zerocopy_derive/lib.rs
1// Copyright 2019 The Fuchsia Authors
2//
3// Licensed under a BSD-style license <LICENSE-BSD>, Apache License, Version 2.0
4// <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT
5// license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option.
6// This file may not be copied, modified, or distributed except according to
7// those terms.
8
9//! Derive macros for [zerocopy]'s traits.
10//!
11//! [zerocopy]: https://docs.rs/zerocopy
12
13// Sometimes we want to use lints which were added after our MSRV.
14// `unknown_lints` is `warn` by default and we deny warnings in CI, so without
15// this attribute, any unknown lint would cause a CI failure when testing with
16// our MSRV.
17#![allow(unknown_lints)]
18#![deny(renamed_and_removed_lints)]
19#![deny(clippy::all, clippy::missing_safety_doc, clippy::undocumented_unsafe_blocks)]
20#![deny(
21 rustdoc::bare_urls,
22 rustdoc::broken_intra_doc_links,
23 rustdoc::invalid_codeblock_attributes,
24 rustdoc::invalid_html_tags,
25 rustdoc::invalid_rust_codeblocks,
26 rustdoc::missing_crate_level_docs,
27 rustdoc::private_intra_doc_links
28)]
29#![recursion_limit = "128"]
30
31mod r#enum;
32mod ext;
33#[cfg(test)]
34mod output_tests;
35mod repr;
36
37use proc_macro2::{TokenStream, TokenTree};
38use quote::ToTokens;
39
40use {
41 proc_macro2::Span,
42 quote::quote,
43 syn::{
44 parse_quote, Data, DataEnum, DataStruct, DataUnion, DeriveInput, Error, Expr, ExprLit,
45 ExprUnary, GenericParam, Ident, Lit, Path, Type, UnOp, WherePredicate,
46 },
47};
48
49use {crate::ext::*, crate::repr::*};
50
51// TODO(https://github.com/rust-lang/rust/issues/54140): Some errors could be
52// made better if we could add multiple lines of error output like this:
53//
54// error: unsupported representation
55// --> enum.rs:28:8
56// |
57// 28 | #[repr(transparent)]
58// |
59// help: required by the derive of FromBytes
60//
61// Instead, we have more verbose error messages like "unsupported representation
62// for deriving FromZeros, FromBytes, IntoBytes, or Unaligned on an enum"
63//
64// This will probably require Span::error
65// (https://doc.rust-lang.org/nightly/proc_macro/struct.Span.html#method.error),
66// which is currently unstable. Revisit this once it's stable.
67
68/// Defines a derive function named `$outer` which parses its input
69/// `TokenStream` as a `DeriveInput` and then invokes the `$inner` function.
70///
71/// Note that the separate `$outer` parameter is required - proc macro functions
72/// are currently required to live at the crate root, and so the caller must
73/// specify the name in order to avoid name collisions.
74macro_rules! derive {
75 ($trait:ident => $outer:ident => $inner:ident) => {
76 #[proc_macro_derive($trait)]
77 pub fn $outer(ts: proc_macro::TokenStream) -> proc_macro::TokenStream {
78 let ast = syn::parse_macro_input!(ts as DeriveInput);
79 $inner(&ast, Trait::$trait).into_ts().into()
80 }
81 };
82}
83
84trait IntoTokenStream {
85 fn into_ts(self) -> TokenStream;
86}
87
88impl IntoTokenStream for TokenStream {
89 fn into_ts(self) -> TokenStream {
90 self
91 }
92}
93
94impl IntoTokenStream for Result<TokenStream, Error> {
95 fn into_ts(self) -> TokenStream {
96 match self {
97 Ok(ts) => ts,
98 Err(err) => err.to_compile_error(),
99 }
100 }
101}
102
103derive!(KnownLayout => derive_known_layout => derive_known_layout_inner);
104derive!(Immutable => derive_no_cell => derive_no_cell_inner);
105derive!(TryFromBytes => derive_try_from_bytes => derive_try_from_bytes_inner);
106derive!(FromZeros => derive_from_zeros => derive_from_zeros_inner);
107derive!(FromBytes => derive_from_bytes => derive_from_bytes_inner);
108derive!(IntoBytes => derive_into_bytes => derive_into_bytes_inner);
109derive!(Unaligned => derive_unaligned => derive_unaligned_inner);
110derive!(ByteHash => derive_hash => derive_hash_inner);
111derive!(ByteEq => derive_eq => derive_eq_inner);
112
113/// Deprecated: prefer [`FromZeros`] instead.
