zerocopy_derive/
lib.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
// Copyright 2019 The Fuchsia Authors
//
// Licensed under a BSD-style license <LICENSE-BSD>, Apache License, Version 2.0
// <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT
// license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option.
// This file may not be copied, modified, or distributed except according to
// those terms.

//! Derive macros for [zerocopy]'s traits.
//!
//! [zerocopy]: https://docs.rs/zerocopy

// Sometimes we want to use lints which were added after our MSRV.
// `unknown_lints` is `warn` by default and we deny warnings in CI, so without
// this attribute, any unknown lint would cause a CI failure when testing with
// our MSRV.
#![allow(unknown_lints)]
#![deny(renamed_and_removed_lints)]
#![deny(clippy::all, clippy::missing_safety_doc, clippy::undocumented_unsafe_blocks)]
#![deny(
    rustdoc::bare_urls,
    rustdoc::broken_intra_doc_links,
    rustdoc::invalid_codeblock_attributes,
    rustdoc::invalid_html_tags,
    rustdoc::invalid_rust_codeblocks,
    rustdoc::missing_crate_level_docs,
    rustdoc::private_intra_doc_links
)]
#![recursion_limit = "128"]

mod r#enum;
mod ext;
#[cfg(test)]
mod output_tests;
mod repr;

use proc_macro2::{TokenStream, TokenTree};
use quote::ToTokens;

use {
    proc_macro2::Span,
    quote::quote,
    syn::{
        parse_quote, Data, DataEnum, DataStruct, DataUnion, DeriveInput, Error, Expr, ExprLit,
        ExprUnary, GenericParam, Ident, Lit, Path, Type, UnOp, WherePredicate,
    },
};

use {crate::ext::*, crate::repr::*};

// TODO(https://github.com/rust-lang/rust/issues/54140): Some errors could be
// made better if we could add multiple lines of error output like this:
//
// error: unsupported representation
//   --> enum.rs:28:8
//    |
// 28 | #[repr(transparent)]
//    |
// help: required by the derive of FromBytes
//
// Instead, we have more verbose error messages like "unsupported representation
// for deriving FromZeros, FromBytes, IntoBytes, or Unaligned on an enum"
//
// This will probably require Span::error
// (https://doc.rust-lang.org/nightly/proc_macro/struct.Span.html#method.error),
// which is currently unstable. Revisit this once it's stable.

/// Defines a derive function named `$outer` which parses its input
/// `TokenStream` as a `DeriveInput` and then invokes the `$inner` function.
///
/// Note that the separate `$outer` parameter is required - proc macro functions
/// are currently required to live at the crate root, and so the caller must
/// specify the name in order to avoid name collisions.
macro_rules! derive {
    ($trait:ident => $outer:ident => $inner:ident) => {
        #[proc_macro_derive($trait)]
        pub fn $outer(ts: proc_macro::TokenStream) -> proc_macro::TokenStream {
            let ast = syn::parse_macro_input!(ts as DeriveInput);
            $inner(&ast, Trait::$trait).into_ts().into()
        }
    };
}

trait IntoTokenStream {
    fn into_ts(self) -> TokenStream;
}

impl IntoTokenStream for TokenStream {
    fn into_ts(self) -> TokenStream {
        self
    }
}

impl IntoTokenStream for Result<TokenStream, Error> {
    fn into_ts(self) -> TokenStream {
        match self {
            Ok(ts) => ts,
            Err(err) => err.to_compile_error(),
        }
    }
}

derive!(KnownLayout => derive_known_layout => derive_known_layout_inner);
derive!(Immutable => derive_no_cell => derive_no_cell_inner);
derive!(TryFromBytes => derive_try_from_bytes => derive_try_from_bytes_inner);
derive!(FromZeros => derive_from_zeros => derive_from_zeros_inner);
derive!(FromBytes => derive_from_bytes => derive_from_bytes_inner);
derive!(IntoBytes => derive_into_bytes => derive_into_bytes_inner);
derive!(Unaligned => derive_unaligned => derive_unaligned_inner);

/// Deprecated: prefer [`FromZeros`] instead.
#[deprecated(since = "0.8.0", note = "`FromZeroes` was renamed to `FromZeros`")]
#[doc(hidden)]
#[proc_macro_derive(FromZeroes)]
pub fn derive_from_zeroes(ts: proc_macro::TokenStream) -> proc_macro::TokenStream {
    derive_from_zeros(ts)
}

/// Deprecated: prefer [`IntoBytes`] instead.
#[deprecated(since = "0.8.0", note = "`AsBytes` was renamed to `IntoBytes`")]
#[doc(hidden)]
#[proc_macro_derive(AsBytes)]
pub fn derive_as_bytes(ts: proc_macro::TokenStream) -> proc_macro::TokenStream {
    derive_into_bytes(ts)
}

fn derive_known_layout_inner(ast: &DeriveInput, _top_level: Trait) -> Result<TokenStream, Error> {
    let is_repr_c_struct = match &ast.data {
        Data::Struct(..) => {
            let repr = StructUnionRepr::from_attrs(&ast.attrs)?;
            if repr.is_c() {
                Some(repr)
            } else {
                None
            }
        }
        Data::Enum(..) | Data::Union(..) => None,
    };

    let fields = ast.data.fields();

    let (self_bounds, extras) = if let (Some(repr), Some((trailing_field, leading_fields))) =
        (is_repr_c_struct, fields.split_last())
    {
        let (_name, trailing_field_ty) = trailing_field;
        let leading_fields_tys = leading_fields.iter().map(|(_name, ty)| ty);

        let core_path = quote!(::zerocopy::util::macro_util::core_reexport);
        let repr_align = repr
            .get_align()
            .map(|align| {
                let align = align.t.get();
                quote!(#core_path::num::NonZeroUsize::new(#align as usize))
            })
            .unwrap_or_else(|| quote!(#core_path::option::Option::None));
        let repr_packed = repr
            .get_packed()
            .map(|packed| {
                let packed = packed.get();
                quote!(#core_path::num::NonZeroUsize::new(#packed as usize))
            })
            .unwrap_or_else(|| quote!(#core_path::option::Option::None));

        (
            SelfBounds::None,
            quote!(
                type PointerMetadata = <#trailing_field_ty as ::zerocopy::KnownLayout>::PointerMetadata;

