zerocopy_derive/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373
// Copyright 2019 The Fuchsia Authors
//
// Licensed under a BSD-style license <LICENSE-BSD>, Apache License, Version 2.0
// <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT
// license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option.
// This file may not be copied, modified, or distributed except according to
// those terms.
//! Derive macros for [zerocopy]'s traits.
//!
//! [zerocopy]: https://docs.rs/zerocopy
// Sometimes we want to use lints which were added after our MSRV.
// `unknown_lints` is `warn` by default and we deny warnings in CI, so without
// this attribute, any unknown lint would cause a CI failure when testing with
// our MSRV.
#![allow(unknown_lints)]
#![deny(renamed_and_removed_lints)]
#![deny(clippy::all, clippy::missing_safety_doc, clippy::undocumented_unsafe_blocks)]
#![deny(
rustdoc::bare_urls,
rustdoc::broken_intra_doc_links,
rustdoc::invalid_codeblock_attributes,
rustdoc::invalid_html_tags,
rustdoc::invalid_rust_codeblocks,
rustdoc::missing_crate_level_docs,
rustdoc::private_intra_doc_links
)]
#![recursion_limit = "128"]
mod r#enum;
mod ext;
#[cfg(test)]
mod output_tests;
mod repr;
use proc_macro2::{TokenStream, TokenTree};
use quote::ToTokens;
use {
proc_macro2::Span,
quote::quote,
syn::{
parse_quote, Data, DataEnum, DataStruct, DataUnion, DeriveInput, Error, Expr, ExprLit,
ExprUnary, GenericParam, Ident, Lit, Path, Type, UnOp, WherePredicate,
},
};
use {crate::ext::*, crate::repr::*};
// TODO(https://github.com/rust-lang/rust/issues/54140): Some errors could be
// made better if we could add multiple lines of error output like this:
//
// error: unsupported representation
// --> enum.rs:28:8
// |
// 28 | #[repr(transparent)]
// |
// help: required by the derive of FromBytes
//
// Instead, we have more verbose error messages like "unsupported representation
// for deriving FromZeros, FromBytes, IntoBytes, or Unaligned on an enum"
//
// This will probably require Span::error
// (https://doc.rust-lang.org/nightly/proc_macro/struct.Span.html#method.error),
// which is currently unstable. Revisit this once it's stable.
/// Defines a derive function named `$outer` which parses its input
/// `TokenStream` as a `DeriveInput` and then invokes the `$inner` function.
///
/// Note that the separate `$outer` parameter is required - proc macro functions
/// are currently required to live at the crate root, and so the caller must
/// specify the name in order to avoid name collisions.
macro_rules! derive {
($trait:ident => $outer:ident => $inner:ident) => {
#[proc_macro_derive($trait)]
pub fn $outer(ts: proc_macro::TokenStream) -> proc_macro::TokenStream {
let ast = syn::parse_macro_input!(ts as DeriveInput);
$inner(&ast, Trait::$trait).into_ts().into()
}
};
}
trait IntoTokenStream {
fn into_ts(self) -> TokenStream;
}
impl IntoTokenStream for TokenStream {
fn into_ts(self) -> TokenStream {
self
}
}
impl IntoTokenStream for Result<TokenStream, Error> {
fn into_ts(self) -> TokenStream {
match self {
Ok(ts) => ts,
Err(err) => err.to_compile_error(),
}
}
}
derive!(KnownLayout => derive_known_layout => derive_known_layout_inner);
derive!(Immutable => derive_no_cell => derive_no_cell_inner);
derive!(TryFromBytes => derive_try_from_bytes => derive_try_from_bytes_inner);
derive!(FromZeros => derive_from_zeros => derive_from_zeros_inner);
derive!(FromBytes => derive_from_bytes => derive_from_bytes_inner);
derive!(IntoBytes => derive_into_bytes => derive_into_bytes_inner);
derive!(Unaligned => derive_unaligned => derive_unaligned_inner);
/// Deprecated: prefer [`FromZeros`] instead.
#[deprecated(since = "0.8.0", note = "`FromZeroes` was renamed to `FromZeros`")]
#[doc(hidden)]
#[proc_macro_derive(FromZeroes)]
pub fn derive_from_zeroes(ts: proc_macro::TokenStream) -> proc_macro::TokenStream {
derive_from_zeros(ts)
}
/// Deprecated: prefer [`IntoBytes`] instead.
#[deprecated(since = "0.8.0", note = "`AsBytes` was renamed to `IntoBytes`")]
#[doc(hidden)]
#[proc_macro_derive(AsBytes)]
pub fn derive_as_bytes(ts: proc_macro::TokenStream) -> proc_macro::TokenStream {
derive_into_bytes(ts)
}
fn derive_known_layout_inner(ast: &DeriveInput, _top_level: Trait) -> Result<TokenStream, Error> {
let is_repr_c_struct = match &ast.data {
Data::Struct(..) => {
let repr = StructUnionRepr::from_attrs(&ast.attrs)?;
if repr.is_c() {
Some(repr)
} else {
None
}
}
Data::Enum(..) | Data::Union(..) => None,
};
let fields = ast.data.fields();
let (self_bounds, extras) = if let (Some(repr), Some((trailing_field, leading_fields))) =
(is_repr_c_struct, fields.split_last())
{
let (_name, trailing_field_ty) = trailing_field;
let leading_fields_tys = leading_fields.iter().map(|(_name, ty)| ty);
let core_path = quote!(::zerocopy::util::macro_util::core_reexport);
let repr_align = repr
.get_align()
.map(|align| {
let align = align.t.get();
quote!(#core_path::num::NonZeroUsize::new(#align as usize))
})
.unwrap_or_else(|| quote!(#core_path::option::Option::None));
let repr_packed = repr
.get_packed()
.map(|packed| {
let packed = packed.get();
quote!(#core_path::num::NonZeroUsize::new(#packed as usize))
})
.unwrap_or_else(|| quote!(#core_path::option::Option::None));
(
SelfBounds::None,
quote!(
type PointerMetadata = <#trailing_field_ty as ::zerocopy::KnownLayout>::PointerMetadata;
// SAFETY: `LAYOUT` accurately describes the layout of `Self`.
// The layout of `Self` is reflected using a sequence of
// invocations of `DstLayout::{new_zst,extend,pad_to_align}`.