114#[deprecated(since = "0.8.0", note = "`FromZeroes` was renamed to `FromZeros`")]
115#[doc(hidden)]
116#[proc_macro_derive(FromZeroes)]
117pub fn derive_from_zeroes(ts: proc_macro::TokenStream) -> proc_macro::TokenStream {
118 derive_from_zeros(ts)
119}
120
121/// Deprecated: prefer [`IntoBytes`] instead.
122#[deprecated(since = "0.8.0", note = "`AsBytes` was renamed to `IntoBytes`")]
123#[doc(hidden)]
124#[proc_macro_derive(AsBytes)]
125pub fn derive_as_bytes(ts: proc_macro::TokenStream) -> proc_macro::TokenStream {
126 derive_into_bytes(ts)
127}
128
129fn derive_known_layout_inner(ast: &DeriveInput, _top_level: Trait) -> Result<TokenStream, Error> {
130 let is_repr_c_struct = match &ast.data {
131 Data::Struct(..) => {
132 let repr = StructUnionRepr::from_attrs(&ast.attrs)?;
133 if repr.is_c() {
134 Some(repr)
135 } else {
136 None
137 }
138 }
139 Data::Enum(..) | Data::Union(..) => None,
140 };
141
142 let fields = ast.data.fields();
143
144 let (self_bounds, inner_extras, outer_extras) = if let (
145 Some(repr),
146 Some((trailing_field, leading_fields)),
147 ) = (is_repr_c_struct, fields.split_last())
148 {
149 let (_vis, trailing_field_name, trailing_field_ty) = trailing_field;
150 let leading_fields_tys = leading_fields.iter().map(|(_vis, _name, ty)| ty);
151
152 let core_path = quote!(::zerocopy::util::macro_util::core_reexport);
153 let repr_align = repr
154 .get_align()
155 .map(|align| {
156 let align = align.t.get();
157 quote!(#core_path::num::NonZeroUsize::new(#align as usize))
158 })
159 .unwrap_or_else(|| quote!(#core_path::option::Option::None));
160 let repr_packed = repr
161 .get_packed()
162 .map(|packed| {
163 let packed = packed.get();
164 quote!(#core_path::num::NonZeroUsize::new(#packed as usize))
165 })
166 .unwrap_or_else(|| quote!(#core_path::option::Option::None));
167
168 let make_methods = |trailing_field_ty| {
169 quote! {
170 // SAFETY:
171 // - The returned pointer has the same address and provenance as
172 // `bytes`:
173 // - The recursive call to `raw_from_ptr_len` preserves both
174 // address and provenance.
175 // - The `as` cast preserves both address and provenance.
176 // - `NonNull::new_unchecked` preserves both address and
177 // provenance.
178 // - If `Self` is a slice DST, the returned pointer encodes
179 // `elems` elements in the trailing slice:
180 // - This is true of the recursive call to `raw_from_ptr_len`.
181 // - `trailing.as_ptr() as *mut Self` preserves trailing slice
182 // element count [1].
183 // - `NonNull::new_unchecked` preserves trailing slice element
184 // count.
185 //
186 // [1] Per https://doc.rust-lang.org/reference/expressions/operator-expr.html#pointer-to-pointer-cast:
187 //
188 // `*const T`` / `*mut T` can be cast to `*const U` / `*mut U`
189 // with the following behavior:
190 // ...