                // SAFETY: `LAYOUT` accurately describes the layout of `Self`.
                // The layout of `Self` is reflected using a sequence of
                // invocations of `DstLayout::{new_zst,extend,pad_to_align}`.
                // The documentation of these items vows that invocations in
                // this manner will acurately describe a type, so long as:
                //
                //  - that type is `repr(C)`,
                //  - its fields are enumerated in the order they appear,
                //  - the presence of `repr_align` and `repr_packed` are correctly accounted for.
                //
                // We respect all three of these preconditions here. This
                // expansion is only used if `is_repr_c_struct`, we enumerate
                // the fields in order, and we extract the values of `align(N)`
                // and `packed(N)`.
                const LAYOUT: ::zerocopy::DstLayout = {
                    use ::zerocopy::util::macro_util::core_reexport::num::NonZeroUsize;
                    use ::zerocopy::{DstLayout, KnownLayout};

                    let repr_align = #repr_align;
                    let repr_packed = #repr_packed;

                    DstLayout::new_zst(repr_align)
                        #(.extend(DstLayout::for_type::<#leading_fields_tys>(), repr_packed))*
                        .extend(<#trailing_field_ty as KnownLayout>::LAYOUT, repr_packed)
                        .pad_to_align()
                };

                // SAFETY:
                // - The returned pointer has the same address and provenance as
                //   `bytes`:
                //   - The recursive call to `raw_from_ptr_len` preserves both
                //     address and provenance.
                //   - The `as` cast preserves both address and provenance.
                //   - `NonNull::new_unchecked` preserves both address and
                //     provenance.
                // - If `Self` is a slice DST, the returned pointer encodes
                //   `elems` elements in the trailing slice:
                //   - This is true of the recursive call to `raw_from_ptr_len`.
                //   - `trailing.as_ptr() as *mut Self` preserves trailing slice
                //     element count [1].
                //   - `NonNull::new_unchecked` preserves trailing slice element
                //     count.
                //
                // [1] Per https://doc.rust-lang.org/reference/expressions/operator-expr.html#pointer-to-pointer-cast:
                //
                //   `*const T`` / `*mut T` can be cast to `*const U` / `*mut U`
                //   with the following behavior:
                //     ...
                //     - If `T` and `U` are both unsized, the pointer is also
                //       returned unchanged. In particular, the metadata is
                //       preserved exactly.
                //
                //       For instance, a cast from `*const [T]` to `*const [U]`
                //       preserves the number of elements. ... The same holds
                //       for str and any compound type whose unsized tail is a
                //       slice type, such as struct `Foo(i32, [u8])` or `(u64, Foo)`.
                #[inline(always)]
                fn raw_from_ptr_len(
                    bytes: ::zerocopy::util::macro_util::core_reexport::ptr::NonNull<u8>,
                    meta: Self::PointerMetadata,
                ) -> ::zerocopy::util::macro_util::core_reexport::ptr::NonNull<Self> {
                    use ::zerocopy::KnownLayout;
                    let trailing = <#trailing_field_ty as KnownLayout>::raw_from_ptr_len(bytes, meta);
                    let slf = trailing.as_ptr() as *mut Self;
                    // SAFETY: Constructed from `trailing`, which is non-null.
                    unsafe { ::zerocopy::util::macro_util::core_reexport::ptr::NonNull::new_unchecked(slf) }
                }

                #[inline(always)]
                fn pointer_to_metadata(ptr: *mut Self) -> Self::PointerMetadata {
                    <#trailing_field_ty>::pointer_to_metadata(ptr as *mut _)
                }
            ),
        )
    } else {
        // For enums, unions, and non-`repr(C)` structs, we require that
        // `Self` is sized, and as a result don't need to reason about the
        // internals of the type.
        (
            SelfBounds::SIZED,
            quote!(
                type PointerMetadata = ();

                // SAFETY: `LAYOUT` is guaranteed to accurately describe the
                // layout of `Self`, because that is the documented safety
                // contract of `DstLayout::for_type`.
                const LAYOUT: ::zerocopy::DstLayout = ::zerocopy::DstLayout::for_type::<Self>();

                // SAFETY: `.cast` preserves address and provenance.
                //
                // TODO(#429): Add documentation to `.cast` that promises that
                // it preserves provenance.
                #[inline(always)]
                fn raw_from_ptr_len(
                    bytes: ::zerocopy::util::macro_util::core_reexport::ptr::NonNull<u8>,
                    _meta: (),
                ) -> ::zerocopy::util::macro_util::core_reexport::ptr::NonNull<Self>
                {
                    bytes.cast::<Self>()
                }

                #[inline(always)]
                fn pointer_to_metadata(_ptr: *mut Self) -> () {}
            ),
        )
    };

    Ok(match &ast.data {
        Data::Struct(strct) => {
            let require_trait_bound_on_field_types = if self_bounds == SelfBounds::SIZED {
                FieldBounds::None
            } else {
                FieldBounds::TRAILING_SELF
            };

            // A bound on the trailing field is required, since structs are
            // unsized if their trailing field is unsized. Reflecting the layout
            // of an usized trailing field requires that the field is
            // `KnownLayout`.
            impl_block(
                ast,
                strct,
                Trait::KnownLayout,
                require_trait_bound_on_field_types,
                self_bounds,
                None,
                Some(extras),
            )
        }
        Data::Enum(enm) => {
            // A bound on the trailing field is not required, since enums cannot
            // currently be unsized.
            impl_block(
                ast,
                enm,
                Trait::KnownLayout,
                FieldBounds::None,
                SelfBounds::SIZED,
                None,
                Some(extras),
            )
        }
        Data::Union(unn) => {
            // A bound on the trailing field is not required, since unions
            // cannot currently be unsized.
            impl_block(
                ast,
                unn,
                Trait::KnownLayout,
                FieldBounds::None,
                SelfBounds::SIZED,
                None,
                Some(extras),
            )
        }
    })
}

fn derive_no_cell_inner(ast: &DeriveInput, _top_level: Trait) -> TokenStream {
    match &ast.data {
        Data::Struct(strct) => impl_block(
            ast,
            strct,
            Trait::Immutable,
            FieldBounds::ALL_SELF,
            SelfBounds::None,
            None,
            None,
        ),
        Data::Enum(enm) => impl_block(
            ast,
            enm,
            Trait::Immutable,
            FieldBounds::ALL_SELF,
            SelfBounds::None,
            None,
            None,
        ),
        Data::Union(unn) => impl_block(
            ast,
            unn,
            Trait::Immutable,
            FieldBounds::ALL_SELF,
            SelfBounds::None,
            None,
            None,
        ),
    }
}

fn derive_try_from_bytes_inner(ast: &DeriveInput, top_level: Trait) -> Result<TokenStream, Error> {
    match &ast.data {
        Data::Struct(strct) => derive_try_from_bytes_struct(ast, strct, top_level),
        Data::Enum(enm) => derive_try_from_bytes_enum(ast, enm, top_level),
        Data::Union(unn) => Ok(derive_try_from_bytes_union(ast, unn, top_level)),
    }
}

fn derive_from_zeros_inner(ast: &DeriveInput, top_level: Trait) -> Result<TokenStream, Error> {
    let try_from_bytes = derive_try_from_bytes_inner(ast, top_level)?;
    let from_zeros = match &ast.data {
        Data::Struct(strct) => derive_from_zeros_struct(ast, strct),
        Data::Enum(enm) => derive_from_zeros_enum(ast, enm)?,
        Data::Union(unn) => derive_from_zeros_union(ast, unn),
    };
    Ok(IntoIterator::into_iter([try_from_bytes, from_zeros]).collect())
}

fn derive_from_bytes_inner(ast: &DeriveInput, top_level: Trait) -> Result<TokenStream, Error> {
    let from_zeros = derive_from_zeros_inner(ast, top_level)?;
    let from_bytes = match &ast.data {
        Data::Struct(strct) => derive_from_bytes_struct(ast, strct),
        Data::Enum(enm) => derive_from_bytes_enum(ast, enm)?,
        Data::Union(unn) => derive_from_bytes_union(ast, unn),
    };

