfc2986, rfc3280::Name, rfc5280, rfc5652,
rfc5958::Attributes, rfc8017::RsaPublicKey, signing::Sign, InMemorySigningKeyPair,
KeyAlgorithm, KeyInfoSigner, SignatureAlgorithm, X509CertificateError as Error,
},
bcder::{
decode::Constructed,
encode::Values,
int::Integer,
string::{BitString, OctetString},
ConstOid, Mode, Oid,
},
bytes::Bytes,
chrono::{DateTime, Duration, Utc},
der::{Decode, Document},
ring::signature as ringsig,
signature::Signer,
spki::EncodePublicKey,
std::{
cmp::Ordering,
collections::HashSet,
fmt::{Debug, Formatter},
hash::{Hash, Hasher},
io::Write,
ops::{Deref, DerefMut},
},
};
/// Key Usage extension.
///
/// 2.5.29.15
const OID_EXTENSION_KEY_USAGE: ConstOid = Oid(&[85, 29, 15]);
/// Basic Constraints X.509 extension.
///
/// 2.5.29.19
const OID_EXTENSION_BASIC_CONSTRAINTS: ConstOid = Oid(&[85, 29, 19]);
/// Provides an interface to the RFC 5280 [rfc5280::Certificate] ASN.1 type.
///
/// This type provides the main high-level API that this crate exposes
/// for reading and writing X.509 certificates.
///
/// Instances are backed by an actual ASN.1 [rfc5280::Certificate] instance.
/// Read operations are performed against the raw ASN.1 values. Mutations
/// result in mutations of the ASN.1 data structures.
///
/// Instances can be converted to/from [rfc5280::Certificate] using traits.
/// [AsRef]/[AsMut] are implemented to obtain a reference to the backing
/// [rfc5280::Certificate].
///
/// We have chosen not to implement [Deref]/[DerefMut] because we don't
/// want to pollute the type's API with lower-level ASN.1 primitives.
///
/// This type does not track the original data from which it came.
/// If you want a type that does that, consider [CapturedX509Certificate],
/// which implements [Deref] and therefore behaves like this type.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct X509Certificate(rfc5280::Certificate);
impl X509Certificate {
/// Construct an instance by parsing DER encoded ASN.1 data.
pub fn from_der(data: impl AsRef<[u8]>) -> Result<Self, Error> {
let cert = Constructed::decode(data.as_ref(), Mode::Der, |cons| {
rfc5280::Certificate::take_from(cons)
})?;
Ok(Self(cert))
}
/// Construct an instance by parsing BER encoded ASN.1 data.
///
/// X.509 certificates are likely (and should be) using DER encoding.
/// However, some specifications do mandate the use of BER, so this
/// method is provided.
pub fn from_ber(data: impl AsRef<[u8]>) -> Result<Self, Error> {
let cert = Constructed::decode(data.as_ref(), Mode::Ber, |cons| {
rfc5280::Certificate::take_from(cons)
})?;
Ok(Self(cert))
}
/// Construct an instance by parsing PEM encoded ASN.1 data.
///
/// The data is a human readable string likely containing
/// `--------- BEGIN CERTIFICATE ----------`.
pub fn from_pem(data: impl AsRef<[u8]>) -> Result<Self, Error> {
let data = pem::parse(data.as_ref()).map_err(Error::PemDecode)?;
Self::from_der(data.contents())
}
/// Construct instances by parsing PEM with potentially multiple records.
///
/// By default, we only look for `--------- BEGIN CERTIFICATE --------`
/// entries and silently ignore unknown ones. If you would like to specify
/// an alternate set of tags (this is the value after the `BEGIN`) to search,
/// call [Self::from_pem_multiple_tags].
pub fn from_pem_multiple(data: impl AsRef<[u8]>) -> Result<Vec<Self>, Error> {
Self::from_pem_multiple_tags(data, &["CERTIFICATE"])
}
/// Construct instances by parsing PEM armored DER encoded certificates with specific PEM tags.
///
/// This is like [Self::from_pem_multiple] except you control the filter for
/// which `BEGIN <tag>` values are filtered through to the DER parser.
pub fn from_pem_multiple_tags(
data: impl AsRef<[u8]>,
tags: &[&str],
) -> Result<Vec<Self>, Error> {
let pem = pem::parse_many(data.as_ref()).map_err(Error::PemDecode)?;
pem.into_iter()
.filter(|pem| tags.contains(&pem.tag()))
.map(|pem| Self::from_der(pem.contents()))
.collect::<Result<_, _>>()
}
/// Obtain the serial number as the ASN.1 [Integer] type.
pub fn serial_number_asn1(&self) -> &Integer {
&self.0.tbs_certificate.serial_number
}
/// Obtain the certificate's subject, as its ASN.1 [Name] type.
pub fn subject_name(&self) -> &Name {
&self.0.tbs_certificate.subject
}
/// Obtain the Common Name (CN) attribute from the certificate's subject, if set and decodable.
