1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601
// Copyright 2019 The Fuchsia Authors. All rights reserved. // Use of this source code is governed by a BSD-style license that can be // found in the LICENSE file. #![recursion_limit = "128"] mod ext; mod repr; use proc_macro2::Span; use syn::visit::{self, Visit}; use syn::{ parse_quote, punctuated::Punctuated, token::Comma, Data, DataEnum, DataStruct, DeriveInput, Error, GenericParam, Ident, Lifetime, Type, TypePath, }; use synstructure::{decl_derive, quote, Structure}; use ext::*; use repr::*; // TODO(joshlf): Some errors could be made better if we could add multiple lines // of error output like this: // // error: unsupported representation // --> enum.rs:28:8 // | // 28 | #[repr(transparent)] // | // help: required by the derive of FromBytes // // Instead, we have more verbose error messages like "unsupported representation // for deriving FromBytes, AsBytes, or Unaligned on an enum" // // This will probably require Span::error // (https://doc.rust-lang.org/nightly/proc_macro/struct.Span.html#method.error), // which is currently unstable. Revisit this once it's stable. decl_derive!([FromBytes] => derive_from_bytes); decl_derive!([AsBytes] => derive_as_bytes); decl_derive!([Unaligned] => derive_unaligned); fn derive_from_bytes(s: Structure<'_>) -> proc_macro2::TokenStream { match &s.ast().data { Data::Struct(strct) => derive_from_bytes_struct(&s, strct), Data::Enum(enm) => derive_from_bytes_enum(&s, enm), Data::Union(_) => Error::new(Span::call_site(), "unsupported on unions").to_compile_error(), } } fn derive_as_bytes(s: Structure<'_>) -> proc_macro2::TokenStream { match &s.ast().data { Data::Struct(strct) => derive_as_bytes_struct(&s, strct), Data::Enum(enm) => derive_as_bytes_enum(&s, enm), Data::Union(_) => Error::new(Span::call_site(), "unsupported on unions").to_compile_error(), } } fn derive_unaligned(s: Structure<'_>) -> proc_macro2::TokenStream { match &s.ast().data { Data::Struct(strct) => derive_unaligned_struct(&s, strct), Data::Enum(enm) => derive_unaligned_enum(&s, enm), Data::Union(_) => Error::new(Span::call_site(), "unsupported on unions").to_compile_error(), } } // Unwrap a Result<_, Vec<Error>>, converting any Err value into a TokenStream // and returning it. macro_rules! try_or_print { ($e:expr) => { match $e { Ok(x) => x, Err(errors) => return print_all_errors(errors), } }; } // A struct is FromBytes if: // - all fields are FromBytes fn derive_from_bytes_struct(s: &Structure<'_>, strct: &DataStruct) -> proc_macro2::TokenStream { impl_block(s.ast(), strct, "FromBytes", true, false) } // An enum is FromBytes if: // - Every possible bit pattern must be valid, which means that every bit // pattern must correspond to a different enum variant. Thus, for an enum // whose layout takes up N bytes, there must be 2^N variants. // - Since we must know N, only representations which guarantee the layout's // size are allowed. These are repr(uN) and repr(iN) (repr(C) implies an // implementation-defined size). size and isize technically guarantee the // layout's size, but would require us to know how large those are on the // target platform. This isn't terribly difficult - we could emit a const // expression that could call core::mem::size_of in order to determine the // size and check against the number of enum variants, but a) this would be // platform-specific and, b) even on Rust's smallest bit width platform (32), // this would require ~4 billion enum variants, which obviously isn't a thing. fn derive_from_bytes_enum(s: &Structure<'_>, enm: &DataEnum) -> proc_macro2::TokenStream { if !enm.is_c_like() { return Error::new_spanned(s.ast(), "only C-like enums can implement FromBytes") .to_compile_error(); } let reprs = try_or_print!