    Ok(IntoIterator::into_iter([from_zeros, from_bytes]).collect())
}

fn derive_into_bytes_inner(ast: &DeriveInput, _top_level: Trait) -> Result<TokenStream, Error> {
    match &ast.data {
        Data::Struct(strct) => derive_into_bytes_struct(ast, strct),
        Data::Enum(enm) => derive_into_bytes_enum(ast, enm),
        Data::Union(unn) => derive_into_bytes_union(ast, unn),
    }
}

fn derive_unaligned_inner(ast: &DeriveInput, _top_level: Trait) -> Result<TokenStream, Error> {
    match &ast.data {
        Data::Struct(strct) => derive_unaligned_struct(ast, strct),
        Data::Enum(enm) => derive_unaligned_enum(ast, enm),
        Data::Union(unn) => derive_unaligned_union(ast, unn),
    }
}

/// A struct is `TryFromBytes` if:
/// - all fields are `TryFromBytes`
fn derive_try_from_bytes_struct(
    ast: &DeriveInput,
    strct: &DataStruct,
    top_level: Trait,
) -> Result<TokenStream, Error> {
    let extras = try_gen_trivial_is_bit_valid(ast, top_level).unwrap_or_else(|| {
        let fields = strct.fields();
        let field_names = fields.iter().map(|(name, _ty)| name);
        let field_tys = fields.iter().map(|(_name, ty)| ty);
        quote!(
            // SAFETY: We use `is_bit_valid` to validate that each field is
            // bit-valid, and only return `true` if all of them are. The bit
            // validity of a struct is just the composition of the bit
            // validities of its fields, so this is a sound implementation of
            // `is_bit_valid`.
            fn is_bit_valid<___ZerocopyAliasing>(
                mut candidate: ::zerocopy::Maybe<Self, ___ZerocopyAliasing>,
            ) -> ::zerocopy::util::macro_util::core_reexport::primitive::bool
            where
                ___ZerocopyAliasing: ::zerocopy::pointer::invariant::Aliasing
                    + ::zerocopy::pointer::invariant::AtLeast<::zerocopy::pointer::invariant::Shared>,
            {
                true #(&& {
                    // SAFETY:
                    // - `project` is a field projection, and so it addresses a
                    //   subset of the bytes addressed by `slf`
                    // - ..., and so it preserves provenance
                    // - ..., and `*slf` is a struct, so `UnsafeCell`s exist at
                    //   the same byte ranges in the returned pointer's referent
                    //   as they do in `*slf`
                    let field_candidate = unsafe {
                        let project = |slf: *mut Self|
                            ::zerocopy::util::macro_util::core_reexport::ptr::addr_of_mut!((*slf).#field_names);

                        candidate.reborrow().project(project)
                    };

                    <#field_tys as ::zerocopy::TryFromBytes>::is_bit_valid(field_candidate)
                })*
            }
        )
    });
    Ok(impl_block(
        ast,
        strct,
        Trait::TryFromBytes,
        FieldBounds::ALL_SELF,
        SelfBounds::None,
        None,
        Some(extras),
    ))
}

/// A union is `TryFromBytes` if:
/// - all of its fields are `TryFromBytes` and `Immutable`
fn derive_try_from_bytes_union(
    ast: &DeriveInput,
    unn: &DataUnion,
    top_level: Trait,
) -> TokenStream {
    // TODO(#5): Remove the `Immutable` bound.
    let field_type_trait_bounds =
        FieldBounds::All(&[TraitBound::Slf, TraitBound::Other(Trait::Immutable)]);
    let extras = try_gen_trivial_is_bit_valid(ast, top_level).unwrap_or_else(|| {
        let fields = unn.fields();
        let field_names = fields.iter().map(|(name, _ty)| name);
        let field_tys = fields.iter().map(|(_name, ty)| ty);
        quote!(
            // SAFETY: We use `is_bit_valid` to validate that any field is
            // bit-valid; we only return `true` if at least one of them is. The
            // bit validity of a union is not yet well defined in Rust, but it
            // is guaranteed to be no more strict than this definition. See #696
            // for a more in-depth discussion.
            fn is_bit_valid<___ZerocopyAliasing>(
                mut candidate: ::zerocopy::Maybe<'_, Self, ___ZerocopyAliasing>
            ) -> ::zerocopy::util::macro_util::core_reexport::primitive::bool
            where
                ___ZerocopyAliasing: ::zerocopy::pointer::invariant::Aliasing
                    + ::zerocopy::pointer::invariant::AtLeast<::zerocopy::pointer::invariant::Shared>,
            {
                false #(|| {
                    // SAFETY:
                    // - `project` is a field projection, and so it addresses a
                    //   subset of the bytes addressed by `slf`
                    // - ..., and so it preserves provenance
                    // - Since `Self: Immutable` is enforced by
                    //   `self_type_trait_bounds`, neither `*slf` nor the
                    //   returned pointer's referent contain any `UnsafeCell`s
                    let field_candidate = unsafe {
                        let project = |slf: *mut Self|
                            ::zerocopy::util::macro_util::core_reexport::ptr::addr_of_mut!((*slf).#field_names);

                        candidate.reborrow().project(project)
                    };

                    <#field_tys as ::zerocopy::TryFromBytes>::is_bit_valid(field_candidate)
                })*
            }
        )
    });
    impl_block(
        ast,
        unn,
        Trait::TryFromBytes,
        field_type_trait_bounds,
        SelfBounds::None,
        None,
        Some(extras),
    )
}

fn derive_try_from_bytes_enum(
    ast: &DeriveInput,
    enm: &DataEnum,
    top_level: Trait,
) -> Result<TokenStream, Error> {
    let repr = EnumRepr::from_attrs(&ast.attrs)?;