pub fn subject_common_name(&self) -> Option<String> {
self.0
.tbs_certificate
.subject
.iter_common_name()
.next()
.and_then(|cn| cn.to_string().ok())
}
/// Obtain the certificate's issuer, as its ASN.1 [Name] type.
pub fn issuer_name(&self) -> &Name {
&self.0.tbs_certificate.issuer
}
/// Obtain the Common Name (CN) attribute from the certificate's issuer, if set and decodable.
pub fn issuer_common_name(&self) -> Option<String> {
self.0
.tbs_certificate
.issuer
.iter_common_name()
.next()
.and_then(|cn| cn.to_string().ok())
}
/// Iterate over extensions defined in this certificate.
pub fn iter_extensions(&self) -> impl Iterator<Item = &crate::rfc5280::Extension> {
self.0.iter_extensions()
}
/// Encode the certificate data structure using DER encoding.
///
/// (This is the common ASN.1 encoding format for X.509 certificates.)
///
/// This always serializes the internal ASN.1 data structure. If you
/// call this on a wrapper type that has retained a copy of the original
/// data, this may emit different data than that copy.
pub fn encode_der_to(&self, fh: &mut impl Write) -> Result<(), std::io::Error> {
self.0.encode_ref().write_encoded(Mode::Der, fh)
}
/// Encode the certificate data structure use BER encoding.
pub fn encode_ber_to(&self, fh: &mut impl Write) -> Result<(), std::io::Error> {
self.0.encode_ref().write_encoded(Mode::Ber, fh)
}
/// Encode the internal ASN.1 data structures to DER.
pub fn encode_der(&self) -> Result<Vec<u8>, std::io::Error> {
let mut buffer = Vec::<u8>::new();
self.encode_der_to(&mut buffer)?;
Ok(buffer)
}
/// Obtain the BER encoded representation of this certificate.
pub fn encode_ber(&self) -> Result<Vec<u8>, std::io::Error> {
let mut buffer = Vec::<u8>::new();
self.encode_ber_to(&mut buffer)?;
Ok(buffer)
}
/// Encode the certificate to PEM.
///
/// This will write a human-readable string with `------ BEGIN CERTIFICATE -------`
/// armoring. This is a very common method for encoding certificates.
///
/// The underlying binary data is DER encoded.
pub fn write_pem(&self, fh: &mut impl Write) -> Result<(), std::io::Error> {
let encoded = pem::Pem::new("CERTIFICATE", self.encode_der()?).to_string();
fh.write_all(encoded.as_bytes())
}
/// Encode the certificate to a PEM string.
pub fn encode_pem(&self) -> Result<String, std::io::Error> {
Ok(pem::Pem::new("CERTIFICATE", self.encode_der()?).to_string())
}
/// Attempt to resolve a known [KeyAlgorithm] used by the private key associated with this certificate.
///
/// If this crate isn't aware of the OID associated with the key algorithm,
/// `None` is returned.
pub fn key_algorithm(&self) -> Option<KeyAlgorithm> {
KeyAlgorithm::try_from(&self.0.tbs_certificate.subject_public_key_info.algorithm).ok()
}
/// Obtain the OID of the private key's algorithm.
pub fn key_algorithm_oid(&self) -> &Oid {
&self
.0
.tbs_certificate
.subject_public_key_info
.algorithm
.algorithm
}
/// Obtain the [SignatureAlgorithm this certificate will use.
///
/// Returns [None] if we failed to resolve an instance (probably because we don't
/// recognize the algorithm).
pub fn signature_algorithm(&self) -> Option<SignatureAlgorithm> {
SignatureAlgorithm::try_from(&self.0.tbs_certificate.signature.algorithm).ok()
}
/// Obtain the OID of the signature algorithm this certificate will use.
pub fn signature_algorithm_oid(&self) -> &Oid {
&self.0.tbs_certificate.signature.algorithm
}
/// Obtain the [SignatureAlgorithm] used to sign this certificate.
///
/// Returns [None] if we failed to resolve an instance (probably because we
/// don't recognize that algorithm).
pub fn signature_signature_algorithm(&self) -> Option<SignatureAlgorithm> {
SignatureAlgorithm::try_from(&self.0.signature_algorithm).ok()
}
/// Obtain the OID of the signature algorithm used to sign this certificate.
pub fn signature_signature_algorithm_oid(&self) -> &Oid {
&self.0.signature_algorithm.algorithm
}
/// Obtain the raw data constituting this certificate's public key.
///
/// A copy of the data is returned.
pub fn public_key_data(&self) -> Bytes {
self.0
.tbs_certificate
.subject_public_key_info
.subject_public_key
.octet_bytes()
}
/// Attempt to parse the public key data as [RsaPublicKey] parameters.