// The documentation of these items vows that invocations in
// this manner will acurately describe a type, so long as:
//
// - that type is `repr(C)`,
// - its fields are enumerated in the order they appear,
// - the presence of `repr_align` and `repr_packed` are correctly accounted for.
//
// We respect all three of these preconditions here. This
// expansion is only used if `is_repr_c_struct`, we enumerate
// the fields in order, and we extract the values of `align(N)`
// and `packed(N)`.
const LAYOUT: ::zerocopy::DstLayout = {
use ::zerocopy::util::macro_util::core_reexport::num::NonZeroUsize;
use ::zerocopy::{DstLayout, KnownLayout};
let repr_align = #repr_align;
let repr_packed = #repr_packed;
DstLayout::new_zst(repr_align)
#(.extend(DstLayout::for_type::<#leading_fields_tys>(), repr_packed))*
.extend(<#trailing_field_ty as KnownLayout>::LAYOUT, repr_packed)
.pad_to_align()
};
// SAFETY:
// - The returned pointer has the same address and provenance as
// `bytes`:
// - The recursive call to `raw_from_ptr_len` preserves both
// address and provenance.
// - The `as` cast preserves both address and provenance.
// - `NonNull::new_unchecked` preserves both address and
// provenance.
// - If `Self` is a slice DST, the returned pointer encodes
// `elems` elements in the trailing slice:
// - This is true of the recursive call to `raw_from_ptr_len`.
// - `trailing.as_ptr() as *mut Self` preserves trailing slice
// element count [1].
// - `NonNull::new_unchecked` preserves trailing slice element
// count.
//
// [1] Per https://doc.rust-lang.org/reference/expressions/operator-expr.html#pointer-to-pointer-cast:
//
// `*const T`` / `*mut T` can be cast to `*const U` / `*mut U`
// with the following behavior:
// ...
// - If `T` and `U` are both unsized, the pointer is also
// returned unchanged. In particular, the metadata is
// preserved exactly.
//
// For instance, a cast from `*const [T]` to `*const [U]`
// preserves the number of elements. ... The same holds
// for str and any compound type whose unsized tail is a
// slice type, such as struct `Foo(i32, [u8])` or `(u64, Foo)`.
#[inline(always)]
fn raw_from_ptr_len(
bytes: ::zerocopy::util::macro_util::core_reexport::ptr::NonNull<u8>,
meta: Self::PointerMetadata,
) -> ::zerocopy::util::macro_util::core_reexport::ptr::NonNull<Self> {
use ::zerocopy::KnownLayout;
let trailing = <#trailing_field_ty as KnownLayout>::raw_from_ptr_len(bytes, meta);
let slf = trailing.as_ptr() as *mut Self;
// SAFETY: Constructed from `trailing`, which is non-null.
unsafe { ::zerocopy::util::macro_util::core_reexport::ptr::NonNull::new_unchecked(slf) }
}
#[inline(always)]
fn pointer_to_metadata(ptr: *mut Self) -> Self::PointerMetadata {
<#trailing_field_ty>::pointer_to_metadata(ptr as *mut _)
}
),
)
} else {
// For enums, unions, and non-`repr(C)` structs, we require that
// `Self` is sized, and as a result don't need to reason about the
// internals of the type.
(
SelfBounds::SIZED,
quote!(
type PointerMetadata = ();
// SAFETY: `LAYOUT` is guaranteed to accurately describe the
// layout of `Self`, because that is the documented safety
// contract of `DstLayout::for_type`.
const LAYOUT: ::zerocopy::DstLayout = ::zerocopy::DstLayout::for_type::<Self>();
// SAFETY: `.cast` preserves address and provenance.
//
// TODO(#429): Add documentation to `.cast` that promises that
// it preserves provenance.
#[inline(always)]
fn raw_from_ptr_len(
bytes: ::zerocopy::util::macro_util::core_reexport::ptr::NonNull<u8>,
_meta: (),
) -> ::zerocopy::util::macro_util::core_reexport::ptr::NonNull<Self>
{
bytes.cast::<Self>()
}
#[inline(always)]
fn pointer_to_metadata(_ptr: *mut Self) -> () {}
),
)
};
Ok(match &ast.data {
Data::Struct(strct) => {
let require_trait_bound_on_field_types = if self_bounds == SelfBounds::SIZED {
FieldBounds::None
} else {
FieldBounds::TRAILING_SELF
};
// A bound on the trailing field is required, since structs are
// unsized if their trailing field is unsized. Reflecting the layout
// of an usized trailing field requires that the field is
// `KnownLayout`.
impl_block(
ast,
strct,
Trait::KnownLayout,
require_trait_bound_on_field_types,
self_bounds,
None,
Some(extras),
)
}
Data::Enum(enm) => {
// A bound on the trailing field is not required, since enums cannot
// currently be unsized.
impl_block(
ast,
enm,
Trait::KnownLayout,
FieldBounds::None,
SelfBounds::SIZED,
None,
Some(extras),
)
}
Data::Union(unn) => {
// A bound on the trailing field is not required, since unions
// cannot currently be unsized.