    // If an enum has no fields, it has a well-defined integer representation,
    // and every possible bit pattern corresponds to a valid discriminant tag,
    // then it *could* be `FromBytes` (even if the user hasn't derived
    // `FromBytes`). This holds if, for `repr(uN)` or `repr(iN)`, there are 2^N
    // variants.
    let could_be_from_bytes = enum_size_from_repr(&repr)
        .map(|size| enm.fields().is_empty() && enm.variants.len() == 1usize << size)
        .unwrap_or(false);

    let trivial_is_bit_valid = try_gen_trivial_is_bit_valid(ast, top_level);
    let extra = match (trivial_is_bit_valid, could_be_from_bytes) {
        (Some(is_bit_valid), _) => is_bit_valid,
        // SAFETY: It would be sound for the enum to implement `FomBytes`, as
        // required by `gen_trivial_is_bit_valid_unchecked`.
        (None, true) => unsafe { gen_trivial_is_bit_valid_unchecked() },
        (None, false) => r#enum::derive_is_bit_valid(&ast.ident, &repr, &ast.generics, enm)?,
    };

    Ok(impl_block(
        ast,
        enm,
        Trait::TryFromBytes,
        FieldBounds::ALL_SELF,
        SelfBounds::None,
        None,
        Some(extra),
    ))
}

/// Attempts to generate a `TryFromBytes::is_bit_valid` instance that
/// unconditionally returns true.
///
/// This should be used where possible. Using this impl is faster to codegen,
/// faster to compile, and is friendlier on the optimizer.
fn try_gen_trivial_is_bit_valid(
    ast: &DeriveInput,
    top_level: Trait,
) -> Option<proc_macro2::TokenStream> {
    // If the top-level trait is `FromBytes` and `Self` has no type parameters,
    // then the `FromBytes` derive will fail compilation if `Self` is not
    // actually soundly `FromBytes`, and so we can rely on that for our
    // `is_bit_valid` impl. It's plausible that we could make changes - or Rust
    // could make changes (such as the "trivial bounds" language feature) - that
    // make this no longer true. To hedge against these, we include an explicit
    // `Self: FromBytes` check in the generated `is_bit_valid`, which is
    // bulletproof.
    if top_level == Trait::FromBytes && ast.generics.params.is_empty() {
        Some(quote!(
            // SAFETY: See inline.
            fn is_bit_valid<___ZerocopyAliasing>(
                _candidate: ::zerocopy::Maybe<Self, ___ZerocopyAliasing>,
            ) -> ::zerocopy::util::macro_util::core_reexport::primitive::bool
            where
                ___ZerocopyAliasing: ::zerocopy::pointer::invariant::Aliasing
                    + ::zerocopy::pointer::invariant::AtLeast<::zerocopy::pointer::invariant::Shared>,
            {
                if false {
                    fn assert_is_from_bytes<T>()
                    where
                        T: ::zerocopy::FromBytes,
                        T: ?::zerocopy::util::macro_util::core_reexport::marker::Sized,
                    {
                    }

                    assert_is_from_bytes::<Self>();
                }

                // SAFETY: The preceding code only compiles if `Self:
                // FromBytes`. Thus, this code only compiles if all initialized
                // byte sequences represent valid instances of `Self`.
                true
            }
        ))
    } else {
        None
    }
}

/// Generates a `TryFromBytes::is_bit_valid` instance that unconditionally
/// returns true.
///
/// This should be used where possible, (although `try_gen_trivial_is_bit_valid`
/// should be preferred over this for safety reasons). Using this impl is faster
/// to codegen, faster to compile, and is friendlier on the optimizer.
///
/// # Safety
///
/// The caller must ensure that all initialized bit patterns are valid for
/// `Self`.
unsafe fn gen_trivial_is_bit_valid_unchecked() -> proc_macro2::TokenStream {
    quote!(
        // SAFETY: The caller of `gen_trivial_is_bit_valid_unchecked` has
        // promised that all initialized bit patterns are valid for `Self`.
        fn is_bit_valid<___ZerocopyAliasing>(
            _candidate: ::zerocopy::Maybe<Self, ___ZerocopyAliasing>,
        ) -> ::zerocopy::util::macro_util::core_reexport::primitive::bool
        where
            ___ZerocopyAliasing: ::zerocopy::pointer::invariant::Aliasing
                + ::zerocopy::pointer::invariant::AtLeast<::zerocopy::pointer::invariant::Shared>,
        {
            true
        }
    )
}

/// A struct is `FromZeros` if:
/// - all fields are `FromZeros`
fn derive_from_zeros_struct(ast: &DeriveInput, strct: &DataStruct) -> TokenStream {
    impl_block(ast, strct, Trait::FromZeros, FieldBounds::ALL_SELF, SelfBounds::None, None, None)
}

/// Returns `Ok(index)` if variant `index` of the enum has a discriminant of
/// zero. If `Err(bool)` is returned, the boolean is true if the enum has
/// unknown discriminants (e.g. discriminants set to const expressions which we
/// can't evaluate in a proc macro). If the enum has unknown discriminants, then
/// it might have a zero variant that we just can't detect.
fn find_zero_variant(enm: &DataEnum) -> Result<usize, bool> {
    // Discriminants can be anywhere in the range [i128::MIN, u128::MAX] because
    // the discriminant type may be signed or unsigned. Since we only care about
    // tracking the discriminant when it's less than or equal to zero, we can
    // avoid u128 -> i128 conversions and bounds checking by making the "next
    // discriminant" value implicitly negative.
    // Technically 64 bits is enough, but 128 is better for future compatibility
    // with https://github.com/rust-lang/rust/issues/56071
    let mut next_negative_discriminant = Some(0);

    // Sometimes we encounter explicit discriminants that we can't know the
    // value of (e.g. a constant expression that requires evaluation). These
    // could evaluate to zero or a negative number, but we can't assume that
    // they do (no false positives allowed!). So we treat them like strictly-
    // positive values that can't result in any zero variants, and track whether
    // we've encountered any unknown discriminants.
    let mut has_unknown_discriminants = false;

    for (i, v) in enm.variants.iter().enumerate() {
        match v.discriminant.as_ref() {
            // Implicit discriminant
            None => {
                match next_negative_discriminant.as_mut() {
                    Some(0) => return Ok(i),
                    // n is nonzero so subtraction is always safe
                    Some(n) => *n -= 1,
                    None => (),
                }
            }
            // Explicit positive discriminant
            Some((_, Expr::Lit(ExprLit { lit: Lit::Int(int), .. }))) => {
                match int.base10_parse::<u128>().ok() {
                    Some(0) => return Ok(i),
                    Some(_) => next_negative_discriminant = None,
                    None => {
                        // Numbers should never fail to parse, but just in case:
                        has_unknown_discriminants = true;
                        next_negative_discriminant = None;
                    }
                }
            }
            // Explicit negative discriminant
            Some((_, Expr::Unary(ExprUnary { op: UnOp::Neg(_), expr, .. }))) => match &**expr {
                Expr::Lit(ExprLit { lit: Lit::Int(int), .. }) => {
                    match int.base10_parse::<u128>().ok() {
                        Some(0) => return Ok(i),
                        // x is nonzero so subtraction is always safe
                        Some(x) => next_negative_discriminant = Some(x - 1),
                        None => {
                            // Numbers should never fail to parse, but just in
                            // case:
                            has_unknown_discriminants = true;
                            next_negative_discriminant = None;
                        }
                    }
                }
                // Unknown negative discriminant (e.g. const repr)
                _ => {
                    has_unknown_discriminants = true;
                    next_negative_discriminant = None;
                }
            },
            // Unknown discriminant (e.g. const expr)
            _ => {
                has_unknown_discriminants = true;
                next_negative_discriminant = None;
            }
        }
    }