///
/// Note that the raw integer value for modulus has a leading 0 byte. So its
/// raw length will be 1 greater than key length. e.g. an RSA 2048 key will
/// have `value.modulus.as_slice().len() == 257` instead of `256`.
pub fn rsa_public_key_data(&self) -> Result<RsaPublicKey, Error> {
let der = self.public_key_data();
Ok(Constructed::decode(
der.as_ref(),
Mode::Der,
RsaPublicKey::take_from,
)?)
}
/// Compare 2 instances, sorting them so the issuer comes before the issued.
///
/// This function examines the [Self::issuer_name] and [Self::subject_name]
/// fields of 2 certificates, attempting to sort them so the issuing
/// certificate comes before the issued certificate.
///
/// This function performs a strict compare of the ASN.1 [Name] data.
/// The assumption here is that the issuing certificate's subject [Name]
/// is identical to the issued's issuer [Name]. This assumption is often
/// true. But it likely isn't always true, so this function may not produce
/// reliable results.
pub fn compare_issuer(&self, other: &Self) -> Ordering {
// Self signed certificate has no ordering.
if self.0.tbs_certificate.subject == self.0.tbs_certificate.issuer {
Ordering::Equal
// We were issued by the other certificate. The issuer comes first.
} else if self.0.tbs_certificate.issuer == other.0.tbs_certificate.subject {
Ordering::Greater
} else if self.0.tbs_certificate.subject == other.0.tbs_certificate.issuer {
// We issued the other certificate. We come first.
Ordering::Less
} else {
Ordering::Equal
}
}
/// Whether the subject [Name] is also the issuer's [Name].
///
/// This might be a way of determining if a certificate is self-signed.
/// But there can likely be false negatives due to differences in ASN.1
/// encoding of the underlying data. So we don't claim this is a test for
/// being self-signed.
pub fn subject_is_issuer(&self) -> bool {
self.0.tbs_certificate.subject == self.0.tbs_certificate.issuer
}
/// Obtain the fingerprint for this certificate given a digest algorithm.
pub fn fingerprint(
&self,
algorithm: DigestAlgorithm,
) -> Result<ring::digest::Digest, std::io::Error> {
let raw = self.encode_der()?;
let mut h = algorithm.digester();
h.update(&raw);
Ok(h.finish())
}
/// Obtain the SHA-1 fingerprint of this certificate.
pub fn sha1_fingerprint(&self) -> Result<ring::digest::Digest, std::io::Error> {
self.fingerprint(DigestAlgorithm::Sha1)
}
/// Obtain the SHA-256 fingerprint of this certificate.
pub fn sha256_fingerprint(&self) -> Result<ring::digest::Digest, std::io::Error> {
self.fingerprint(DigestAlgorithm::Sha256)
}
/// Obtain the raw [rfc5280::TbsCertificate] for this certificate.
pub fn tbs_certificate(&self) -> &rfc5280::TbsCertificate {
&self.0.tbs_certificate
}
/// Obtain the certificate validity "not before" time.
pub fn validity_not_before(&self) -> DateTime<Utc> {
self.0.tbs_certificate.validity.not_before.clone().into()
}
/// Obtain the certificate validity "not after" time.
pub fn validity_not_after(&self) -> DateTime<Utc> {
self.0.tbs_certificate.validity.not_after.clone().into()
}
/// Determine whether a time is between the validity constraints in the certificate.
///
/// i.e. check whether a certificate is "expired."
///
/// Receives a date time to check against.
///
/// If `None`, the current time is used. This relies on the machine's
/// wall clock to be accurate, of course.
pub fn time_constraints_valid(&self, compare_time: Option<DateTime<Utc>>) -> bool {
let compare_time = compare_time.unwrap_or(Utc::now());
compare_time >= self.validity_not_before() && compare_time <= self.validity_not_after()
}
}
impl From<rfc5280::Certificate> for X509Certificate {
fn from(v: rfc5280::Certificate) -> Self {
Self(v)
}
}
impl From<X509Certificate> for rfc5280::Certificate {
fn from(v: X509Certificate) -> Self {
v.0
}
}
impl AsRef<rfc5280::Certificate> for X509Certificate {
fn as_ref(&self) -> &rfc5280::Certificate {
&self.0
}
}
impl AsMut<rfc5280::Certificate> for X509Certificate {
fn as_mut(&mut self) -> &mut rfc5280::Certificate {
&mut self.0
}
}
impl EncodePublicKey for X509Certificate {
fn to_public_key_der(&self) -> spki::Result<Document> {
let mut data = vec![];
self.0
.tbs_certificate
.subject_public_key_info
.encode_ref()
.write_encoded(Mode::Der, &mut data)
.map_err(|_| spki::Error::Asn1(der::Error::new(der::ErrorKind::Failed, 0u8.into())))?;
Document::from_der(&data).map_err(spki::Error::Asn1)
}
}
#[derive(Clone, Eq, PartialEq)]
enum OriginalData {
Ber(Vec<u8>),
Der(Vec<u8>),
}
impl Debug for OriginalData {
fn fmt(&self, f: &mut Formatter<'_>) -> std::fmt::Result {
f.write_fmt(format_args!(
"{}({})",
match self {
Self::Ber(_) => "Ber",
Self::Der(_) => "Der",
},
match self {
Self::Ber(data) => hex::encode(data),
Self::Der(data) => hex::encode(data),
}
))
}
}
/// Represents an immutable (read-only) X.509 certificate that was parsed from data.
