1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456
//! Yet another zlib implementation.
//!
//! This crate is an implementation of the RFC 1950 DEFLATE specification with
//! support for the zlib wrapper. There are many fine options for such in the
//! Rust ecosystem, but I was looking for one that was small and relatively
//! simple with reasonable performance/compression ratio and support for heap-free
//! compression/decompression scenarios. This crate aims to tick those boxes
//! while also providing composable streaming support based on the standard I/O
//! mechanisms.
//!
//! See the quick start guide below for basic usage or jump to the [compression](#compression)
//! or [decompression](#decompression) section for more detail.
//!
//! # Quick Start
//!
//! So you've got some bytes, they all fit in memory, you don't need to reuse allocations,
//! and you just want to compress or decompress them. This section is for you.
//!
//! Cargo.toml:
//! ```toml
//! [dependencies]
//! yazi = "0.1.4"
//! ```
//!
//! The [`compress`](fn.compress.html) and [`decompress`](fn.decompress.html) functions
//! are provided for the most common use cases:
//! ```
//! use yazi::*;
//! // Your source data.
//! let data = &(0..=255).cycle().take(8192).collect::<Vec<u8>>()[..];
//! // Compress it into a Vec<u8> with a zlib wrapper using the default compression level.
//! let compressed = compress(data, Format::Zlib, CompressionLevel::Default).unwrap();
//! // Decompress it into a Vec<u8>.
//! let (decompressed, checksum) = decompress(&compressed, Format::Zlib).unwrap();
//! // Verify the checksum.
//! assert_eq!(Adler32::from_buf(&decompressed).finish(), checksum.unwrap());
//! // Verify that the decompressed data matches the original.
//! assert_eq!(&decompressed[..], data);
//! ```
//!
//! Read on for more detailed usage.
//!
//! # Compression
//!
//! To compress data, you'll need to create an instance of the
//! [`Encoder`](struct.Encoder.html) struct. The [`new`](struct.Encoder.html#method.new)
//! method can
//! be used to construct an encoder on the stack, but the internal buffers are large
//! (~300k) and may cause a stack overflow so it is advisable to use the
//! [`boxed`](struct.Encoder.html#method.boxed) method to allocate the encoder on the heap.
//!
//! Newly constructed encoders are configured to output a raw DEFLATE bitstream using a
//! medium compression level and a default strategy. Call
//! [`set_format`](struct.Encoder.html#method.set_format) to change the output
//! [`Format`](enum.Format.html). Raw DEFLATE and zlib are supported. The
//! [`set_level`](struct.Encoder.html#method.set_level) method allows you to choose the
//! preferred [`CompressionLevel`](enum.CompressionLevel.html) from a set of basic
//! options or a specific level between 1 and 10. The
//! [`CompressionStrategy`](enum.CompressionStrategy.html) can be changed with the
//! [`set_strategy`](struct.Encoder.html#method.set_strategy) method. This allows you
//! to, for example, force the encoder to output only static blocks.
//!
//! To create an encoder that outputs a zlib bitstream and spends some extra time to potentially
//! produce a result with a higher compression ratio:
//! ```
//! use yazi::{CompressionLevel, Encoder, Format};
//! let mut encoder = Encoder::boxed();
//! encoder.set_format(Format::Zlib);
//! encoder.set_level(CompressionLevel::BestSize);
//! ```
//!
//! The encoder itself does not provide any functionality. It simply stores state and
//! configuration. To actually compress data, you'll need an
//! [`EncoderStream`](struct.EncoderStream.html). A stream is a binding between an
//! encoder and some specific output that will receive the compressed data. This
//! design allows an encoder to be reused with different types of outputs without paying the
//! allocation and initialization cost each time.
//!
//! Streaming supports outputs of the following forms:
//! - Fixed buffers, created with the [`stream_into_buf`](struct.Encoder.html#method.stream_into_buf) method.
//! - Vectors, created with the [`stream_into_vec`](struct.Encoder.html#method.stream_into_vec) method.
//! - Any type that implements [`std::io::Write`](https://doc.rust-lang.org/std/io/trait.Write.html),
//! created with the generic [`stream`](struct.Encoder.html#method.stream) method.
//!
//! Once you have an [`EncoderStream`](struct.EncoderStream.html), simply call
//! [`write`](struct.EncoderStream.html#method.write) one or more times, feeding your raw
//! data into the stream. If available, you can submit the entire input buffer at once, or
//! in arbitrarily sized chunks down to a single byte. After all data has been written,
//! call [`finish`](struct.EncoderStream.html#method.finish) on the stream which will
//! consume it, flush all remaining input and output, and finalize the operation. The finish
//! method returns a [`Result`](https://doc.rust-lang.org/std/result/enum.Result.html)
//! containing the total number of compressed bytes written to the output on success, or an
//! [`Error`](enum.Error.html) describing the problem on failure.