impl_block(
ast,
unn,
Trait::KnownLayout,
FieldBounds::None,
SelfBounds::SIZED,
None,
Some(extras),
)
}
})
}
fn derive_no_cell_inner(ast: &DeriveInput, _top_level: Trait) -> TokenStream {
match &ast.data {
Data::Struct(strct) => impl_block(
ast,
strct,
Trait::Immutable,
FieldBounds::ALL_SELF,
SelfBounds::None,
None,
None,
),
Data::Enum(enm) => impl_block(
ast,
enm,
Trait::Immutable,
FieldBounds::ALL_SELF,
SelfBounds::None,
None,
None,
),
Data::Union(unn) => impl_block(
ast,
unn,
Trait::Immutable,
FieldBounds::ALL_SELF,
SelfBounds::None,
None,
None,
),
}
}
fn derive_try_from_bytes_inner(ast: &DeriveInput, top_level: Trait) -> Result<TokenStream, Error> {
match &ast.data {
Data::Struct(strct) => derive_try_from_bytes_struct(ast, strct, top_level),
Data::Enum(enm) => derive_try_from_bytes_enum(ast, enm, top_level),
Data::Union(unn) => Ok(derive_try_from_bytes_union(ast, unn, top_level)),
}
}
fn derive_from_zeros_inner(ast: &DeriveInput, top_level: Trait) -> Result<TokenStream, Error> {
let try_from_bytes = derive_try_from_bytes_inner(ast, top_level)?;
let from_zeros = match &ast.data {
Data::Struct(strct) => derive_from_zeros_struct(ast, strct),
Data::Enum(enm) => derive_from_zeros_enum(ast, enm)?,
Data::Union(unn) => derive_from_zeros_union(ast, unn),
};
Ok(IntoIterator::into_iter([try_from_bytes, from_zeros]).collect())
}
fn derive_from_bytes_inner(ast: &DeriveInput, top_level: Trait) -> Result<TokenStream, Error> {
let from_zeros = derive_from_zeros_inner(ast, top_level)?;
let from_bytes = match &ast.data {
Data::Struct(strct) => derive_from_bytes_struct(ast, strct),
Data::Enum(enm) => derive_from_bytes_enum(ast, enm)?,
Data::Union(unn) => derive_from_bytes_union(ast, unn),
};
Ok(IntoIterator::into_iter([from_zeros, from_bytes]).collect())
}
fn derive_into_bytes_inner(ast: &DeriveInput, _top_level: Trait) -> Result<TokenStream, Error> {
match &ast.data {
Data::Struct(strct) => derive_into_bytes_struct(ast, strct),
Data::Enum(enm) => derive_into_bytes_enum(ast, enm),
Data::Union(unn) => derive_into_bytes_union(ast, unn),
}
}
fn derive_unaligned_inner(ast: &DeriveInput, _top_level: Trait) -> Result<TokenStream, Error> {
match &ast.data {
Data::Struct(strct) => derive_unaligned_struct(ast, strct),
Data::Enum(enm) => derive_unaligned_enum(ast, enm),
Data::Union(unn) => derive_unaligned_union(ast, unn),
}
}
/// A struct is `TryFromBytes` if:
/// - all fields are `TryFromBytes`
fn derive_try_from_bytes_struct(
ast: &DeriveInput,
strct: &DataStruct,
top_level: Trait,
) -> Result<TokenStream, Error> {
let extras = try_gen_trivial_is_bit_valid(ast, top_level).unwrap_or_else(|| {
let fields = strct.fields();
let field_names = fields.iter().map(|(name, _ty)| name);
let field_tys = fields.iter().map(|(_name, ty)| ty);
quote!(
// SAFETY: We use `is_bit_valid` to validate that each field is
// bit-valid, and only return `true` if all of them are. The bit
// validity of a struct is just the composition of the bit
// validities of its fields, so this is a sound implementation of
// `is_bit_valid`.
fn is_bit_valid<___ZerocopyAliasing>(
mut candidate: ::zerocopy::Maybe<Self, ___ZerocopyAliasing>,
) -> ::zerocopy::util::macro_util::core_reexport::primitive::bool
where
___ZerocopyAliasing: ::zerocopy::pointer::invariant::Aliasing
+ ::zerocopy::pointer::invariant::AtLeast<::zerocopy::pointer::invariant::Shared>,
{
true #(&& {
// SAFETY:
// - `project` is a field projection, and so it addresses a
// subset of the bytes addressed by `slf`
// - ..., and so it preserves provenance
// - ..., and `*slf` is a struct, so `UnsafeCell`s exist at
// the same byte ranges in the returned pointer's referent
// as they do in `*slf`
let field_candidate = unsafe {
let project = |slf: *mut Self|
::zerocopy::util::macro_util::core_reexport::ptr::addr_of_mut!((*slf).#field_names);
candidate.reborrow().project(project)
};
<#field_tys as ::zerocopy::TryFromBytes>::is_bit_valid(field_candidate)
})*
}
)
});
Ok(impl_block(
ast,
strct,
Trait::TryFromBytes,
FieldBounds::ALL_SELF,
SelfBounds::None,
None,
Some(extras),
))
}
/// A union is `TryFromBytes` if:
/// - all of its fields are `TryFromBytes` and `Immutable`
fn derive_try_from_bytes_union(
ast: &DeriveInput,
unn: &DataUnion,
top_level: Trait,
) -> TokenStream {
// TODO(#5): Remove the `Immutable` bound.
let field_type_trait_bounds =
FieldBounds::All(&[TraitBound::Slf, TraitBound::Other(Trait::Immutable)]);
let extras = try_gen_trivial_is_bit_valid(ast, top_level).unwrap_or_else(|| {
let fields = unn.fields();
let field_names = fields.iter().map(|(name, _ty)| name);
let field_tys = fields.iter().map(|(_name, ty)| ty);
quote!(
// SAFETY: We use `is_bit_valid` to validate that any field is
// bit-valid; we only return `true` if at least one of them is. The
// bit validity of a union is not yet well defined in Rust, but it
// is guaranteed to be no more strict than this definition. See #696
// for a more in-depth discussion.
fn is_bit_valid<___ZerocopyAliasing>(
mut candidate: ::zerocopy::Maybe<'_, Self, ___ZerocopyAliasing>
) -> ::zerocopy::util::macro_util::core_reexport::primitive::bool
where
___ZerocopyAliasing: ::zerocopy::pointer::invariant::Aliasing
+ ::zerocopy::pointer::invariant::AtLeast<::zerocopy::pointer::invariant::Shared>,
{
false #(|| {
// SAFETY:
// - `project` is a field projection, and so it addresses a
// subset of the bytes addressed by `slf`
// - ..., and so it preserves provenance
// - Since `Self: Immutable` is enforced by
// `self_type_trait_bounds`, neither `*slf` nor the
// returned pointer's referent contain any `UnsafeCell`s
let field_candidate = unsafe {
let project = |slf: *mut Self|
::zerocopy::util::macro_util::core_reexport::ptr::addr_of_mut!((*slf).#field_names);
candidate.reborrow().project(project)
};
<#field_tys as ::zerocopy::TryFromBytes>::is_bit_valid(field_candidate)
})*
}
)
});
impl_block(
ast,
unn,
Trait::TryFromBytes,
field_type_trait_bounds,
SelfBounds::None,
None,
Some(extras),
)
}
fn derive_try_from_bytes_enum(
ast: &DeriveInput,
enm: &DataEnum,
top_level: Trait,
) -> Result<TokenStream, Error> {
let repr = EnumRepr::from_attrs(&ast.attrs)?;
// If an enum has no fields, it has a well-defined integer representation,
// and every possible bit pattern corresponds to a valid discriminant tag,
// then it *could* be `FromBytes` (even if the user hasn't derived
// `FromBytes`). This holds if, for `repr(uN)` or `repr(iN)`, there are 2^N
// variants.
let could_be_from_bytes = enum_size_from_repr(&repr)
.map(|size| enm.fields().is_empty() && enm.variants.len() == 1usize << size)
.unwrap_or(false);
let trivial_is_bit_valid = try_gen_trivial_is_bit_valid(ast, top_level);
let extra = match (trivial_is_bit_valid, could_be_from_bytes) {
(Some(is_bit_valid), _) => is_bit_valid,
// SAFETY: It would be sound for the enum to implement `FomBytes`, as
// required by `gen_trivial_is_bit_valid_unchecked`.