///
/// This type implements [Deref] but not [DerefMut], so only functions
/// taking a non-mutable instance are usable.
///
/// A copy of the certificate's raw backing data is stored, facilitating
/// subsequent access.
#[derive(Clone, Debug)]
pub struct CapturedX509Certificate {
original: OriginalData,
inner: X509Certificate,
}
impl CapturedX509Certificate {
/// Construct an instance from DER encoded data.
///
/// A copy of this data will be stored in the instance and is guaranteed
/// to be immutable for the lifetime of the instance. The original constructing
/// data can be retrieved later.
pub fn from_der(data: impl Into<Vec<u8>>) -> Result<Self, Error> {
let der_data = data.into();
let inner = X509Certificate::from_der(&der_data)?;
Ok(Self {
original: OriginalData::Der(der_data),
inner,
})
}
/// Construct an instance from BER encoded data.
///
/// A copy of this data will be stored in the instance and is guaranteed
/// to be immutable for the lifetime of the instance, allowing it to
/// be retrieved later.
pub fn from_ber(data: impl Into<Vec<u8>>) -> Result<Self, Error> {
let data = data.into();
let inner = X509Certificate::from_ber(&data)?;
Ok(Self {
original: OriginalData::Ber(data),
inner,
})
}
/// Construct an instance by parsing PEM encoded ASN.1 data.
///
/// The data is a human readable string likely containing
/// `--------- BEGIN CERTIFICATE ----------`.
pub fn from_pem(data: impl AsRef<[u8]>) -> Result<Self, Error> {
let data = pem::parse(data.as_ref()).map_err(Error::PemDecode)?;
Self::from_der(data.contents())
}
/// Construct instances by parsing PEM with potentially multiple records.
///
/// By default, we only look for `--------- BEGIN CERTIFICATE --------`
/// entries and silently ignore unknown ones. If you would like to specify
/// an alternate set of tags (this is the value after the `BEGIN`) to search,
/// call [Self::from_pem_multiple_tags].
pub fn from_pem_multiple(data: impl AsRef<[u8]>) -> Result<Vec<Self>, Error> {
Self::from_pem_multiple_tags(data, &["CERTIFICATE"])
}
/// Construct instances by parsing PEM armored DER encoded certificates with specific PEM tags.
///
/// This is like [Self::from_pem_multiple] except you control the filter for
/// which `BEGIN <tag>` values are filtered through to the DER parser.
pub fn from_pem_multiple_tags(
data: impl AsRef<[u8]>,
tags: &[&str],
) -> Result<Vec<Self>, Error> {
let pem = pem::parse_many(data.as_ref()).map_err(Error::PemDecode)?;
pem.into_iter()
.filter(|pem| tags.contains(&pem.tag()))
.map(|pem| Self::from_der(pem.contents()))
.collect::<Result<_, _>>()
}
/// Obtain the DER data that was used to construct this instance.
///
/// The data is guaranteed to not have been modified since the instance
/// was constructed.
pub fn constructed_data(&self) -> &[u8] {
match &self.original {
OriginalData::Ber(data) => data,
OriginalData::Der(data) => data,
}
}
/// Encode the original contents of this certificate to PEM.
pub fn encode_pem(&self) -> String {
pem::Pem::new("CERTIFICATE", self.constructed_data()).to_string()
}
/// Verify that another certificate, `other`, signed this certificate.
///
/// If this is a self-signed certificate, you can pass `self` as the 2nd
/// argument.
///
/// This function isn't exposed on [X509Certificate] because the exact
/// bytes constituting the certificate's internals need to be consulted
/// to verify signatures. And since this type tracks the underlying
/// bytes, we are guaranteed to have a pristine copy.
pub fn verify_signed_by_certificate(
&self,
other: impl AsRef<X509Certificate>,
) -> Result<(), Error> {
let public_key = other
.as_ref()
.0
.tbs_certificate
.subject_public_key_info
.subject_public_key
.octet_bytes();
self.verify_signed_by_public_key(public_key)
}
/// Verify a signature over signed data purportedly signed by this certificate.
///
/// This is a wrapper to [Self::verify_signed_data_with_algorithm()] that will derive
/// the verification algorithm from the public key type type and the signature algorithm
/// indicated in this certificate. Typically these align. However, it is possible for
/// a signature to be produced with a different digest algorithm from that indicated
/// in this certificate.
pub fn verify_signed_data(
&self,
signed_data: impl AsRef<[u8]>,
signature: impl AsRef<[u8]>,
) -> Result<(), Error> {
let key_algorithm = KeyAlgorithm::try_from(self.key_algorithm_oid())?;
let signature_algorithm = SignatureAlgorithm::try_from(self.signature_algorithm_oid())?;
let verify_algorithm = signature_algorithm.resolve_verification_algorithm(key_algorithm)?;
self.verify_signed_data_with_algorithm(signed_data, signature, verify_algorithm)
}
/// Verify a signature over signed data using an explicit verification algorithm.