    Err(has_unknown_discriminants)
}

/// An enum is `FromZeros` if:
/// - one of the variants has a discriminant of `0`
/// - that variant's fields are all `FromZeros`
fn derive_from_zeros_enum(ast: &DeriveInput, enm: &DataEnum) -> Result<TokenStream, Error> {
    let repr = EnumRepr::from_attrs(&ast.attrs)?;

    // We don't actually care what the repr is; we just care that it's one of
    // the allowed ones.
    match repr {
         Repr::Compound(
            Spanned { t: CompoundRepr::C | CompoundRepr::Primitive(_), span: _ },
            _,
        ) => {}
        Repr::Transparent(_)
        | Repr::Compound(Spanned { t: CompoundRepr::Rust, span: _ }, _) => return Err(Error::new(Span::call_site(), "must have #[repr(C)] or #[repr(Int)] attribute in order to guarantee this type's memory layout")),
    }

    let zero_variant = match find_zero_variant(enm) {
        Ok(index) => enm.variants.iter().nth(index).unwrap(),
        // Has unknown variants
        Err(true) => {
            return Err(Error::new_spanned(
                ast,
                "FromZeros only supported on enums with a variant that has a discriminant of `0`\n\
                help: This enum has discriminants which are not literal integers. One of those may \
                define or imply which variant has a discriminant of zero. Use a literal integer to \
                define or imply the variant with a discriminant of zero.",
            ));
        }
        // Does not have unknown variants
        Err(false) => {
            return Err(Error::new_spanned(
                ast,
                "FromZeros only supported on enums with a variant that has a discriminant of `0`",
            ));
        }
    };

    let explicit_bounds = zero_variant
        .fields
        .iter()
        .map(|field| {
            let ty = &field.ty;
            parse_quote! { #ty: ::zerocopy::FromZeros }
        })
        .collect::<Vec<WherePredicate>>();

    Ok(impl_block(
        ast,
        enm,
        Trait::FromZeros,
        FieldBounds::Explicit(explicit_bounds),
        SelfBounds::None,
        None,
        None,
    ))
}

/// Unions are `FromZeros` if
/// - all fields are `FromZeros` and `Immutable`
fn derive_from_zeros_union(ast: &DeriveInput, unn: &DataUnion) -> TokenStream {
    // TODO(#5): Remove the `Immutable` bound. It's only necessary for
    // compatibility with `derive(TryFromBytes)` on unions; not for soundness.
    let field_type_trait_bounds =
        FieldBounds::All(&[TraitBound::Slf, TraitBound::Other(Trait::Immutable)]);
    impl_block(ast, unn, Trait::FromZeros, field_type_trait_bounds, SelfBounds::None, None, None)
}

/// A struct is `FromBytes` if:
/// - all fields are `FromBytes`
fn derive_from_bytes_struct(ast: &DeriveInput, strct: &DataStruct) -> TokenStream {
    impl_block(ast, strct, Trait::FromBytes, FieldBounds::ALL_SELF, SelfBounds::None, None, None)
}

/// An enum is `FromBytes` if:
/// - Every possible bit pattern must be valid, which means that every bit
///   pattern must correspond to a different enum variant. Thus, for an enum
///   whose layout takes up N bytes, there must be 2^N variants.
/// - Since we must know N, only representations which guarantee the layout's
///   size are allowed. These are `repr(uN)` and `repr(iN)` (`repr(C)` implies an
///   implementation-defined size). `usize` and `isize` technically guarantee the
///   layout's size, but would require us to know how large those are on the
///   target platform. This isn't terribly difficult - we could emit a const
///   expression that could call `core::mem::size_of` in order to determine the
///   size and check against the number of enum variants, but a) this would be
///   platform-specific and, b) even on Rust's smallest bit width platform (32),
///   this would require ~4 billion enum variants, which obviously isn't a thing.
/// - All fields of all variants are `FromBytes`.
fn derive_from_bytes_enum(ast: &DeriveInput, enm: &DataEnum) -> Result<TokenStream, Error> {
    let repr = EnumRepr::from_attrs(&ast.attrs)?;

    let variants_required = 1usize << enum_size_from_repr(&repr)?;
    if enm.variants.len() != variants_required {
        return Err(Error::new_spanned(
            ast,
            format!(
                "FromBytes only supported on {} enum with {} variants",
                repr.repr_type_name(),
                variants_required
            ),
        ));
    }

    Ok(impl_block(ast, enm, Trait::FromBytes, FieldBounds::ALL_SELF, SelfBounds::None, None, None))
}

// Returns `None` if the enum's size is not guaranteed by the repr.
fn enum_size_from_repr(repr: &EnumRepr) -> Result<usize, Error> {
    use {CompoundRepr::*, PrimitiveRepr::*, Repr::*};
    match repr {
        Transparent(span)
        | Compound(
            Spanned { t: C | Rust | Primitive(U32 | I32 | U64 | I64 | Usize | Isize), span },
            _,
        ) => Err(Error::new(*span, "`FromBytes` only supported on enums with `#[repr(...)]` attributes `u8`, `i8`, `u16`, or `i16`")),
        Compound(Spanned { t: Primitive(U8 | I8), span: _ }, _align) => Ok(8),
        Compound(Spanned { t: Primitive(U16 | I16), span: _ }, _align) => Ok(16),
    }
}