//!
//! Let's write a function that compresses some arbitrary bytes into a vector:
//! ```
//! fn compress_bytes(buf: &[u8]) -> Result<Vec<u8>, yazi::Error> {
//! use yazi::Encoder;
//! let mut encoder = Encoder::boxed();
//! let mut vec = Vec::new();
//! let mut stream = encoder.stream_into_vec(&mut vec);
//! stream.write(buf)?;
//! stream.finish()?;
//! Ok(vec)
//! }
//! ```
//!
//! Now let's do something a bit more interesting, and given two paths, compress
//! one file into another:
//! ```
//! fn compress_file(source: &str, dest: &str) -> Result<u64, yazi::Error> {
//! use yazi::Encoder;
//! use std::fs::File;
//! use std::io::{copy, BufWriter};
//! let mut encoder = Encoder::boxed();
//! // yazi does not perform any internal buffering beyond what is necessary
//! // for correctness.
//! let mut target = BufWriter::new(File::create(dest)?);
//! let mut stream = encoder.stream(&mut target);
//! copy(&mut File::open(source)?, &mut stream)?;
//! stream.finish()
//! }
//! ```
//!
//! Here, we can see that [`EncoderStream`](struct.EncoderStream.html) also implements
//! [`Write`](https://doc.rust-lang.org/std/io/trait.Write.html), so we can
//! pass it directly to [`std::io::copy`](https://doc.rust-lang.org/std/io/fn.copy.html).
//! This allows streams to be composable with the standard I/O facilities and other
//! libraries that support those interfaces.
//!
//! # Decompression
//!
//! If you've already read the section on compression, the API for decompression
//! is essentially identical with the types replaced by [`Decoder`](struct.Decoder.html)
//! and [`DecoderStream`](struct.DecoderStream.html). The documentation is copied here
//! almost verbatim for the sake of completeness and for those who might have skipped
//! directly to this section.
//!
//! To decompress data, you'll need to create an instance of the
//! [`Decoder`](struct.Decoder.html) struct. The [`new`](struct.Decoder.html#method.new)
//! method can be used to construct a decoder on the stack, and unlike encoders, the
//! decoder struct is relatively small (~10k) and generally safe to stack allocate. You can
//! create a decoder on the heap with the [`boxed`](struct.Decoder.html#method.boxed)
//! method if you prefer.
//!
//! Newly constructed decoders are configured to decompress a raw DEFLATE bitstream. Call
//! [`set_format`](struct.Decoder.html#method.set_format) to change the input
//! [`Format`](enum.Format.html). Raw DEFLATE and zlib are supported. No other configuration
//! is necessary for decompression.
//!
//! To create a decoder that decompresses a zlib bitstream:
//! ```
//! use yazi::{Decoder, Format};
//! let mut decoder = Decoder::new();
//! decoder.set_format(Format::Zlib);
//! ```
//!
//! The decoder itself does not provide any functionality. It simply stores state and
//! configuration. To actually decompress data, you'll need a
//! [`DecoderStream`](struct.DecoderStream.html). A stream is a binding between a
//! decoder and some specific output that will receive the decompressed data. This
//! design allows a decoder to be reused with different types of outputs without paying the
//! allocation and initialization cost each time.
//!
//! Streaming supports outputs of the following forms:
//! - Fixed buffers, created with the [`stream_into_buf`](struct.Decoder.html#method.stream_into_buf) method.
//! - Vectors, created with the [`stream_into_vec`](struct.Decoder.html#method.stream_into_vec) method.
//! - Any type that implements [`std::io::Write`](https://doc.rust-lang.org/std/io/trait.Write.html),
//! created with the generic [`stream`](struct.Decoder.html#method.stream) method.
//!
//! Once you have a [`DecoderStream`](struct.DecoderStream.html), simply call
//! [`write`](struct.DecoderStream.html#method.write) one or more times, feeding your compressed
//! data into the stream. If available, you can submit the entire input buffer at once, or
//! in arbitrarily sized chunks down to a single byte. After all data has been written,
//! call [`finish`](struct.DecoderStream.html#method.finish) on the stream which will
//! consume it, flush all remaining input and output, and finalize the operation. The finish
//! method returns a [`Result`](https://doc.rust-lang.org/std/result/enum.Result.html)
//! containing the total number of decompressed bytes written to the output along with an optional
//! Adler-32 checksum (if the stream was zlib-encoded) on success, or an
//! [`Error`](enum.Error.html) describing the problem on failure.