///
/// This is like [Self::verify_signed_data()] except the verification algorithm to use
/// is passed in instead of derived from the default algorithm for the signing key's
/// type.
pub fn verify_signed_data_with_algorithm(
&self,
signed_data: impl AsRef<[u8]>,
signature: impl AsRef<[u8]>,
verify_algorithm: &'static dyn ringsig::VerificationAlgorithm,
) -> Result<(), Error> {
let public_key = ringsig::UnparsedPublicKey::new(verify_algorithm, self.public_key_data());
public_key
.verify(signed_data.as_ref(), signature.as_ref())
.map_err(|_| Error::CertificateSignatureVerificationFailed)
}
/// Verifies that this certificate was cryptographically signed using raw public key data from a signing key.
///
/// This function does the low-level work of extracting the signature and
/// verification details from the current certificate and figuring out
/// the correct combination of cryptography settings to apply to perform
/// signature verification.
///
/// In many cases, an X.509 certificate is signed by another certificate. And
/// since the public key is embedded in the X.509 certificate, it is easier
/// to go through [Self::verify_signed_by_certificate] instead.
pub fn verify_signed_by_public_key(
&self,
public_key_data: impl AsRef<[u8]>,
) -> Result<(), Error> {
// Always verify against the original content, as the inner
// certificate could be mutated via the mutable wrapper of this
// type.
let this_cert = match &self.original {
OriginalData::Ber(data) => X509Certificate::from_ber(data),
OriginalData::Der(data) => X509Certificate::from_der(data),
}
.expect("certificate re-parse should never fail");
let signed_data = this_cert
.0
.tbs_certificate
.raw_data
.as_ref()
.expect("original certificate data should have persisted as part of re-parse");
let signature = this_cert.0.signature.octet_bytes();
let key_algorithm = KeyAlgorithm::try_from(
&this_cert
.0
.tbs_certificate
.subject_public_key_info
.algorithm,
)?;
let signature_algorithm = SignatureAlgorithm::try_from(&this_cert.0.signature_algorithm)?;
let verify_algorithm = signature_algorithm.resolve_verification_algorithm(key_algorithm)?;
let public_key = ringsig::UnparsedPublicKey::new(verify_algorithm, public_key_data);
public_key
.verify(signed_data, &signature)
.map_err(|_| Error::CertificateSignatureVerificationFailed)
}
/// Attempt to find the issuing certificate of this one.
///
/// Given an iterable of certificates, we find the first certificate
/// where we are able to verify that our signature was made by their public
/// key.
///
/// This function can yield false negatives for cases where we don't
/// support the signature algorithm on the incoming certificates.
pub fn find_signing_certificate<'a>(
&self,
mut certs: impl Iterator<Item = &'a Self>,
) -> Option<&'a Self> {
certs.find(|candidate| self.verify_signed_by_certificate(candidate).is_ok())
}
/// Attempt to resolve the signing chain of this certificate.
///
/// Given an iterable of certificates, we recursively resolve the
/// chain of certificates that signed this one until we are no longer able
/// to find any more certificates in the input set.
///
/// Like [Self::find_signing_certificate], this can yield false
/// negatives (read: an incomplete chain) due to run-time failures,
/// such as lack of support for a certificate's signature algorithm.
///
/// As a certificate is encountered, it is removed from the set of
/// future candidates.
///
/// The traversal ends when we get to an identical certificate (its
/// DER data is equivalent) or we couldn't find a certificate in
/// the remaining set that signed the last one.
///
/// Because we need to recursively verify certificates, the incoming
/// iterator is buffered.
pub fn resolve_signing_chain<'a>(
&self,
certs: impl Iterator<Item = &'a Self>,
) -> Vec<&'a Self> {
// The logic here is a bit wonky. As we build up the collection of certificates,
// we want to filter out ourself and remove duplicates. We remove duplicates by
// storing encountered certificates in a HashSet.
#[allow(clippy::mutable_key_type)]
let mut seen = HashSet::new();
let mut remaining = vec![];
for cert in certs {
if cert == self || seen.contains(cert) {
continue;
} else {
remaining.push(cert);
seen.insert(cert);
}
}
drop(seen);
let mut chain = vec![];
let mut last_cert = self;
while let Some(issuer) = last_cert.find_signing_certificate(remaining.iter().copied()) {
chain.push(issuer);
last_cert = issuer;
remaining = remaining
.drain(..)