(None, true) => unsafe { gen_trivial_is_bit_valid_unchecked() },
(None, false) => r#enum::derive_is_bit_valid(&ast.ident, &repr, &ast.generics, enm)?,
};
Ok(impl_block(
ast,
enm,
Trait::TryFromBytes,
FieldBounds::ALL_SELF,
SelfBounds::None,
None,
Some(extra),
))
}
/// Attempts to generate a `TryFromBytes::is_bit_valid` instance that
/// unconditionally returns true.
///
/// This should be used where possible. Using this impl is faster to codegen,
/// faster to compile, and is friendlier on the optimizer.
fn try_gen_trivial_is_bit_valid(
ast: &DeriveInput,
top_level: Trait,
) -> Option<proc_macro2::TokenStream> {
// If the top-level trait is `FromBytes` and `Self` has no type parameters,
// then the `FromBytes` derive will fail compilation if `Self` is not
// actually soundly `FromBytes`, and so we can rely on that for our
// `is_bit_valid` impl. It's plausible that we could make changes - or Rust
// could make changes (such as the "trivial bounds" language feature) - that
// make this no longer true. To hedge against these, we include an explicit
// `Self: FromBytes` check in the generated `is_bit_valid`, which is
// bulletproof.
if top_level == Trait::FromBytes && ast.generics.params.is_empty() {
Some(quote!(
// SAFETY: See inline.
fn is_bit_valid<___ZerocopyAliasing>(
_candidate: ::zerocopy::Maybe<Self, ___ZerocopyAliasing>,
) -> ::zerocopy::util::macro_util::core_reexport::primitive::bool
where
___ZerocopyAliasing: ::zerocopy::pointer::invariant::Aliasing
+ ::zerocopy::pointer::invariant::AtLeast<::zerocopy::pointer::invariant::Shared>,
{
if false {
fn assert_is_from_bytes<T>()
where
T: ::zerocopy::FromBytes,
T: ?::zerocopy::util::macro_util::core_reexport::marker::Sized,
{
}
assert_is_from_bytes::<Self>();
}
// SAFETY: The preceding code only compiles if `Self:
// FromBytes`. Thus, this code only compiles if all initialized
// byte sequences represent valid instances of `Self`.
true
}
))
} else {
None
}
}
/// Generates a `TryFromBytes::is_bit_valid` instance that unconditionally
/// returns true.
///
/// This should be used where possible, (although `try_gen_trivial_is_bit_valid`
/// should be preferred over this for safety reasons). Using this impl is faster
/// to codegen, faster to compile, and is friendlier on the optimizer.
///
/// # Safety
///
/// The caller must ensure that all initialized bit patterns are valid for
/// `Self`.
unsafe fn gen_trivial_is_bit_valid_unchecked() -> proc_macro2::TokenStream {
quote!(
// SAFETY: The caller of `gen_trivial_is_bit_valid_unchecked` has
// promised that all initialized bit patterns are valid for `Self`.
fn is_bit_valid<___ZerocopyAliasing>(
_candidate: ::zerocopy::Maybe<Self, ___ZerocopyAliasing>,
) -> ::zerocopy::util::macro_util::core_reexport::primitive::bool
where
___ZerocopyAliasing: ::zerocopy::pointer::invariant::Aliasing
+ ::zerocopy::pointer::invariant::AtLeast<::zerocopy::pointer::invariant::Shared>,
{
true
}
)
}
/// A struct is `FromZeros` if:
/// - all fields are `FromZeros`
fn derive_from_zeros_struct(ast: &DeriveInput, strct: &DataStruct) -> TokenStream {
impl_block(ast, strct, Trait::FromZeros, FieldBounds::ALL_SELF, SelfBounds::None, None, None)
}
/// Returns `Ok(index)` if variant `index` of the enum has a discriminant of
/// zero. If `Err(bool)` is returned, the boolean is true if the enum has
/// unknown discriminants (e.g. discriminants set to const expressions which we
/// can't evaluate in a proc macro). If the enum has unknown discriminants, then
/// it might have a zero variant that we just can't detect.
fn find_zero_variant(enm: &DataEnum) -> Result<usize, bool> {
// Discriminants can be anywhere in the range [i128::MIN, u128::MAX] because
// the discriminant type may be signed or unsigned. Since we only care about
// tracking the discriminant when it's less than or equal to zero, we can
// avoid u128 -> i128 conversions and bounds checking by making the "next
// discriminant" value implicitly negative.
// Technically 64 bits is enough, but 128 is better for future compatibility
// with https://github.com/rust-lang/rust/issues/56071
let mut next_negative_discriminant = Some(0);
// Sometimes we encounter explicit discriminants that we can't know the
// value of (e.g. a constant expression that requires evaluation). These
// could evaluate to zero or a negative number, but we can't assume that
// they do (no false positives allowed!). So we treat them like strictly-
// positive values that can't result in any zero variants, and track whether
// we've encountered any unknown discriminants.