191 // - If `T` and `U` are both unsized, the pointer is also
192 // returned unchanged. In particular, the metadata is
193 // preserved exactly.
194 //
195 // For instance, a cast from `*const [T]` to `*const [U]`
196 // preserves the number of elements. ... The same holds
197 // for str and any compound type whose unsized tail is a
198 // slice type, such as struct `Foo(i32, [u8])` or `(u64, Foo)`.
199 #[inline(always)]
200 fn raw_from_ptr_len(
201 bytes: ::zerocopy::util::macro_util::core_reexport::ptr::NonNull<u8>,
202 meta: Self::PointerMetadata,
203 ) -> ::zerocopy::util::macro_util::core_reexport::ptr::NonNull<Self> {
204 use ::zerocopy::KnownLayout;
205 let trailing = <#trailing_field_ty as KnownLayout>::raw_from_ptr_len(bytes, meta);
206 let slf = trailing.as_ptr() as *mut Self;
207 // SAFETY: Constructed from `trailing`, which is non-null.
208 unsafe { ::zerocopy::util::macro_util::core_reexport::ptr::NonNull::new_unchecked(slf) }
209 }
210
211 #[inline(always)]
212 fn pointer_to_metadata(ptr: *mut Self) -> Self::PointerMetadata {
213 <#trailing_field_ty>::pointer_to_metadata(ptr as *mut _)
214 }
215 }
216 };
217
218 let inner_extras = {
219 let leading_fields_tys = leading_fields_tys.clone();
220 let methods = make_methods(*trailing_field_ty);
221 let (_, ty_generics, _) = ast.generics.split_for_impl();
222
223 quote!(
224 type PointerMetadata = <#trailing_field_ty as ::zerocopy::KnownLayout>::PointerMetadata;
225
226 type MaybeUninit = __ZerocopyKnownLayoutMaybeUninit #ty_generics;
227
228 // SAFETY: `LAYOUT` accurately describes the layout of `Self`.
229 // The layout of `Self` is reflected using a sequence of
230 // invocations of `DstLayout::{new_zst,extend,pad_to_align}`.
231 // The documentation of these items vows that invocations in
232 // this manner will acurately describe a type, so long as:
233 //
234 // - that type is `repr(C)`,
235 // - its fields are enumerated in the order they appear,
236 // - the presence of `repr_align` and `repr_packed` are correctly accounted for.
237 //
238 // We respect all three of these preconditions here. This
239 // expansion is only used if `is_repr_c_struct`, we enumerate
240 // the fields in order, and we extract the values of `align(N)`
241 // and `packed(N)`.
242 const LAYOUT: ::zerocopy::DstLayout = {
243 use ::zerocopy::util::macro_util::core_reexport::num::NonZeroUsize;
244 use ::zerocopy::{DstLayout, KnownLayout};
245
246 let repr_align = #repr_align;
247 let repr_packed = #repr_packed;
248
249 DstLayout::new_zst(repr_align)
250 #(.extend(DstLayout::for_type::<#leading_fields_tys>(), repr_packed))*
251 .extend(<#trailing_field_ty as KnownLayout>::LAYOUT, repr_packed)
252 .pad_to_align()
253 };
254
255 #methods
256 )
257 };
258
259 let outer_extras = {
260 let ident = &ast.ident;
261 let vis = &ast.vis;
262 let params = &ast.generics.params;
263 let (impl_generics, ty_generics, where_clause) = ast.generics.split_for_impl();
264
265 let predicates = if let Some(where_clause) = where_clause {
266 where_clause.predicates.clone()
267 } else {
268 Default::default()
269 };
270
271 // Generate a valid ident for a type-level handle to a field of a
272 // given `name`.
273 let field_index =
274 |name| Ident::new(&format!("__Zerocopy_Field_{}", name), ident.span());
275
276 let field_indices: Vec<_> =
277 fields.iter().map(|(_vis, name, _ty)| field_index(name)).collect();
278
279 // Define the collection of type-level field handles.