.filter(|cert| *cert != issuer)
.collect::<Vec<_>>();
}
chain
}
}
impl PartialEq for CapturedX509Certificate {
fn eq(&self, other: &Self) -> bool {
self.constructed_data() == other.constructed_data()
}
}
impl Eq for CapturedX509Certificate {}
impl Hash for CapturedX509Certificate {
fn hash<H: Hasher>(&self, state: &mut H) {
state.write(self.constructed_data());
}
}
impl Deref for CapturedX509Certificate {
type Target = X509Certificate;
fn deref(&self) -> &Self::Target {
&self.inner
}
}
impl AsRef<X509Certificate> for CapturedX509Certificate {
fn as_ref(&self) -> &X509Certificate {
&self.inner
}
}
impl AsRef<rfc5280::Certificate> for CapturedX509Certificate {
fn as_ref(&self) -> &rfc5280::Certificate {
self.inner.as_ref()
}
}
impl TryFrom<&X509Certificate> for CapturedX509Certificate {
type Error = Error;
fn try_from(cert: &X509Certificate) -> Result<Self, Self::Error> {
let mut buffer = Vec::<u8>::new();
cert.encode_der_to(&mut buffer)?;
Self::from_der(buffer)
}
}
impl TryFrom<X509Certificate> for CapturedX509Certificate {
type Error = Error;
fn try_from(cert: X509Certificate) -> Result<Self, Self::Error> {
let mut buffer = Vec::<u8>::new();
cert.encode_der_to(&mut buffer)?;
Self::from_der(buffer)
}
}
impl From<CapturedX509Certificate> for rfc5280::Certificate {
fn from(cert: CapturedX509Certificate) -> Self {
cert.inner.0
}
}
/// Provides a mutable wrapper to an X.509 certificate that was parsed from data.
///
/// This is like [CapturedX509Certificate] except it implements [DerefMut],
/// enabling you to modify the certificate while still being able to access
/// the raw data the certificate is backed by. However, mutations are
/// only performed against the parsed ASN.1 data structure, not the original
/// data it was constructed with.
#[derive(Clone, Debug, Eq, PartialEq)]
pub struct MutableX509Certificate(CapturedX509Certificate);
impl Deref for MutableX509Certificate {
type Target = X509Certificate;
fn deref(&self) -> &Self::Target {
&self.0.inner
}
}
impl DerefMut for MutableX509Certificate {
fn deref_mut(&mut self) -> &mut Self::Target {
&mut self.0.inner
}
}
impl From<CapturedX509Certificate> for MutableX509Certificate {
fn from(cert: CapturedX509Certificate) -> Self {
Self(cert)
}
}
/// Whether one certificate is a subset of another certificate.
///
/// This returns true iff the two certificates have the same serial number
/// and every `Name` attribute in the first certificate is present in the other.
pub fn certificate_is_subset_of(
a_serial: &Integer,
a_name: &Name,
b_serial: &Integer,
b_name: &Name,
) -> bool {
if a_serial != b_serial {
return false;
}
let Name::RdnSequence(a_sequence) = &a_name;
let Name::RdnSequence(b_sequence) = &b_name;
a_sequence.iter().all(|rdn| b_sequence.contains(rdn))
}
/// X.509 extension to define how a certificate can be used.
///
/// ```asn.1
/// KeyUsage ::= BIT STRING {
/// digitalSignature(0),
/// nonRepudiation(1),
/// keyEncipherment(2),
/// dataEncipherment(3),
/// keyAgreement(4),
/// keyCertSign(5),
/// cRLSign(6)
/// }
/// ```
pub enum KeyUsage {
DigitalSignature,
NonRepudiation,
KeyEncipherment,
DataEncipherment,
KeyAgreement,
KeyCertSign,
CrlSign,
}
impl From<KeyUsage> for u8 {
fn from(ku: KeyUsage) -> Self {
match ku {
KeyUsage::DigitalSignature => 0,
KeyUsage::NonRepudiation => 1,
KeyUsage::KeyEncipherment => 2,
KeyUsage::DataEncipherment => 3,
KeyUsage::KeyAgreement => 4,
KeyUsage::KeyCertSign => 5,
KeyUsage::CrlSign => 6,
}
}
}
/// Interface for constructing new X.509 certificates.
///
/// This holds fields for various certificate metadata and allows you
/// to incrementally derive a new X.509 certificate.
///
/// The certificate is populated with defaults:
///
/// * The serial number is 1.
/// * The time validity is now until 1 hour from now.
/// * There is no issuer. If no attempt is made to define an issuer,
/// the subject will be copied to the issuer field and this will be
/// a self-signed certificate.
///
/// This type can also be used to produce certificate signing requests. In this mode,
/// only the subject value and additional registered attributes are meaningful.
pub struct X509CertificateBuilder {
subject: Name,
issuer: Option<Name>,
extensions: rfc5280::Extensions,
serial_number: i64,
not_before: chrono::DateTime<Utc>,
not_after: chrono::DateTime<Utc>,
csr_attributes: Attributes,
}
impl Default for X509CertificateBuilder {
fn default() -> Self {
let not_before = Utc::now();
let not_after = not_before + Duration::hours(1);
Self {
subject: Name::default(),
issuer: None,
extensions: rfc5280::Extensions::default(),
serial_number: 1,
not_before,
not_after,
csr_attributes: Attributes::default(),
}
}
}
impl X509CertificateBuilder {
/// Deprecated. Use [Self::default()] instead.