let mut has_unknown_discriminants = false;
for (i, v) in enm.variants.iter().enumerate() {
match v.discriminant.as_ref() {
// Implicit discriminant
None => {
match next_negative_discriminant.as_mut() {
Some(0) => return Ok(i),
// n is nonzero so subtraction is always safe
Some(n) => *n -= 1,
None => (),
}
}
// Explicit positive discriminant
Some((_, Expr::Lit(ExprLit { lit: Lit::Int(int), .. }))) => {
match int.base10_parse::<u128>().ok() {
Some(0) => return Ok(i),
Some(_) => next_negative_discriminant = None,
None => {
// Numbers should never fail to parse, but just in case:
has_unknown_discriminants = true;
next_negative_discriminant = None;
}
}
}
// Explicit negative discriminant
Some((_, Expr::Unary(ExprUnary { op: UnOp::Neg(_), expr, .. }))) => match &**expr {
Expr::Lit(ExprLit { lit: Lit::Int(int), .. }) => {
match int.base10_parse::<u128>().ok() {
Some(0) => return Ok(i),
// x is nonzero so subtraction is always safe
Some(x) => next_negative_discriminant = Some(x - 1),
None => {
// Numbers should never fail to parse, but just in
// case:
has_unknown_discriminants = true;
next_negative_discriminant = None;
}
}
}
// Unknown negative discriminant (e.g. const repr)
_ => {
has_unknown_discriminants = true;
next_negative_discriminant = None;
}
},
// Unknown discriminant (e.g. const expr)
_ => {
has_unknown_discriminants = true;
next_negative_discriminant = None;
}
}
}
Err(has_unknown_discriminants)
}
/// An enum is `FromZeros` if:
/// - one of the variants has a discriminant of `0`
/// - that variant's fields are all `FromZeros`
fn derive_from_zeros_enum(ast: &DeriveInput, enm: &DataEnum) -> Result<TokenStream, Error> {
let repr = EnumRepr::from_attrs(&ast.attrs)?;
// We don't actually care what the repr is; we just care that it's one of
// the allowed ones.
match repr {
Repr::Compound(
Spanned { t: CompoundRepr::C | CompoundRepr::Primitive(_), span: _ },
_,
) => {}
Repr::Transparent(_)
| Repr::Compound(Spanned { t: CompoundRepr::Rust, span: _ }, _) => return Err(Error::new(Span::call_site(), "must have #[repr(C)] or #[repr(Int)] attribute in order to guarantee this type's memory layout")),
}
let zero_variant = match find_zero_variant(enm) {
Ok(index) => enm.variants.iter().nth(index).unwrap(),
// Has unknown variants
Err(true) => {
return Err(Error::new_spanned(
ast,
"FromZeros only supported on enums with a variant that has a discriminant of `0`\n\
help: This enum has discriminants which are not literal integers. One of those may \
define or imply which variant has a discriminant of zero. Use a literal integer to \
define or imply the variant with a discriminant of zero.",
));
}
// Does not have unknown variants
Err(false) => {
return Err(Error::new_spanned(
ast,
"FromZeros only supported on enums with a variant that has a discriminant of `0`",
));
}
};
let explicit_bounds = zero_variant
.fields
.iter()
.map(|field| {
let ty = &field.ty;
parse_quote! { #ty: ::zerocopy::FromZeros }
})
.collect::<Vec<WherePredicate>>();
Ok(impl_block(
ast,
enm,
Trait::FromZeros,
FieldBounds::Explicit(explicit_bounds),
SelfBounds::None,
None,
None,
))
}
/// Unions are `FromZeros` if
/// - all fields are `FromZeros` and `Immutable`
fn derive_from_zeros_union(ast: &DeriveInput, unn: &DataUnion) -> TokenStream {
// TODO(#5): Remove the `Immutable` bound. It's only necessary for
// compatibility with `derive(TryFromBytes)` on unions; not for soundness.
let field_type_trait_bounds =
FieldBounds::All(&[TraitBound::Slf, TraitBound::Other(Trait::Immutable)]);
impl_block(ast, unn, Trait::FromZeros, field_type_trait_bounds, SelfBounds::None, None, None)
}
/// A struct is `FromBytes` if:
/// - all fields are `FromBytes`
fn derive_from_bytes_struct(ast: &DeriveInput, strct: &DataStruct) -> TokenStream {
impl_block(ast, strct, Trait::FromBytes, FieldBounds::ALL_SELF, SelfBounds::None, None, None)
}
/// An enum is `FromBytes` if:
/// - Every possible bit pattern must be valid, which means that every bit
/// pattern must correspond to a different enum variant. Thus, for an enum
/// whose layout takes up N bytes, there must be 2^N variants.
/// - Since we must know N, only representations which guarantee the layout's
/// size are allowed. These are `repr(uN)` and `repr(iN)` (`repr(C)` implies an
/// implementation-defined size). `usize` and `isize` technically guarantee the
/// layout's size, but would require us to know how large those are on the
/// target platform. This isn't terribly difficult - we could emit a const
/// expression that could call `core::mem::size_of` in order to determine the
/// size and check against the number of enum variants, but a) this would be
/// platform-specific and, b) even on Rust's smallest bit width platform (32),
/// this would require ~4 billion enum variants, which obviously isn't a thing.
/// - All fields of all variants are `FromBytes`.
fn derive_from_bytes_enum(ast: &DeriveInput, enm: &DataEnum) -> Result<TokenStream, Error> {
let repr = EnumRepr::from_attrs(&ast.attrs)?;
let variants_required = 1usize << enum_size_from_repr(&repr)?;
if enm.variants.len() != variants_required {
return Err(Error::new_spanned(
ast,
format!(
"FromBytes only supported on {} enum with {} variants",
repr.repr_type_name(),
variants_required
),
));
}
Ok(impl_block(ast, enm, Trait::FromBytes, FieldBounds::ALL_SELF, SelfBounds::None, None, None))
}
// Returns `None` if the enum's size is not guaranteed by the repr.
fn enum_size_from_repr(repr: &EnumRepr) -> Result<usize, Error> {
use {CompoundRepr::*, PrimitiveRepr::*, Repr::*};
match repr {
Transparent(span)
| Compound(
Spanned { t: C | Rust | Primitive(U32 | I32 | U64 | I64 | Usize | Isize), span },
_,
) => Err(Error::new(*span, "`FromBytes` only supported on enums with `#[repr(...)]` attributes `u8`, `i8`, `u16`, or `i16`")),
Compound(Spanned { t: Primitive(U8 | I8), span: _ }, _align) => Ok(8),
Compound(Spanned { t: Primitive(U16 | I16), span: _ }, _align) => Ok(16),
}
}
/// Unions are `FromBytes` if
/// - all fields are `FromBytes` and `Immutable`
fn derive_from_bytes_union(ast: &DeriveInput, unn: &DataUnion) -> TokenStream {
// TODO(#5): Remove the `Immutable` bound. It's only necessary for
// compatibility with `derive(TryFromBytes)` on unions; not for soundness.
let field_type_trait_bounds =
FieldBounds::All(&[TraitBound::Slf, TraitBound::Other(Trait::Immutable)]);
impl_block(ast, unn, Trait::FromBytes, field_type_trait_bounds, SelfBounds::None, None, None)
}
fn derive_into_bytes_struct(ast: &DeriveInput, strct: &DataStruct) -> Result<TokenStream, Error> {
let repr = StructUnionRepr::from_attrs(&ast.attrs)?;
let is_transparent = repr.is_transparent();
let is_c = repr.is_c();
let is_packed_1 = repr.is_packed_1();
let num_fields = strct.fields().len();
let (padding_check, require_unaligned_fields) = if is_transparent || is_packed_1 {
// No padding check needed.