280 let field_defs = field_indices.iter().zip(&fields).map(|(idx, (vis, _, _))| {
281 quote! {
282 #[allow(non_camel_case_types)]
283 #vis struct #idx;
284 }
285 });
286
287 let field_impls = field_indices.iter().zip(&fields).map(|(idx, (_, _, ty))| quote! {
288 // SAFETY: `#ty` is the type of `#ident`'s field at `#idx`.
289 unsafe impl #impl_generics ::zerocopy::util::macro_util::Field<#idx> for #ident #ty_generics
290 where
291 #predicates
292 {
293 type Type = #ty;
294 }
295 });
296
297 let trailing_field_index = field_index(trailing_field_name);
298 let leading_field_indices =
299 leading_fields.iter().map(|(_vis, name, _ty)| field_index(name));
300
301 let trailing_field_ty = quote! {
302 <#ident #ty_generics as
303 ::zerocopy::util::macro_util::Field<#trailing_field_index>
304 >::Type
305 };
306
307 let methods = make_methods(&parse_quote! {
308 <#trailing_field_ty as ::zerocopy::KnownLayout>::MaybeUninit
309 });
310
311 quote! {
312 #(#field_defs)*
313
314 #(#field_impls)*
315
316 // SAFETY: This has the same layout as the derive target type,
317 // except that it admits uninit bytes. This is ensured by using
318 // the same repr as the target type, and by using field types
319 // which have the same layout as the target type's fields,
320 // except that they admit uninit bytes. We indirect through
321 // `Field` to ensure that occurrences of `Self` resolve to
322 // `#ty`, not `__ZerocopyKnownLayoutMaybeUninit` (see #2116).
323 #repr
324 #[doc(hidden)]
325 // Required on some rustc versions due to a lint that is only
326 // triggered when `derive(KnownLayout)` is applied to `repr(C)`
327 // structs that are generated by macros. See #2177 for details.
328 #[allow(private_bounds)]
329 #vis struct __ZerocopyKnownLayoutMaybeUninit<#params> (
330 #(::zerocopy::util::macro_util::core_reexport::mem::MaybeUninit<
331 <#ident #ty_generics as
332 ::zerocopy::util::macro_util::Field<#leading_field_indices>
333 >::Type
334 >,)*
335 // NOTE(#2302): We wrap in `ManuallyDrop` here in case the
336 // type we're operating on is both generic and
337 // `repr(packed)`. In that case, Rust needs to know that the
338 // type is *either* `Sized` or has a trivial `Drop`.
339 // `ManuallyDrop` has a trivial `Drop`, and so satisfies
340 // this requirement.
341 ::zerocopy::util::macro_util::core_reexport::mem::ManuallyDrop<
342 <#trailing_field_ty as ::zerocopy::KnownLayout>::MaybeUninit
343 >
344 )
345 where
346 #trailing_field_ty: ::zerocopy::KnownLayout,
347 #predicates;
348
349 // SAFETY: We largely defer to the `KnownLayout` implementation on
350 // the derive target type (both by using the same tokens, and by
351 // deferring to impl via type-level indirection). This is sound,
352 // since `__ZerocopyKnownLayoutMaybeUninit` is guaranteed to
353 // have the same layout as the derive target type, except that
354 // `__ZerocopyKnownLayoutMaybeUninit` admits uninit bytes.
355 unsafe impl #impl_generics ::zerocopy::KnownLayout for __ZerocopyKnownLayoutMaybeUninit #ty_generics
356 where
357 #trailing_field_ty: ::zerocopy::KnownLayout,
358 #predicates
359 {
360 #[allow(clippy::missing_inline_in_public_items)]
361 fn only_derive_is_allowed_to_implement_this_trait() {}
362
363 type PointerMetadata = <#ident #ty_generics as ::zerocopy::KnownLayout>::PointerMetadata;
364
365 type MaybeUninit = Self;
366
367 const LAYOUT: ::zerocopy::DstLayout = <#ident #ty_generics as ::zerocopy::KnownLayout>::LAYOUT;
368
369 #methods
370 }
371 }
372 };
373
374 (SelfBounds::None, inner_extras, Some(outer_extras))
375 } else {
376 // For enums, unions, and non-`repr(C)` structs, we require that
377 // `Self` is sized, and as a result don't need to reason about the
378 // internals of the type.