/// Unions are `FromBytes` if
/// - all fields are `FromBytes` and `Immutable`
fn derive_from_bytes_union(ast: &DeriveInput, unn: &DataUnion) -> TokenStream {
    // TODO(#5): Remove the `Immutable` bound. It's only necessary for
    // compatibility with `derive(TryFromBytes)` on unions; not for soundness.
    let field_type_trait_bounds =
        FieldBounds::All(&[TraitBound::Slf, TraitBound::Other(Trait::Immutable)]);
    impl_block(ast, unn, Trait::FromBytes, field_type_trait_bounds, SelfBounds::None, None, None)
}

fn derive_into_bytes_struct(ast: &DeriveInput, strct: &DataStruct) -> Result<TokenStream, Error> {
    let repr = StructUnionRepr::from_attrs(&ast.attrs)?;

    let is_transparent = repr.is_transparent();
    let is_c = repr.is_c();
    let is_packed_1 = repr.is_packed_1();
    let num_fields = strct.fields().len();

    let (padding_check, require_unaligned_fields) = if is_transparent || is_packed_1 {
        // No padding check needed.
        // - repr(transparent): The layout and ABI of the whole struct is the
        //   same as its only non-ZST field (meaning there's no padding outside
        //   of that field) and we require that field to be `IntoBytes` (meaning
        //   there's no padding in that field).
        // - repr(packed): Any inter-field padding bytes are removed, meaning
        //   that any padding bytes would need to come from the fields, all of
        //   which we require to be `IntoBytes` (meaning they don't have any
        //   padding). Note that this holds regardless of other `repr`
        //   attributes, including `repr(Rust)`. [1]
        //
        // [1] Per https://doc.rust-lang.org/1.81.0/reference/type-layout.html#the-alignment-modifiers:
        //
        //   An important consequence of these rules is that a type with
        //   `#[repr(packed(1))]`` (or `#[repr(packed)]``) will have no
        //   inter-field padding.
        (None, false)
    } else if is_c && !repr.is_align_gt_1() && num_fields <= 1 {
        // No padding check needed. A repr(C) struct with zero or one field has
        // no padding unless #[repr(align)] explicitly adds padding, which we
        // check for in this branch's condition.
        (None, false)
    } else if ast.generics.params.is_empty() {
        // Since there are no generics, we can emit a padding check. All reprs
        // guarantee that fields won't overlap [1], so the padding check is
        // sound. This is more permissive than the next case, which requires
        // that all field types implement `Unaligned`.
        //
        // [1] Per https://doc.rust-lang.org/1.81.0/reference/type-layout.html#the-rust-representation:
        //
        //   The only data layout guarantees made by [`repr(Rust)`] are those
        //   required for soundness. They are:
        //   ...
        //   2. The fields do not overlap.
        //   ...
        (Some(PaddingCheck::Struct), false)
    } else if is_c && !repr.is_align_gt_1() {
        // We can't use a padding check since there are generic type arguments.
        // Instead, we require all field types to implement `Unaligned`. This
        // ensures that the `repr(C)` layout algorithm will not insert any
        // padding unless #[repr(align)] explicitly adds padding, which we check
        // for in this branch's condition.
        //
        // TODO(#10): Support type parameters for non-transparent, non-packed
        // structs without requiring `Unaligned`.
        (None, true)
    } else {
        return Err(Error::new(Span::call_site(), "must have a non-align #[repr(...)] attribute in order to guarantee this type's memory layout"));
    };

    let field_bounds = if require_unaligned_fields {
        FieldBounds::All(&[TraitBound::Slf, TraitBound::Other(Trait::Unaligned)])
    } else {
        FieldBounds::ALL_SELF
    };

    Ok(impl_block(
        ast,
        strct,
        Trait::IntoBytes,
        field_bounds,
        SelfBounds::None,
        padding_check,
        None,
    ))
}

/// If the type is an enum:
/// - It must have a defined representation (`repr`s `C`, `u8`, `u16`, `u32`,
///   `u64`, `usize`, `i8`, `i16`, `i32`, `i64`, or `isize`).
/// - It must have no padding bytes.
/// - Its fields must be `IntoBytes`.
fn derive_into_bytes_enum(ast: &DeriveInput, enm: &DataEnum) -> Result<TokenStream, Error> {
    let repr = EnumRepr::from_attrs(&ast.attrs)?;
    if !repr.is_c() && !repr.is_primitive() {
        return Err(Error::new(Span::call_site(), "must have #[repr(C)] or #[repr(Int)] attribute in order to guarantee this type's memory layout"));
    }

    let tag_type_definition = r#enum::generate_tag_enum(&repr, enm);
    Ok(impl_block(
        ast,
        enm,
        Trait::IntoBytes,
        FieldBounds::ALL_SELF,
        SelfBounds::None,
        Some(PaddingCheck::Enum { tag_type_definition }),
        None,
    ))
}

/// A union is `IntoBytes` if:
/// - all fields are `IntoBytes`
/// - `repr(C)`, `repr(transparent)`, or `repr(packed)`
/// - no padding (size of union equals size of each field type)
fn derive_into_bytes_union(ast: &DeriveInput, unn: &DataUnion) -> Result<TokenStream, Error> {
    // See #1792 for more context.
    //
    // By checking for `zerocopy_derive_union_into_bytes` both here and in the
    // generated code, we ensure that `--cfg zerocopy_derive_union_into_bytes`
    // need only be passed *either* when compiling this crate *or* when
    // compiling the user's crate. The former is preferable, but in some
    // situations (such as when cross-compiling using `cargo build --target`),
    // it doesn't get propagated to this crate's build by default.
    let cfg_compile_error = if cfg!(zerocopy_derive_union_into_bytes) {
        quote!()
    } else {
        quote!(
            const _: () = {
                #[cfg(not(zerocopy_derive_union_into_bytes))]
                ::zerocopy::util::macro_util::core_reexport::compile_error!(
                    "requires --cfg zerocopy_derive_union_into_bytes;
please let us know you use this feature: https://github.com/google/zerocopy/discussions/1802"
                );
            };
        )
    };

    // TODO(#10): Support type parameters.
    if !ast.generics.params.is_empty() {
        return Err(Error::new(Span::call_site(), "unsupported on types with type parameters"));
    }

    // Because we don't support generics, we don't need to worry about
    // special-casing different reprs. So long as there is *some* repr which
    // guarantees the layout, our `PaddingCheck::Union` guarantees that there is
    // no padding.
    let repr = StructUnionRepr::from_attrs(&ast.attrs)?;
    if !repr.is_c() && !repr.is_transparent() && !repr.is_packed_1() {
        return Err(Error::new(
            Span::call_site(),
            "must be #[repr(C)], #[repr(packed)], or #[repr(transparent)]",
        ));
    }

    let impl_block = impl_block(
        ast,
        unn,
        Trait::IntoBytes,
        FieldBounds::ALL_SELF,
        SelfBounds::None,
        Some(PaddingCheck::Union),
        None,
    );
    Ok(quote!(#cfg_compile_error #impl_block))
}