// - repr(transparent): The layout and ABI of the whole struct is the
// same as its only non-ZST field (meaning there's no padding outside
// of that field) and we require that field to be `IntoBytes` (meaning
// there's no padding in that field).
// - repr(packed): Any inter-field padding bytes are removed, meaning
// that any padding bytes would need to come from the fields, all of
// which we require to be `IntoBytes` (meaning they don't have any
// padding). Note that this holds regardless of other `repr`
// attributes, including `repr(Rust)`. [1]
//
// [1] Per https://doc.rust-lang.org/1.81.0/reference/type-layout.html#the-alignment-modifiers:
//
// An important consequence of these rules is that a type with
// `#[repr(packed(1))]`` (or `#[repr(packed)]``) will have no
// inter-field padding.
(None, false)
} else if is_c && !repr.is_align_gt_1() && num_fields <= 1 {
// No padding check needed. A repr(C) struct with zero or one field has
// no padding unless #[repr(align)] explicitly adds padding, which we
// check for in this branch's condition.
(None, false)
} else if ast.generics.params.is_empty() {
// Since there are no generics, we can emit a padding check. All reprs
// guarantee that fields won't overlap [1], so the padding check is
// sound. This is more permissive than the next case, which requires
// that all field types implement `Unaligned`.
//
// [1] Per https://doc.rust-lang.org/1.81.0/reference/type-layout.html#the-rust-representation:
//
// The only data layout guarantees made by [`repr(Rust)`] are those
// required for soundness. They are:
// ...
// 2. The fields do not overlap.
// ...
(Some(PaddingCheck::Struct), false)
} else if is_c && !repr.is_align_gt_1() {
// We can't use a padding check since there are generic type arguments.
// Instead, we require all field types to implement `Unaligned`. This
// ensures that the `repr(C)` layout algorithm will not insert any
// padding unless #[repr(align)] explicitly adds padding, which we check
// for in this branch's condition.
//
// TODO(#10): Support type parameters for non-transparent, non-packed
// structs without requiring `Unaligned`.
(None, true)
} else {
return Err(Error::new(Span::call_site(), "must have a non-align #[repr(...)] attribute in order to guarantee this type's memory layout"));
};
let field_bounds = if require_unaligned_fields {
FieldBounds::All(&[TraitBound::Slf, TraitBound::Other(Trait::Unaligned)])
} else {
FieldBounds::ALL_SELF
};
Ok(impl_block(
ast,
strct,
Trait::IntoBytes,
field_bounds,
SelfBounds::None,
padding_check,
None,
))
}
/// If the type is an enum:
/// - It must have a defined representation (`repr`s `C`, `u8`, `u16`, `u32`,
/// `u64`, `usize`, `i8`, `i16`, `i32`, `i64`, or `isize`).
/// - It must have no padding bytes.
/// - Its fields must be `IntoBytes`.
fn derive_into_bytes_enum(ast: &DeriveInput, enm: &DataEnum) -> Result<TokenStream, Error> {
let repr = EnumRepr::from_attrs(&ast.attrs)?;
if !repr.is_c() && !repr.is_primitive() {
return Err(Error::new(Span::call_site(), "must have #[repr(C)] or #[repr(Int)] attribute in order to guarantee this type's memory layout"));
}
let tag_type_definition = r#enum::generate_tag_enum(&repr, enm);
Ok(impl_block(
ast,
enm,
Trait::IntoBytes,
FieldBounds::ALL_SELF,
SelfBounds::None,
Some(PaddingCheck::Enum { tag_type_definition }),
None,
))
}
/// A union is `IntoBytes` if:
/// - all fields are `IntoBytes`
/// - `repr(C)`, `repr(transparent)`, or `repr(packed)`
/// - no padding (size of union equals size of each field type)
fn derive_into_bytes_union(ast: &DeriveInput, unn: &DataUnion) -> Result<TokenStream, Error> {
// See #1792 for more context.
//
// By checking for `zerocopy_derive_union_into_bytes` both here and in the
// generated code, we ensure that `--cfg zerocopy_derive_union_into_bytes`
// need only be passed *either* when compiling this crate *or* when
// compiling the user's crate. The former is preferable, but in some
// situations (such as when cross-compiling using `cargo build --target`),
// it doesn't get propagated to this crate's build by default.
let cfg_compile_error = if cfg!(zerocopy_derive_union_into_bytes) {
quote!()
} else {
quote!(
const _: () = {
#[cfg(not(zerocopy_derive_union_into_bytes))]
::zerocopy::util::macro_util::core_reexport::compile_error!(
"requires --cfg zerocopy_derive_union_into_bytes;
please let us know you use this feature: https://github.com/google/zerocopy/discussions/1802"
);
};
)
};
// TODO(#10): Support type parameters.
if !ast.generics.params.is_empty() {
return Err(Error::new(Span::call_site(), "unsupported on types with type parameters"));
}
// Because we don't support generics, we don't need to worry about
// special-casing different reprs. So long as there is *some* repr which
// guarantees the layout, our `PaddingCheck::Union` guarantees that there is
// no padding.