#[deprecated]
pub fn new() -> Self {
Self::default()
}
/// Obtain a mutable reference to the subject [Name].
///
/// The type has functions that will allow you to add attributes with ease.
pub fn subject(&mut self) -> &mut Name {
&mut self.subject
}
/// Obtain a mutable reference to the issuer [Name].
///
/// If no issuer has been created yet, an empty one will be created.
pub fn issuer(&mut self) -> &mut Name {
self.issuer.get_or_insert_with(Name::default)
}
/// Set the serial number for the certificate.
pub fn serial_number(&mut self, value: i64) {
self.serial_number = value;
}
/// Obtain the raw certificate extensions.
pub fn extensions(&self) -> &rfc5280::Extensions {
&self.extensions
}
/// Obtain a mutable reference to raw certificate extensions.
pub fn extensions_mut(&mut self) -> &mut rfc5280::Extensions {
&mut self.extensions
}
/// Add an extension to the certificate with its value as pre-encoded DER data.
pub fn add_extension_der_data(&mut self, oid: Oid, critical: bool, data: impl AsRef<[u8]>) {
self.extensions.push(rfc5280::Extension {
id: oid,
critical: Some(critical),
value: OctetString::new(Bytes::copy_from_slice(data.as_ref())),
});
}
/// Set the expiration time in terms of [Duration] since its currently set start time.
pub fn validity_duration(&mut self, duration: Duration) {
self.not_after = self.not_before + duration;
}
/// Add a basic constraint extension that this isn't a CA certificate.
pub fn constraint_not_ca(&mut self) {
self.extensions.push(rfc5280::Extension {
id: Oid(OID_EXTENSION_BASIC_CONSTRAINTS.as_ref().into()),
critical: Some(true),
value: OctetString::new(Bytes::copy_from_slice(&[0x30, 00])),
});
}
/// Add a key usage extension.
pub fn key_usage(&mut self, key_usage: KeyUsage) {
let value: u8 = key_usage.into();
self.extensions.push(rfc5280::Extension {
id: Oid(OID_EXTENSION_KEY_USAGE.as_ref().into()),
critical: Some(true),
// Value is a bit string. We just encode it manually since it is easy.
value: OctetString::new(Bytes::copy_from_slice(&[3, 2, 7, 128 | value])),
});
}
/// Add an [Attribute] to a future certificate signing requests.
///
/// Has no effect on regular certificate creation: only if creating certificate
/// signing requests.
pub fn add_csr_attribute(&mut self, attribute: rfc5652::Attribute) {
self.csr_attributes.push(attribute);
}
/// Create a new certificate given settings using the provided key pair.
pub fn create_with_key_pair(
&self,
key_pair: &InMemorySigningKeyPair,
) -> Result<CapturedX509Certificate, Error> {
let key_pair_signature_algorithm = key_pair.signature_algorithm();
let issuer = if let Some(issuer) = &self.issuer {
issuer
} else {
&self.subject
};
let tbs_certificate = rfc5280::TbsCertificate {
version: Some(rfc5280::Version::V3),
serial_number: self.serial_number.into(),
signature: key_pair_signature_algorithm?.into(),
issuer: issuer.clone(),
validity: rfc5280::Validity {
not_before: Time::from(self.not_before),
not_after: Time::from(self.not_after),
},
subject: self.subject.clone(),
subject_public_key_info: rfc5280::SubjectPublicKeyInfo {
algorithm: key_pair
.key_algorithm()
.expect("InMemorySigningKeyPair always has known key algorithm")
.into(),
subject_public_key: BitString::new(0, key_pair.public_key_data()),
},
issuer_unique_id: None,
subject_unique_id: None,
extensions: if self.extensions.is_empty() {
None
} else {
Some(self.extensions.clone())
},
raw_data: None,
};
// Now encode the TBS certificate so we can sign it with the private key
// and include its signature.
let mut tbs_der = Vec::<u8>::new();
tbs_certificate
.encode_ref()
.write_encoded(Mode::Der, &mut tbs_der)?;
let signature = key_pair.try_sign(&tbs_der)?;
let signature_algorithm = key_pair.signature_algorithm()?;
let cert = rfc5280::Certificate {
tbs_certificate,
signature_algorithm: signature_algorithm.into(),
signature: BitString::new(0, Bytes::copy_from_slice(signature.as_ref())),
};
let cert = X509Certificate::from(cert);
let cert_der = cert.encode_der()?;
CapturedX509Certificate::from_der(cert_der)
}
/// Create a new certificate given settings, using a randomly generated key pair.
pub fn create_with_random_keypair(
&self,
key_algorithm: KeyAlgorithm,
) -> Result<(CapturedX509Certificate, InMemorySigningKeyPair), Error> {
let key_pair = InMemorySigningKeyPair::generate_random(key_algorithm)?;
let cert = self.create_with_key_pair(&key_pair)?;
Ok((cert, key_pair))
}
/// Create a new certificate signing request (CSR).