(ENUM_FROM_BYTES_CFG.validate_reprs(s.ast())); let variants_required = match reprs.as_slice() { [EnumRepr::U8] | [EnumRepr::I8] => 1usize << 8, [EnumRepr::U16] | [EnumRepr::I16] => 1usize << 16, // validate_reprs has already validated that it's one of the preceding // patterns _ => unreachable!(), }; if enm.variants.len() != variants_required { return Error::new_spanned( s.ast(), format!( "FromBytes only supported on {} enum with {} variants", reprs[0], variants_required ), ) .to_compile_error(); } impl_block(s.ast(), enm, "FromBytes", true, false) } #[rustfmt::skip] const ENUM_FROM_BYTES_CFG: Config<EnumRepr> = { use EnumRepr::*; Config { allowed_combinations_message: r#"FromBytes requires repr of "u8", "u16", "i8", or "i16""#, derive_unaligned: false, allowed_combinations: &[ &[U8], &[U16], &[I8], &[I16], ], disallowed_but_legal_combinations: &[ &[C], &[U32], &[I32], &[U64], &[I64], &[Usize], &[Isize], ], } }; // A struct is AsBytes if: // - all fields are AsBytes // - repr(C) or repr(transparent) and // - no padding (size of struct equals sum of size of field types) // - repr(packed) fn derive_as_bytes_struct(s: &Structure<'_>, strct: &DataStruct) -> proc_macro2::TokenStream { // TODO(joshlf): Support type parameters. if !s.ast().generics.params.is_empty() { return Error::new(Span::call_site(), "unsupported on types with type parameters") .to_compile_error(); } let reprs = try_or_print!(STRUCT_AS_BYTES_CFG.validate_reprs(s.ast())); let require_size_check = match reprs.as_slice() { [StructRepr::C] | [StructRepr::Transparent] => true, [StructRepr::Packed] | [StructRepr::C, StructRepr::Packed] => false, // validate_reprs has already validated that it's one of the preceding // patterns _ => unreachable!(), }; impl_block(s.ast(), strct, "AsBytes", true, require_size_check) } #[rustfmt::skip] const STRUCT_AS_BYTES_CFG: Config<StructRepr> = { use StructRepr::*; Config { // NOTE: Since disallowed_but_legal_combinations is empty, this message // will never actually be emitted. allowed_combinations_message: r#"AsBytes requires repr of "C", "transparent", or "packed""#, derive_unaligned: false, allowed_combinations: &[ &[C], &[Transparent], &[C, Packed], &[Packed], ], disallowed_but_legal_combinations: &[], } }; // An enum is AsBytes if it is C-like and has a defined repr fn derive_as_bytes_enum(s: &Structure<'_>, enm: &DataEnum) -> proc_macro2::TokenStream { if !enm.is_c_like() { return Error::new_spanned(s.ast(), "only C-like enums can implement AsBytes") .to_compile_error(); } // We don't care what the repr is; we only care that it is one of the // allowed ones. try_or_print!(ENUM_AS_BYTES_CFG.validate_reprs(s.ast())); impl_block(s.ast(), enm, "AsBytes", false, false) } #[rustfmt::skip] const ENUM_AS_BYTES_CFG: Config<EnumRepr> = { use EnumRepr::*; Config { // NOTE: Since disallowed_but_legal_combinations is empty, this message // will never actually be emitted. allowed_combinations_message: r#"AsBytes requires repr of "C", "u8", "u16", "u32", "u64", "usize", "i8", "i16", "i32", "i64", or "isize""#, derive_unaligned: false, allowed_combinations: &[ &[C], &[U8], &[U16], &[I8], &[I16], &[U32], &[I32], &[U64], &[I64], &[Usize], &[Isize], ], disallowed_but_legal_combinations: &[], } }; // A struct is Unaligned if: // - repr(align) is no more than 1 and either // - repr(C) or repr(transparent) and // - all fields Unaligned // - repr(packed) fn derive_unaligned_struct(s: &Structure<'_>, strct: &DataStruct) -> proc_macro2::TokenStream { let reprs = try_or_print!