let repr = StructUnionRepr::from_attrs(&ast.attrs)?;
if !repr.is_c() && !repr.is_transparent() && !repr.is_packed_1() {
return Err(Error::new(
Span::call_site(),
"must be #[repr(C)], #[repr(packed)], or #[repr(transparent)]",
));
}
let impl_block = impl_block(
ast,
unn,
Trait::IntoBytes,
FieldBounds::ALL_SELF,
SelfBounds::None,
Some(PaddingCheck::Union),
None,
);
Ok(quote!(#cfg_compile_error #impl_block))
}
/// A struct is `Unaligned` if:
/// - `repr(align)` is no more than 1 and either
/// - `repr(C)` or `repr(transparent)` and
/// - all fields `Unaligned`
/// - `repr(packed)`
fn derive_unaligned_struct(ast: &DeriveInput, strct: &DataStruct) -> Result<TokenStream, Error> {
let repr = StructUnionRepr::from_attrs(&ast.attrs)?;
repr.unaligned_validate_no_align_gt_1()?;
let field_bounds = if repr.is_packed_1() {
FieldBounds::None
} else if repr.is_c() || repr.is_transparent() {
FieldBounds::ALL_SELF
} else {
return Err(Error::new(Span::call_site(), "must have #[repr(C)], #[repr(transparent)], or #[repr(packed)] attribute in order to guarantee this type's alignment"));
};
Ok(impl_block(ast, strct, Trait::Unaligned, field_bounds, SelfBounds::None, None, None))
}
/// An enum is `Unaligned` if:
/// - No `repr(align(N > 1))`
/// - `repr(u8)` or `repr(i8)`
fn derive_unaligned_enum(ast: &DeriveInput, enm: &DataEnum) -> Result<TokenStream, Error> {
let repr = EnumRepr::from_attrs(&ast.attrs)?;
repr.unaligned_validate_no_align_gt_1()?;
if !repr.is_u8() && !repr.is_i8() {
return Err(Error::new(Span::call_site(), "must have #[repr(u8)] or #[repr(i8)] attribute in order to guarantee this type's alignment"));
}
Ok(impl_block(ast, enm, Trait::Unaligned, FieldBounds::ALL_SELF, SelfBounds::None, None, None))
}
/// Like structs, a union is `Unaligned` if:
/// - `repr(align)` is no more than 1 and either
/// - `repr(C)` or `repr(transparent)` and
/// - all fields `Unaligned`
/// - `repr(packed)`
fn derive_unaligned_union(ast: &DeriveInput, unn: &DataUnion) -> Result<TokenStream, Error> {
let repr = StructUnionRepr::from_attrs(&ast.attrs)?;
repr.unaligned_validate_no_align_gt_1()?;
let field_type_trait_bounds = if repr.is_packed_1() {
FieldBounds::None
} else if repr.is_c() || repr.is_transparent() {
FieldBounds::ALL_SELF
} else {
return Err(Error::new(Span::call_site(), "must have #[repr(C)], #[repr(transparent)], or #[repr(packed)] attribute in order to guarantee this type's alignment"));
};
Ok(impl_block(
ast,
unn,
Trait::Unaligned,
field_type_trait_bounds,
SelfBounds::None,
None,
None,
))
}
/// This enum describes what kind of padding check needs to be generated for the
/// associated impl.
enum PaddingCheck {
/// Check that the sum of the fields' sizes exactly equals the struct's
/// size.
Struct,
/// Check that the size of each field exactly equals the union's size.
Union,
/// Check that every variant of the enum contains no padding.
///
/// Because doing so requires a tag enum, this padding check requires an
/// additional `TokenStream` which defines the tag enum as `___ZerocopyTag`.
Enum { tag_type_definition: TokenStream },
}
impl PaddingCheck {
/// Returns the ident of the macro to call in order to validate that a type
/// passes the padding check encoded by `PaddingCheck`.
fn validator_macro_ident(&self) -> Ident {
let s = match self {
PaddingCheck::Struct => "struct_has_padding",
PaddingCheck::Union => "union_has_padding",
PaddingCheck::Enum { .. } => "enum_has_padding",
};
Ident::new(s, Span::call_site())
}
/// Sometimes performing the padding check requires some additional
/// "context" code. For enums, this is the definition of the tag enum.
fn validator_macro_context(&self) -> Option<&TokenStream> {
match self {
PaddingCheck::Struct | PaddingCheck::Union => None,
PaddingCheck::Enum { tag_type_definition } => Some(tag_type_definition),
}
}
}
#[derive(Copy, Clone, Debug, Eq, PartialEq)]
enum Trait {
KnownLayout,
Immutable,
TryFromBytes,
FromZeros,
FromBytes,
IntoBytes,
Unaligned,
Sized,
}
impl ToTokens for Trait {
fn to_tokens(&self, tokens: &mut TokenStream) {
// According to [1], the format of the derived `Debug`` output is not
// stable and therefore not guaranteed to represent the variant names.
// Indeed with the (unstable) `fmt-debug` compiler flag [2], it can
// return only a minimalized output or empty string. To make sure this
// code will work in the future and independet of the compiler flag, we
// translate the variants to their names manually here.
//
// [1] https://doc.rust-lang.org/1.81.0/std/fmt/trait.Debug.html#stability
// [2] https://doc.rust-lang.org/beta/unstable-book/compiler-flags/fmt-debug.html
let s = match self {
Trait::KnownLayout => "KnownLayout",
Trait::Immutable => "Immutable",
Trait::TryFromBytes => "TryFromBytes",
Trait::FromZeros => "FromZeros",
Trait::FromBytes => "FromBytes",
Trait::IntoBytes => "IntoBytes",
Trait::Unaligned => "Unaligned",
Trait::Sized => "Sized",
};
let ident = Ident::new(s, Span::call_site());
tokens.extend(core::iter::once(TokenTree::Ident(ident)));
}
}
impl Trait {
fn crate_path(&self) -> Path {
match self {
Self::Sized => parse_quote!(::zerocopy::util::macro_util::core_reexport::marker::#self),
_ => parse_quote!(::zerocopy::#self),
}
}
}
#[derive(Debug, Eq, PartialEq)]
enum TraitBound {
Slf,
Other(Trait),
}
enum FieldBounds<'a> {
None,
All(&'a [TraitBound]),
Trailing(&'a [TraitBound]),
Explicit(Vec<WherePredicate>),
}
impl<'a> FieldBounds<'a> {
const ALL_SELF: FieldBounds<'a> = FieldBounds::All(&[TraitBound::Slf]);
const TRAILING_SELF: FieldBounds<'a> = FieldBounds::Trailing(&[TraitBound::Slf]);
}
#[derive(Debug, Eq, PartialEq)]
enum SelfBounds<'a> {
None,
All(&'a [Trait]),
}
// TODO(https://github.com/rust-lang/rust-clippy/issues/12908): This is a false positive.
// Explicit lifetimes are actually necessary here.