/// A struct is `Unaligned` if:
/// - `repr(align)` is no more than 1 and either
///   - `repr(C)` or `repr(transparent)` and
///     - all fields `Unaligned`
///   - `repr(packed)`
fn derive_unaligned_struct(ast: &DeriveInput, strct: &DataStruct) -> Result<TokenStream, Error> {
    let repr = StructUnionRepr::from_attrs(&ast.attrs)?;
    repr.unaligned_validate_no_align_gt_1()?;

    let field_bounds = if repr.is_packed_1() {
        FieldBounds::None
    } else if repr.is_c() || repr.is_transparent() {
        FieldBounds::ALL_SELF
    } else {
        return Err(Error::new(Span::call_site(), "must have #[repr(C)], #[repr(transparent)], or #[repr(packed)] attribute in order to guarantee this type's alignment"));
    };

    Ok(impl_block(ast, strct, Trait::Unaligned, field_bounds, SelfBounds::None, None, None))
}

/// An enum is `Unaligned` if:
/// - No `repr(align(N > 1))`
/// - `repr(u8)` or `repr(i8)`
fn derive_unaligned_enum(ast: &DeriveInput, enm: &DataEnum) -> Result<TokenStream, Error> {
    let repr = EnumRepr::from_attrs(&ast.attrs)?;
    repr.unaligned_validate_no_align_gt_1()?;

    if !repr.is_u8() && !repr.is_i8() {
        return Err(Error::new(Span::call_site(), "must have #[repr(u8)] or #[repr(i8)] attribute in order to guarantee this type's alignment"));
    }

    Ok(impl_block(ast, enm, Trait::Unaligned, FieldBounds::ALL_SELF, SelfBounds::None, None, None))
}

/// Like structs, a union is `Unaligned` if:
/// - `repr(align)` is no more than 1 and either
///   - `repr(C)` or `repr(transparent)` and
///     - all fields `Unaligned`
///   - `repr(packed)`
fn derive_unaligned_union(ast: &DeriveInput, unn: &DataUnion) -> Result<TokenStream, Error> {
    let repr = StructUnionRepr::from_attrs(&ast.attrs)?;
    repr.unaligned_validate_no_align_gt_1()?;

    let field_type_trait_bounds = if repr.is_packed_1() {
        FieldBounds::None
    } else if repr.is_c() || repr.is_transparent() {
        FieldBounds::ALL_SELF
    } else {
        return Err(Error::new(Span::call_site(), "must have #[repr(C)], #[repr(transparent)], or #[repr(packed)] attribute in order to guarantee this type's alignment"));
    };

    Ok(impl_block(
        ast,
        unn,
        Trait::Unaligned,
        field_type_trait_bounds,
        SelfBounds::None,
        None,
        None,
    ))
}

/// This enum describes what kind of padding check needs to be generated for the
/// associated impl.
enum PaddingCheck {
    /// Check that the sum of the fields' sizes exactly equals the struct's
    /// size.
    Struct,
    /// Check that the size of each field exactly equals the union's size.
    Union,
    /// Check that every variant of the enum contains no padding.
    ///
    /// Because doing so requires a tag enum, this padding check requires an
    /// additional `TokenStream` which defines the tag enum as `___ZerocopyTag`.
    Enum { tag_type_definition: TokenStream },
}

impl PaddingCheck {
    /// Returns the ident of the macro to call in order to validate that a type
    /// passes the padding check encoded by `PaddingCheck`.
    fn validator_macro_ident(&self) -> Ident {
        let s = match self {
            PaddingCheck::Struct => "struct_has_padding",
            PaddingCheck::Union => "union_has_padding",
            PaddingCheck::Enum { .. } => "enum_has_padding",
        };

        Ident::new(s, Span::call_site())
    }

    /// Sometimes performing the padding check requires some additional
    /// "context" code. For enums, this is the definition of the tag enum.
    fn validator_macro_context(&self) -> Option<&TokenStream> {
        match self {
            PaddingCheck::Struct | PaddingCheck::Union => None,
            PaddingCheck::Enum { tag_type_definition } => Some(tag_type_definition),
        }
    }
}

#[derive(Copy, Clone, Debug, Eq, PartialEq)]
enum Trait {
    KnownLayout,
    Immutable,
    TryFromBytes,
    FromZeros,
    FromBytes,
    IntoBytes,
    Unaligned,
    Sized,
}

impl ToTokens for Trait {
    fn to_tokens(&self, tokens: &mut TokenStream) {
        // According to [1], the format of the derived `Debug`` output is not
        // stable and therefore not guaranteed to represent the variant names.
        // Indeed with the (unstable) `fmt-debug` compiler flag [2], it can
        // return only a minimalized output or empty string. To make sure this
        // code will work in the future and independet of the compiler flag, we
        // translate the variants to their names manually here.
        //
        // [1] https://doc.rust-lang.org/1.81.0/std/fmt/trait.Debug.html#stability
        // [2] https://doc.rust-lang.org/beta/unstable-book/compiler-flags/fmt-debug.html
        let s = match self {
            Trait::KnownLayout => "KnownLayout",
            Trait::Immutable => "Immutable",
            Trait::TryFromBytes => "TryFromBytes",
            Trait::FromZeros => "FromZeros",
            Trait::FromBytes => "FromBytes",
            Trait::IntoBytes => "IntoBytes",
            Trait::Unaligned => "Unaligned",
            Trait::Sized => "Sized",
        };
        let ident = Ident::new(s, Span::call_site());
        tokens.extend(core::iter::once(TokenTree::Ident(ident)));
    }
}

impl Trait {
    fn crate_path(&self) -> Path {
        match self {
            Self::Sized => parse_quote!(::zerocopy::util::macro_util::core_reexport::marker::#self),
            _ => parse_quote!(::zerocopy::#self),
        }
    }
}

#[derive(Debug, Eq, PartialEq)]
enum TraitBound {
    Slf,
    Other(Trait),
}

enum FieldBounds<'a> {
    None,
    All(&'a [TraitBound]),
    Trailing(&'a [TraitBound]),
    Explicit(Vec<WherePredicate>),
}

impl<'a> FieldBounds<'a> {
    const ALL_SELF: FieldBounds<'a> = FieldBounds::All(&[TraitBound::Slf]);
    const TRAILING_SELF: FieldBounds<'a> = FieldBounds::Trailing(&[TraitBound::Slf]);
}

#[derive(Debug, Eq, PartialEq)]
enum SelfBounds<'a> {
    None,
    All(&'a [Trait]),
}

// TODO(https://github.com/rust-lang/rust-clippy/issues/12908): This is a false positive.
// Explicit lifetimes are actually necessary here.
#[allow(clippy::needless_lifetimes)]
impl<'a> SelfBounds<'a> {
    const SIZED: Self = Self::All(&[Trait::Sized]);
}