379 (
380 SelfBounds::SIZED,
381 quote!(
382 type PointerMetadata = ();
383 type MaybeUninit =
384 ::zerocopy::util::macro_util::core_reexport::mem::MaybeUninit<Self>;
385
386 // SAFETY: `LAYOUT` is guaranteed to accurately describe the
387 // layout of `Self`, because that is the documented safety
388 // contract of `DstLayout::for_type`.
389 const LAYOUT: ::zerocopy::DstLayout = ::zerocopy::DstLayout::for_type::<Self>();
390
391 // SAFETY: `.cast` preserves address and provenance.
392 //
393 // TODO(#429): Add documentation to `.cast` that promises that
394 // it preserves provenance.
395 #[inline(always)]
396 fn raw_from_ptr_len(
397 bytes: ::zerocopy::util::macro_util::core_reexport::ptr::NonNull<u8>,
398 _meta: (),
399 ) -> ::zerocopy::util::macro_util::core_reexport::ptr::NonNull<Self>
400 {
401 bytes.cast::<Self>()
402 }
403
404 #[inline(always)]
405 fn pointer_to_metadata(_ptr: *mut Self) -> () {}
406 ),
407 None,
408 )
409 };
410
411 Ok(match &ast.data {
412 Data::Struct(strct) => {
413 let require_trait_bound_on_field_types = if self_bounds == SelfBounds::SIZED {
414 FieldBounds::None
415 } else {
416 FieldBounds::TRAILING_SELF
417 };
418
419 // A bound on the trailing field is required, since structs are
420 // unsized if their trailing field is unsized. Reflecting the layout
421 // of an usized trailing field requires that the field is
422 // `KnownLayout`.
423 impl_block(
424 ast,
425 strct,
426 Trait::KnownLayout,
427 require_trait_bound_on_field_types,
428 self_bounds,
429 None,
430 Some(inner_extras),
431 outer_extras,
432 )
433 }
434 Data::Enum(enm) => {
435 // A bound on the trailing field is not required, since enums cannot
436 // currently be unsized.
437 impl_block(
438 ast,
439 enm,
440 Trait::KnownLayout,
441 FieldBounds::None,
442 SelfBounds::SIZED,
443 None,
444 Some(inner_extras),
445 outer_extras,
446 )
447 }
448 Data::Union(unn) => {
449 // A bound on the trailing field is not required, since unions
450 // cannot currently be unsized.
451 impl_block(
452 ast,
453 unn,
454 Trait::KnownLayout,
455 FieldBounds::None,
456 SelfBounds::SIZED,
457 None,
458 Some(inner_extras),
459 outer_extras,
460 )
461 }
462 })
463}
464
465fn derive_no_cell_inner(ast: &DeriveInput, _top_level: Trait) -> TokenStream {
466 match &ast.data {
467 Data::Struct(strct) => impl_block(
468 ast,
469 strct,
470 Trait::Immutable,
471 FieldBounds::ALL_SELF,
472 SelfBounds::None,
473 None,
474 None,
475 None,
476 ),
477 Data::Enum(enm) => impl_block(
478 ast,
479 enm,
480 Trait::Immutable,
481 FieldBounds::ALL_SELF,
482 SelfBounds::None,
483 None,
484 None,
485 None,
486 ),
487 Data::Union(unn) => impl_block(
488 ast,
489 unn,
490 Trait::Immutable,
491 FieldBounds::ALL_SELF,
492 SelfBounds::None,
493 None,
494 None,
495 None,
496 ),
497 }
498}
499
500fn derive_try_from_bytes_inner(ast: &DeriveInput, top_level: Trait) -> Result<TokenStream, Error> {
501 match &ast.data {
502 Data::Struct(strct) => derive_try_from_bytes_struct(ast, strct, top_level),
503 Data::Enum(enm) => derive_try_from_bytes_enum(ast, enm, top_level),