#[allow(clippy::needless_lifetimes)]
impl<'a> SelfBounds<'a> {
const SIZED: Self = Self::All(&[Trait::Sized]);
}
/// Normalizes a slice of bounds by replacing [`TraitBound::Slf`] with `slf`.
fn normalize_bounds(slf: Trait, bounds: &[TraitBound]) -> impl '_ + Iterator<Item = Trait> {
bounds.iter().map(move |bound| match bound {
TraitBound::Slf => slf,
TraitBound::Other(trt) => *trt,
})
}
fn impl_block<D: DataExt>(
input: &DeriveInput,
data: &D,
trt: Trait,
field_type_trait_bounds: FieldBounds,
self_type_trait_bounds: SelfBounds,
padding_check: Option<PaddingCheck>,
extras: Option<TokenStream>,
) -> TokenStream {
// In this documentation, we will refer to this hypothetical struct:
//
// #[derive(FromBytes)]
// struct Foo<T, I: Iterator>
// where
// T: Copy,
// I: Clone,
// I::Item: Clone,
// {
// a: u8,
// b: T,
// c: I::Item,
// }
//
// We extract the field types, which in this case are `u8`, `T`, and
// `I::Item`. We re-use the existing parameters and where clauses. If
// `require_trait_bound == true` (as it is for `FromBytes), we add where
// bounds for each field's type:
//
// impl<T, I: Iterator> FromBytes for Foo<T, I>
// where
// T: Copy,
// I: Clone,
// I::Item: Clone,
// T: FromBytes,
// I::Item: FromBytes,
// {
// }
//
// NOTE: It is standard practice to only emit bounds for the type parameters
// themselves, not for field types based on those parameters (e.g., `T` vs
// `T::Foo`). For a discussion of why this is standard practice, see
// https://github.com/rust-lang/rust/issues/26925.
//
// The reason we diverge from this standard is that doing it that way for us
// would be unsound. E.g., consider a type, `T` where `T: FromBytes` but
// `T::Foo: !FromBytes`. It would not be sound for us to accept a type with
// a `T::Foo` field as `FromBytes` simply because `T: FromBytes`.
//
// While there's no getting around this requirement for us, it does have the
// pretty serious downside that, when lifetimes are involved, the trait
// solver ties itself in knots:
//
// #[derive(Unaligned)]
// #[repr(C)]
// struct Dup<'a, 'b> {
// a: PhantomData<&'a u8>,
// b: PhantomData<&'b u8>,
// }
//
// error[E0283]: type annotations required: cannot resolve `core::marker::PhantomData<&'a u8>: zerocopy::Unaligned`
// --> src/main.rs:6:10
// |
// 6 | #[derive(Unaligned)]
// | ^^^^^^^^^
// |
// = note: required by `zerocopy::Unaligned`
let type_ident = &input.ident;
let trait_path = trt.crate_path();
let fields = data.fields();
let variants = data.variants();
let tag = data.tag();
fn bound_tt(ty: &Type, traits: impl Iterator<Item = Trait>) -> WherePredicate {
let traits = traits.map(|t| t.crate_path());
parse_quote!(#ty: #(#traits)+*)
}
let field_type_bounds: Vec<_> = match (field_type_trait_bounds, &fields[..]) {
(FieldBounds::All(traits), _) => {
fields.iter().map(|(_name, ty)| bound_tt(ty, normalize_bounds(trt, traits))).collect()
}
(FieldBounds::None, _) | (FieldBounds::Trailing(..), []) => vec![],
(FieldBounds::Trailing(traits), [.., last]) => {
vec![bound_tt(last.1, normalize_bounds(trt, traits))]
}
(FieldBounds::Explicit(bounds), _) => bounds,
};
// Don't bother emitting a padding check if there are no fields.
#[allow(unstable_name_collisions)] // See `BoolExt` below
// Work around https://github.com/rust-lang/rust-clippy/issues/12280
#[allow(clippy::incompatible_msrv)]
let padding_check_bound =
padding_check.and_then(|check| (!fields.is_empty()).then_some(check)).map(|check| {
let variant_types = variants.iter().map(|var| {
let types = var.iter().map(|(_name, ty)| ty);
quote!([#(#types),*])
});
let validator_context = check.validator_macro_context();
let validator_macro = check.validator_macro_ident();
let t = tag.iter();
parse_quote! {
(): ::zerocopy::util::macro_util::PaddingFree<
Self,
{
#validator_context
::zerocopy::#validator_macro!(Self, #(#t,)* #(#variant_types),*)
}
>
}
});
let self_bounds: Option<WherePredicate> = match self_type_trait_bounds {
SelfBounds::None => None,
SelfBounds::All(traits) => Some(bound_tt(&parse_quote!(Self), traits.iter().copied())),
};
let bounds = input
.generics
.where_clause
.as_ref()
.map(|where_clause| where_clause.predicates.iter())
.into_iter()
.flatten()
.chain(field_type_bounds.iter())
.chain(padding_check_bound.iter())
.chain(self_bounds.iter());
// The parameters with trait bounds, but without type defaults.
let params = input.generics.params.clone().into_iter().map(|mut param| {
match &mut param {
GenericParam::Type(ty) => ty.default = None,
GenericParam::Const(cnst) => cnst.default = None,
GenericParam::Lifetime(_) => {}
}
quote!(#param)
});
// The identifiers of the parameters without trait bounds or type defaults.
let param_idents = input.generics.params.iter().map(|param| match param {
GenericParam::Type(ty) => {
let ident = &ty.ident;
quote!(#ident)
}
GenericParam::Lifetime(l) => {
let ident = &l.lifetime;
quote!(#ident)
}
GenericParam::Const(cnst) => {
let ident = &cnst.ident;
quote!({#ident})
}
});
quote! {
// TODO(#553): Add a test that generates a warning when
// `#[allow(deprecated)]` isn't present.
#[allow(deprecated)]
unsafe impl < #(#params),* > #trait_path for #type_ident < #(#param_idents),* >
where
#(#bounds,)*
{
fn only_derive_is_allowed_to_implement_this_trait() {}
#extras
}
}
}
// A polyfill for `Option::then_some`, which was added after our MSRV.
//
// The `#[allow(unused)]` is necessary because, on sufficiently recent toolchain
// versions, `b.then_some(...)` resolves to the inherent method rather than to
// this trait, and so this trait is considered unused.
//
// TODO(#67): Remove this once our MSRV is >= 1.62.
#[allow(unused)]
trait BoolExt {
fn then_some<T>(self, t: T) -> Option<T>;
}
impl BoolExt for bool {
fn then_some<T>(self, t: T) -> Option<T> {
if self {
Some(t)
} else {
None
}
}
}