/// Normalizes a slice of bounds by replacing [`TraitBound::Slf`] with `slf`.
fn normalize_bounds(slf: Trait, bounds: &[TraitBound]) -> impl '_ + Iterator<Item = Trait> {
    bounds.iter().map(move |bound| match bound {
        TraitBound::Slf => slf,
        TraitBound::Other(trt) => *trt,
    })
}

fn impl_block<D: DataExt>(
    input: &DeriveInput,
    data: &D,
    trt: Trait,
    field_type_trait_bounds: FieldBounds,
    self_type_trait_bounds: SelfBounds,
    padding_check: Option<PaddingCheck>,
    extras: Option<TokenStream>,
) -> TokenStream {
    // In this documentation, we will refer to this hypothetical struct:
    //
    //   #[derive(FromBytes)]
    //   struct Foo<T, I: Iterator>
    //   where
    //       T: Copy,
    //       I: Clone,
    //       I::Item: Clone,
    //   {
    //       a: u8,
    //       b: T,
    //       c: I::Item,
    //   }
    //
    // We extract the field types, which in this case are `u8`, `T`, and
    // `I::Item`. We re-use the existing parameters and where clauses. If
    // `require_trait_bound == true` (as it is for `FromBytes), we add where
    // bounds for each field's type:
    //
    //   impl<T, I: Iterator> FromBytes for Foo<T, I>
    //   where
    //       T: Copy,
    //       I: Clone,
    //       I::Item: Clone,
    //       T: FromBytes,
    //       I::Item: FromBytes,
    //   {
    //   }
    //
    // NOTE: It is standard practice to only emit bounds for the type parameters
    // themselves, not for field types based on those parameters (e.g., `T` vs
    // `T::Foo`). For a discussion of why this is standard practice, see
    // https://github.com/rust-lang/rust/issues/26925.
    //
    // The reason we diverge from this standard is that doing it that way for us
    // would be unsound. E.g., consider a type, `T` where `T: FromBytes` but
    // `T::Foo: !FromBytes`. It would not be sound for us to accept a type with
    // a `T::Foo` field as `FromBytes` simply because `T: FromBytes`.
    //
    // While there's no getting around this requirement for us, it does have the
    // pretty serious downside that, when lifetimes are involved, the trait
    // solver ties itself in knots:
    //
    //     #[derive(Unaligned)]
    //     #[repr(C)]
    //     struct Dup<'a, 'b> {
    //         a: PhantomData<&'a u8>,
    //         b: PhantomData<&'b u8>,
    //     }
    //
    //     error[E0283]: type annotations required: cannot resolve `core::marker::PhantomData<&'a u8>: zerocopy::Unaligned`
    //      --> src/main.rs:6:10
    //       |
    //     6 | #[derive(Unaligned)]
    //       |          ^^^^^^^^^
    //       |
    //       = note: required by `zerocopy::Unaligned`

    let type_ident = &input.ident;
    let trait_path = trt.crate_path();
    let fields = data.fields();
    let variants = data.variants();
    let tag = data.tag();

    fn bound_tt(ty: &Type, traits: impl Iterator<Item = Trait>) -> WherePredicate {
        let traits = traits.map(|t| t.crate_path());
        parse_quote!(#ty: #(#traits)+*)
    }
    let field_type_bounds: Vec<_> = match (field_type_trait_bounds, &fields[..]) {
        (FieldBounds::All(traits), _) => {
            fields.iter().map(|(_name, ty)| bound_tt(ty, normalize_bounds(trt, traits))).collect()
        }
        (FieldBounds::None, _) | (FieldBounds::Trailing(..), []) => vec![],
        (FieldBounds::Trailing(traits), [.., last]) => {
            vec![bound_tt(last.1, normalize_bounds(trt, traits))]
        }
        (FieldBounds::Explicit(bounds), _) => bounds,
    };

    // Don't bother emitting a padding check if there are no fields.
    #[allow(unstable_name_collisions)] // See `BoolExt` below
    // Work around https://github.com/rust-lang/rust-clippy/issues/12280
    #[allow(clippy::incompatible_msrv)]
    let padding_check_bound =
        padding_check.and_then(|check| (!fields.is_empty()).then_some(check)).map(|check| {
            let variant_types = variants.iter().map(|var| {
                let types = var.iter().map(|(_name, ty)| ty);
                quote!([#(#types),*])
            });
            let validator_context = check.validator_macro_context();
            let validator_macro = check.validator_macro_ident();
            let t = tag.iter();
            parse_quote! {
                (): ::zerocopy::util::macro_util::PaddingFree<
                    Self,
                    {
                        #validator_context
                        ::zerocopy::#validator_macro!(Self, #(#t,)* #(#variant_types),*)
                    }
                >
            }
        });

    let self_bounds: Option<WherePredicate> = match self_type_trait_bounds {
        SelfBounds::None => None,
        SelfBounds::All(traits) => Some(bound_tt(&parse_quote!(Self), traits.iter().copied())),
    };

    let bounds = input
        .generics
        .where_clause
        .as_ref()
        .map(|where_clause| where_clause.predicates.iter())
        .into_iter()
        .flatten()
        .chain(field_type_bounds.iter())
        .chain(padding_check_bound.iter())
        .chain(self_bounds.iter());

    // The parameters with trait bounds, but without type defaults.
    let params = input.generics.params.clone().into_iter().map(|mut param| {
        match &mut param {
            GenericParam::Type(ty) => ty.default = None,
            GenericParam::Const(cnst) => cnst.default = None,
            GenericParam::Lifetime(_) => {}
        }
        quote!(#param)
    });

    // The identifiers of the parameters without trait bounds or type defaults.
    let param_idents = input.generics.params.iter().map(|param| match param {
        GenericParam::Type(ty) => {
            let ident = &ty.ident;
            quote!(#ident)
        }
        GenericParam::Lifetime(l) => {
            let ident = &l.lifetime;
            quote!(#ident)
        }
        GenericParam::Const(cnst) => {
            let ident = &cnst.ident;
            quote!({#ident})
        }
    });

    quote! {
        // TODO(#553): Add a test that generates a warning when
        // `#[allow(deprecated)]` isn't present.
        #[allow(deprecated)]
        unsafe impl < #(#params),* > #trait_path for #type_ident < #(#param_idents),* >
        where
            #(#bounds,)*
        {
            fn only_derive_is_allowed_to_implement_this_trait() {}

            #extras
        }
    }
}

// A polyfill for `Option::then_some`, which was added after our MSRV.
//
// The `#[allow(unused)]` is necessary because, on sufficiently recent toolchain
// versions, `b.then_some(...)` resolves to the inherent method rather than to
// this trait, and so this trait is considered unused.
//
// TODO(#67): Remove this once our MSRV is >= 1.62.
#[allow(unused)]
trait BoolExt {
    fn then_some<T>(self, t: T) -> Option<T>;
}

impl BoolExt for bool {
    fn then_some<T>(self, t: T) -> Option<T> {
        if self {
            Some(t)
        } else {
            None
        }
    }
}