///
/// The CSR is derived according to the process defined in RFC 2986 Section 3.
/// Essentially, we collect metadata about the request, sign that metadata using
/// a provided signing/private key, then attach the signature to form a complete
/// certification request.
pub fn create_certificate_signing_request(
&self,
signer: &dyn KeyInfoSigner,
) -> Result<rfc2986::CertificationRequest, Error> {
let info = rfc2986::CertificationRequestInfo {
version: rfc2986::Version::V1,
subject: self.subject.clone(),
subject_public_key_info: rfc5280::SubjectPublicKeyInfo {
algorithm: signer
.key_algorithm()
.ok_or_else(|| {
Error::UnknownKeyAlgorithm(
"OID not available due to API limitations".into(),
)
})?
.into(),
subject_public_key: BitString::new(0, signer.public_key_data()),
},
attributes: self.csr_attributes.clone(),
};
// The signature is produced over the DER encoding of CertificationRequestInfo
// per RFC 2986 Section 4.2.
let mut info_der = vec![];
info.write_encoded(Mode::Der, &mut info_der)?;
let signature = signer.try_sign(&info_der)?;
let signature_algorithm = signer.signature_algorithm()?;
let request = rfc2986::CertificationRequest {
certificate_request_info: info,
signature_algorithm: signature_algorithm.into(),
signature: BitString::new(0, signature.into()),
};
Ok(request)
}
}
#[cfg(test)]
mod test {
use {
super::*,
crate::{EcdsaCurve, X509CertificateError},
};
#[test]
fn builder_ed25519_default() {
let builder = X509CertificateBuilder::default();
builder
.create_with_random_keypair(KeyAlgorithm::Ed25519)
.unwrap();
}
#[test]
fn build_ecdsa_default() {
for curve in EcdsaCurve::all() {
let key_algorithm = KeyAlgorithm::Ecdsa(*curve);
let builder = X509CertificateBuilder::default();
builder.create_with_random_keypair(key_algorithm).unwrap();
}
}
#[test]
fn build_subject_populate() {
let mut builder = X509CertificateBuilder::default();
builder
.subject()
.append_common_name_utf8_string("My Name")
.unwrap();
builder
.subject()
.append_country_utf8_string("Wakanda")
.unwrap();
builder
.create_with_random_keypair(KeyAlgorithm::Ed25519)
.unwrap();
}
#[test]
fn builder_csr_ecdsa() -> Result<(), Error> {
for curve in EcdsaCurve::all() {
let key_algorithm = KeyAlgorithm::Ecdsa(*curve);
let key = InMemorySigningKeyPair::generate_random(key_algorithm)?;
let builder = X509CertificateBuilder::default();
let csr = builder.create_certificate_signing_request(&key)?;
assert_eq!(
csr.certificate_request_info
.subject_public_key_info
.algorithm,
key_algorithm.into()
);
}
Ok(())
}
#[test]
fn ecdsa_p256_sha256_self_signed() {
let der = include_bytes!("testdata/ecdsa-p256-sha256-self-signed.cer");
let cert = CapturedX509Certificate::from_der(der.to_vec()).unwrap();
cert.verify_signed_by_certificate(&cert).unwrap();
cert.to_public_key_der().unwrap();
}
#[test]
fn ecdsa_p384_sha256_self_signed() {
let der = include_bytes!("testdata/ecdsa-p384-sha256-self-signed.cer");
let cert = CapturedX509Certificate::from_der(der.to_vec()).unwrap();
cert.verify_signed_by_certificate(&cert).unwrap();
cert.to_public_key_der().unwrap();
}
#[test]
fn ecdsa_p512_sha256_self_signed() {
let der = include_bytes!("testdata/ecdsa-p512-sha256-self-signed.cer");
// We can parse this. But we don't support secp512 elliptic curves because ring
// doesn't support it.
let cert = CapturedX509Certificate::from_der(der.to_vec()).unwrap();
cert.to_public_key_der().unwrap();
assert!(matches!(
cert.verify_signed_by_certificate(&cert),
Err(Error::UnknownEllipticCurve(_))
));
}
#[test]
fn ecdsa_prime256v1_cert_validation() -> Result<(), X509CertificateError> {
let root = include_bytes!("testdata/ecdsa-prime256v1-root.der");
let signed = include_bytes!("testdata/ecdsa-prime256v1-signed.der");
let root = CapturedX509Certificate::from_der(root.as_ref())?;
let signed = CapturedX509Certificate::from_der(signed.as_ref())?;
root.verify_signed_by_certificate(&root)?;
signed.verify_signed_by_certificate(&root)?;
Ok(())
}
}