//!
//! Let's write a function that decompresses a zlib bitstream into a vector and verifies
//! the checksum:
//! ```
//! fn decompress_zlib(buf: &[u8]) -> Result<Vec<u8>, yazi::Error> {
//! use yazi::{Adler32, Decoder, Error, Format};
//! let mut decoder = Decoder::new();
//! decoder.set_format(Format::Zlib);
//! let mut vec = Vec::new();
//! let mut stream = decoder.stream_into_vec(&mut vec);
//! stream.write(buf)?;
//! // checksum is an Option<u32>
//! let (_, checksum) = stream.finish()?;
//! if Adler32::from_buf(&vec).finish() != checksum.unwrap() {
//! return Err(Error::InvalidBitstream);
//! }
//! Ok(vec)
//! }
//! ```
//!
//! Now let's do something a bit more interesting, and given two paths, decompress
//! one file into another:
//! ```
//! fn decompress_file(source: &str, dest: &str) -> Result<(u64, Option<u32>), yazi::Error> {
//! use yazi::Decoder;
//! use std::fs::File;
//! use std::io::{copy, BufWriter};
//! let mut decoder = Decoder::new();
//! // yazi does not perform any internal buffering beyond what is necessary
//! // for correctness.
//! let mut target = BufWriter::new(File::create(dest)?);
//! let mut stream = decoder.stream(&mut target);
//! copy(&mut File::open(source)?, &mut stream)?;
//! stream.finish()
//! }
//! ```
//!
//! Here, we can see that [`DecoderStream`](struct.DecoderStream.html) also implements
//! [`Write`](https://doc.rust-lang.org/std/io/trait.Write.html), so we can
//! pass it directly to [`std::io::copy`](https://doc.rust-lang.org/std/io/fn.copy.html).
//! This allows streams to be composable with the standard I/O facilities and other
//! libraries that support those interfaces.
//!
//! # Implementation Notes
//!
//! The compressor is based heavily on both miniz (<https://github.com/richgel999/miniz>)
//! by Rich Geldreich and miniz_oxide (<https://github.com/Frommi/miniz_oxide>)
//! by Frommi. The available compression levels and strategies are the same and
//! it should produce an identical bitstream for a given set of options. The
//! decompressor is based on the techniques in libdeflate (<https://github.com/ebiggers/libdeflate>)
//! by Eric Biggers.
#![cfg_attr(not(feature = "std"), no_std)]
extern crate alloc;
mod decode;
mod encode;
#[cfg(feature = "std")]
use std::io;
pub use decode::{decompress, Decoder, DecoderStream};
pub use encode::{compress, CompressionLevel, CompressionStrategy, Encoder, EncoderStream};
/// Defines the format for a compressed bitstream.
#[derive(Copy, Clone, PartialEq, Debug)]
pub enum Format {
/// Raw DEFLATE data.
Raw,
/// Zlib header with an Adler-32 footer.
Zlib,
}
/// Errors that may occur during compression or decompression.
#[derive(Debug)]
pub enum Error {
/// Not enough input was provided.
Underflow,
/// The bitstream was corrupt.
InvalidBitstream,
/// Output buffer was too small.
Overflow,
/// Attempt to write into a finished stream.
Finished,
/// A system I/O error.
///
/// Only available with the `std` feature enabled.
#[cfg(feature = "std")]
Io(io::Error),
}
#[cfg(feature = "std")]
impl From<io::Error> for Error {
fn from(error: io::Error) -> Self {
Self::Io(error)
}
}
/// Rolling Adler-32 checksum.
#[derive(Copy, Clone)]
pub struct Adler32(u32);
impl Adler32 {
/// Creates a new checksum initialized to the default value.
pub fn new() -> Self {
Self(1)
}
/// Creates a checksum from a buffer.
pub fn from_buf(buf: &[u8]) -> Self {
let mut checksum = Self::new();
checksum.update(buf);
checksum
}
/// Updates the checksum with bytes provided by the specified buffer.
pub fn update(&mut self, buf: &[u8]) {
let mut s1 = self.0 & 0xFFFF;
let mut s2 = (self.0 >> 16) & 0xFFFF;
for chunk in buf.chunks(5550) {
for b in chunk {
s1 += *b as u32;
s2 += s1;
}
s1 %= 65521;
s2 %= 65521;
}
self.0 = (s2 << 16) | s1;
}
/// Returns the checksum.