(STRUCT_UNALIGNED_CFG.validate_reprs(s.ast())); let require_trait_bound = match reprs.as_slice() { [StructRepr::C] | [StructRepr::Transparent] => true, [StructRepr::Packed] | [StructRepr::C, StructRepr::Packed] => false, // validate_reprs has already validated that it's one of the preceding // patterns _ => unreachable!(), }; impl_block(s.ast(), strct, "Unaligned", require_trait_bound, false) } #[rustfmt::skip] const STRUCT_UNALIGNED_CFG: Config<StructRepr> = { use StructRepr::*; Config { // NOTE: Since disallowed_but_legal_combinations is empty, this message // will never actually be emitted. allowed_combinations_message: r#"Unaligned requires either a) repr "C" or "transparent" with all fields implementing Unaligned or, b) repr "packed""#, derive_unaligned: true, allowed_combinations: &[ &[C], &[Transparent], &[Packed], &[C, Packed], ], disallowed_but_legal_combinations: &[], } }; // An enum is Unaligned if: // - No repr(align(N > 1)) // - repr(u8) or repr(i8) fn derive_unaligned_enum(s: &Structure<'_>, enm: &DataEnum) -> proc_macro2::TokenStream { if !enm.is_c_like() { return Error::new_spanned(s.ast(), "only C-like enums can implement Unaligned") .to_compile_error(); } // The only valid reprs are u8 and i8, and optionally align(1). We don't // actually care what the reprs are so long as they satisfy that // requirement. try_or_print!(ENUM_UNALIGNED_CFG.validate_reprs(s.ast())); // NOTE: C-like enums cannot currently have type parameters, so this value // of true for require_trait_bounds doesn't really do anything. But it's // marginally more future-proof in case that restriction is lifted in the // future. impl_block(s.ast(), enm, "Unaligned", true, false) } #[rustfmt::skip] const ENUM_UNALIGNED_CFG: Config<EnumRepr> = { use EnumRepr::*; Config { allowed_combinations_message: r#"Unaligned requires repr of "u8" or "i8", and no alignment (i.e., repr(align(N > 1)))"#, derive_unaligned: true, allowed_combinations: &[ &[U8], &[I8], ], disallowed_but_legal_combinations: &[ &[C], &[U16], &[U32], &[U64], &[Usize], &[I16], &[I32], &[I64], &[Isize], ], } }; fn impl_block<D: DataExt>( input: &DeriveInput, data: &D, trait_name: &str, require_trait_bound: bool, require_size_check: bool, ) -> proc_macro2::TokenStream { // In this documentation, we will refer to this hypothetical struct: // // #[derive(FromBytes)] // struct Foo<T, I: Iterator> // where // T: Copy, // I: Clone, // I::Item: Clone, // { // a: u8, // b: T, // c: I::Item, // } // // First, we extract the field types, which in this case are u8, T, and // I::Item. We use the names of the type parameters to split the field types // into two sets - a set of types which are based on the type parameters, // and a set of types which are not. First, we re-use the existing // parameters and where clauses, generating an impl block like: // // impl<T, I: Iterator> FromBytes for Foo<T, I> // where // T: Copy, // I: Clone, // I::Item: Clone, // { // } // // Then, we use the list of types which are based on the type parameters to // generate new entries in the where clause: // // impl<T, I: Iterator> FromBytes for Foo<T, I> // where // T: Copy, // I: Clone, // I::Item: Clone, // T: FromBytes, // I::Item: FromBytes, // { // } // // Finally, we use a different technique to generate the bounds for the types // which are not based on type parameters: // // // fn only_derive_is_allowed_to_implement_this_trait() where Self: Sized { // struct ImplementsFromBytes<F: ?Sized + FromBytes>(PhantomData<F>); // let _: ImplementsFromBytes<u8>; // } // // It would be easier to put all types in the where clause, but that won't // work until the trivial_bounds feature is stabilized (#48214). // // NOTE: It is standard practice to only emit bounds for the type parameters // themselves, not for field types based on those parameters (e.g., `T` vs // `T::Foo`). For a discussion of why this is standard practice, see // https://github.com/rust-lang/rust/issues/26925. // // The reason we diverge from this standard is that doing it that way for us // would be unsound. E.g., consider a type, `T` where `T: FromBytes` but // `T::Foo: !FromBytes`. It would not be sound for us to accept a type with // a `T::Foo` field as `FromBytes` simply because `T: FromBytes`. // // While there's no getting around this requirement for us, it does have // some pretty serious downsides that are worth calling out: // // 1. You lose the ability to have fields of generic type with reduced visibility. // // #[derive(Unaligned)] // #[repr(C)] // pub struct Public<T>(Private<T>); // // #[derive(Unaligned)] // #[repr(C)] // struct Private<T>(T); // // // warning: private type `Private<T>` in public interface (error E0446) // --> src/main.rs:6:10 // | // 6 | #[derive(Unaligned)] // | ^^^^^^^^^ // | // = note: #[warn(private_in_public)] on by default // = warning: this was previously accepted by the compiler but is being phased out; it will become a hard error in a future release! // = note: for more information, see issue #34537 <https://github.com/rust-lang/rust/issues/34537> // // 2. When lifetimes are involved, the trait solver ties itself in knots. // // #[derive(Unaligned)] // #[repr(C)] // struct Dup<'a, 'b> { // a: PhantomData<&'a u8>, // b: PhantomData<&'b u8>, // } // // // error[E0283]: type annotations required: cannot resolve `core::marker::PhantomData<&'a u8>: zerocopy::Unaligned` // --> src/main.rs:6:10 // | // 6 | #[derive(Unaligned)] // | ^^^^^^^^^ // | // = note: required by `zerocopy::Unaligned` // A visitor which is used to walk a field's type and determine whether any // of its definition is based on the type or lifetime parameters on a type. struct FromTypeParamVisit<'a, 'b>(&'a Punctuated<GenericParam, Comma>, &'b mut bool); impl<'a, 'b> Visit<'a> for FromTypeParamVisit<'a, 'b> { fn visit_type_path(&mut self, i: &'a TypePath) { visit::visit_type_path(self, i); if self.0.iter().any(|param| { if let GenericParam::Type(param) = param { i.path.segments.first().unwrap().ident == param.ident } else { false } }) { *self.1 = true; } } fn visit_lifetime(&mut self, i: &'a Lifetime) { visit::visit_lifetime(self, i); if self.0.iter().any(|param| { if let GenericParam::Lifetime(param) = param { param.lifetime.ident == i.ident } else { false } }) { *self.1 = true; } } } // Whether this type is based on one of the type parameters. E.g., given the // type parameters `<T>`, `T`, `T::Foo`, and `(T::Foo, String)` are all // based on the type parameters, while `String` and `(String, Box<()>)` are // not. let is_from_type_param = |ty: &Type| { let mut ret = false; FromTypeParamVisit(&input.generics.params, &mut ret).visit_type(ty); ret }; let trait_ident = Ident::new(trait_name, Span::call_site()); let field_types = data.nested_types(); let type_param_field_types = field_types.iter().filter(|ty| is_from_type_param(ty)); let non_type_param_field_types = field_types.iter().filter(|ty| !is_from_type_param(ty)); // Add a new set of where clause predicates of the form `T: Trait` for each // of the types of the struct's fields (but only the ones whose types are // based on one of the type parameters). let mut generics = input.generics.clone(); let where_clause = generics.make_where_clause(); if require_trait_bound { for ty in type_param_field_types { let bound = parse_quote!