pub fn finish(self) -> u32 {
self.0
}
}
impl Default for Adler32 {
fn default() -> Self {
Self::new()
}
}
#[cfg(test)]
mod tests {
use super::*;
use alloc::vec::Vec;
#[cfg(target_family = "wasm")]
use wasm_bindgen_test::wasm_bindgen_test as test;
fn generate_bytes() -> Vec<u8> {
const BYTES: &[u8; 26] = b"abcdefghijklmnopqrstuvwxyz";
let mut buf = Vec::new();
for i in 0..4096 {
if i % 3 == 0 {
buf.extend_from_slice(&BYTES[13..]);
} else if i & 1 != 0 {
buf.extend_from_slice(BYTES);
} else {
buf.extend(BYTES.iter().rev());
}
}
buf
}
#[test]
fn compress_decompress() {
let buf = generate_bytes();
let mut compressed = Vec::new();
let mut encoder = Encoder::boxed();
let mut stream = encoder.stream_into_vec(&mut compressed);
stream.write(&buf).unwrap();
stream.finish().unwrap();
let mut decompressed = Vec::new();
let mut decoder = Decoder::new();
let mut stream = decoder.stream_into_vec(&mut decompressed);
stream.write(&compressed).unwrap();
stream.finish().unwrap();
assert_eq!(buf, decompressed);
}
#[test]
fn compress_decompress_zlib() {
let buf = generate_bytes();
let mut compressed = Vec::new();
let mut encoder = Encoder::boxed();
encoder.set_format(Format::Zlib);
let mut stream = encoder.stream_into_vec(&mut compressed);
stream.write(&buf).unwrap();
stream.finish().unwrap();
let mut decompressed = Vec::new();
let mut decoder = Decoder::new();
decoder.set_format(Format::Zlib);
let mut stream = decoder.stream_into_vec(&mut decompressed);
stream.write(&compressed).unwrap();
let (_, checksum) = stream.finish().unwrap();
assert_eq!(buf, decompressed);
let mut adler = Adler32::new();
adler.update(&decompressed);
assert_eq!(adler.finish(), checksum.unwrap());
}
#[test]
fn compress_decompress_static() {
let buf = generate_bytes();
let mut compressed = Vec::new();
let mut encoder = Encoder::boxed();
encoder.set_strategy(CompressionStrategy::Static);
let mut stream = encoder.stream_into_vec(&mut compressed);
stream.write(&buf).unwrap();
stream.finish().unwrap();
let mut decompressed = Vec::new();
let mut decoder = Decoder::new();
let mut stream = decoder.stream_into_vec(&mut decompressed);
stream.write(&compressed).unwrap();
stream.finish().unwrap();
assert_eq!(buf, decompressed);
}
#[test]
fn compress_decompress_raw() {
let buf = generate_bytes();
let mut compressed = Vec::new();
let mut encoder = Encoder::boxed();
encoder.set_level(CompressionLevel::None);
let mut stream = encoder.stream_into_vec(&mut compressed);
stream.write(&buf).unwrap();
stream.finish().unwrap();
let mut decompressed = Vec::new();
let mut decoder = Decoder::new();
let mut stream = decoder.stream_into_vec(&mut decompressed);
stream.write(&compressed).unwrap();
stream.finish().unwrap();
assert_eq!(buf, decompressed);
}
#[test]
fn compress_decompress_streaming_1byte() {
let buf = generate_bytes();
let mut compressed = Vec::new();
let mut encoder = Encoder::boxed();
let mut stream = encoder.stream_into_vec(&mut compressed);
for &b in &buf {
stream.write(&[b]).unwrap();
}
stream.finish().unwrap();
let mut decompressed = Vec::new();
let mut decoder = Decoder::new();
let mut stream = decoder.stream_into_vec(&mut decompressed);
for &b in &compressed {
stream.write(&[b]).unwrap();
}
stream.finish().unwrap();
assert_eq!(buf, decompressed);
}
#[test]
fn compress_decompress_streaming_64bytes() {
let buf = generate_bytes();
let mut compressed = Vec::new();
let mut encoder = Encoder::boxed();
let mut stream = encoder.stream_into_vec(&mut compressed);
for chunk in buf.chunks(64) {
stream.write(chunk).unwrap();
}
stream.finish().unwrap();
let mut decompressed = Vec::new();
let mut decoder = Decoder::new();
let mut stream = decoder.stream_into_vec(&mut decompressed);
for chunk in compressed.chunks(64) {
stream.write(chunk).unwrap();
}
stream.finish().unwrap();
assert_eq!(buf, decompressed);
}
}