(#ty: zerocopy::#trait_ident); where_clause.predicates.push(bound); } } let type_ident = &input.ident; // The parameters with trait bounds, but without type defaults. let params = input.generics.params.clone().into_iter().map(|mut param| { match &mut param { GenericParam::Type(ty) => ty.default = None, GenericParam::Const(cnst) => cnst.default = None, GenericParam::Lifetime(_) => {} } quote!(#param) }); // The identifiers of the parameters without trait bounds or type defaults. let param_idents = input.generics.params.iter().map(|param| match param { GenericParam::Type(ty) => { let ident = &ty.ident; quote!(#ident) } GenericParam::Lifetime(l) => quote!(#l), GenericParam::Const(cnst) => quote!(#cnst), }); let trait_bound_body = if require_trait_bound { let implements_type_ident = Ident::new(format!("Implements{}", trait_ident).as_str(), Span::call_site()); let implements_type_tokens = quote!(#implements_type_ident); let types = non_type_param_field_types.map(|ty| quote!(#implements_type_tokens<#ty>)); quote!( // A type with a type parameter that must implement #trait_ident struct #implements_type_ident<F: ?Sized + zerocopy::#trait_ident>(::core::marker::PhantomData<F>); // For each field type, an instantiation that won't type check if // that type doesn't implement #trait_ident #(let _: #types;)* ) } else { quote!() }; let size_check_body = if require_size_check && !field_types.is_empty() { quote!( const HAS_PADDING: bool = core::mem::size_of::<#type_ident>() != #(core::mem::size_of::<#field_types>())+*; let _: [(); 1/(1 - HAS_PADDING as usize)]; ) } else { quote!() }; quote! { unsafe impl < #(#params),* > zerocopy::#trait_ident for #type_ident < #(#param_idents),* > #where_clause { fn only_derive_is_allowed_to_implement_this_trait() where Self: Sized { #trait_bound_body #size_check_body } } } } fn print_all_errors(errors: Vec<Error>) -> proc_macro2::TokenStream { errors.iter().map(Error::to_compile_error).collect() } #[cfg(test)] mod tests { use super::*; #[test] fn test_config_repr_orderings() { // Validate that the repr lists in the various configs are in the // canonical order. If they aren't, then our algorithm to look up in // those lists won't work. // TODO(joshlf): Remove once the is_sorted method is stabilized // (issue #53485). fn is_sorted_and_deduped<T: Clone + Ord>(ts: &[T]) -> bool { let mut sorted = ts.to_vec(); sorted.sort(); sorted.dedup(); ts == sorted.as_slice() } fn elements_are_sorted_and_deduped<T: Clone + Ord>(lists: &[&[T]]) -> bool { lists.iter().all(|list| is_sorted_and_deduped(*list)) } fn config_is_sorted<T: KindRepr + Clone>(config: &Config<T>) -> bool { elements_are_sorted_and_deduped(&config.allowed_combinations) && elements_are_sorted_and_deduped(&config.disallowed_but_legal_combinations) } assert!(config_is_sorted(&STRUCT_UNALIGNED_CFG)); assert!(config_is_sorted(&ENUM_FROM_BYTES_CFG)); assert!(config_is_sorted(&ENUM_UNALIGNED_CFG)); } #[test] fn test_config_repr_no_overlap() { // Validate that no set of reprs appears in both th allowed_combinations // and disallowed_but_legal_combinations lists. fn overlap<T: Eq>(a: &[T], b: &[T]) -> bool { a.iter().any(|elem| b.contains(elem)) } fn config_overlaps<T: KindRepr + Eq>(config: &Config<T>) -> bool { overlap(config.allowed_combinations, config.disallowed_but_legal_combinations) } assert!(!config_overlaps(&STRUCT_UNALIGNED_CFG)); assert!(!config_overlaps(&ENUM_FROM_BYTES_CFG)); assert!(!config_overlaps(&ENUM_UNALIGNED_CFG)); } }