504 Data::Union(unn) => Ok(derive_try_from_bytes_union(ast, unn, top_level)),
505 }
506}
507
508fn derive_from_zeros_inner(ast: &DeriveInput, top_level: Trait) -> Result<TokenStream, Error> {
509 let try_from_bytes = derive_try_from_bytes_inner(ast, top_level)?;
510 let from_zeros = match &ast.data {
511 Data::Struct(strct) => derive_from_zeros_struct(ast, strct),
512 Data::Enum(enm) => derive_from_zeros_enum(ast, enm)?,
513 Data::Union(unn) => derive_from_zeros_union(ast, unn),
514 };
515 Ok(IntoIterator::into_iter([try_from_bytes, from_zeros]).collect())
516}
517
518fn derive_from_bytes_inner(ast: &DeriveInput, top_level: Trait) -> Result<TokenStream, Error> {
519 let from_zeros = derive_from_zeros_inner(ast, top_level)?;
520 let from_bytes = match &ast.data {
521 Data::Struct(strct) => derive_from_bytes_struct(ast, strct),
522 Data::Enum(enm) => derive_from_bytes_enum(ast, enm)?,
523 Data::Union(unn) => derive_from_bytes_union(ast, unn),
524 };
525
526 Ok(IntoIterator::into_iter([from_zeros, from_bytes]).collect())
527}
528
529fn derive_into_bytes_inner(ast: &DeriveInput, _top_level: Trait) -> Result<TokenStream, Error> {
530 match &ast.data {
531 Data::Struct(strct) => derive_into_bytes_struct(ast, strct),
532 Data::Enum(enm) => derive_into_bytes_enum(ast, enm),
533 Data::Union(unn) => derive_into_bytes_union(ast, unn),
534 }
535}
536
537fn derive_unaligned_inner(ast: &DeriveInput, _top_level: Trait) -> Result<TokenStream, Error> {
538 match &ast.data {
539 Data::Struct(strct) => derive_unaligned_struct(ast, strct),
540 Data::Enum(enm) => derive_unaligned_enum(ast, enm),
541 Data::Union(unn) => derive_unaligned_union(ast, unn),
542 }
543}
544
545fn derive_hash_inner(ast: &DeriveInput, _top_level: Trait) -> Result<TokenStream, Error> {
546 // This doesn't delegate to `impl_block` because `impl_block` assumes it is deriving a
547 // `zerocopy`-defined trait, and these trait impls share a common shape that `Hash` does not.
548 // In particular, `zerocopy` traits contain a method that only `zerocopy_derive` macros
549 // are supposed to implement, and `impl_block` generating this trait method is incompatible
550 // with `Hash`.
551 let type_ident = &ast.ident;
552 let (impl_generics, ty_generics, where_clause) = ast.generics.split_for_impl();
553 let where_predicates = where_clause.map(|clause| &clause.predicates);
554 Ok(quote! {
555 // TODO(#553): Add a test that generates a warning when
556 // `#[allow(deprecated)]` isn't present.
557 #[allow(deprecated)]
558 // While there are not currently any warnings that this suppresses (that
559 // we're aware of), it's good future-proofing hygiene.
560 #[automatically_derived]
561 impl #impl_generics ::zerocopy::util::macro_util::core_reexport::hash::Hash for #type_ident #ty_generics
562 where
563 Self: ::zerocopy::IntoBytes + ::zerocopy::Immutable,
564 #where_predicates
565 {
566 fn hash<H>(&self, state: &mut H)
567 where
568 H: ::zerocopy::util::macro_util::core_reexport::hash::Hasher,
569 {
570 ::zerocopy::util::macro_util::core_reexport::hash::Hasher::write(
571 state,
572 ::zerocopy::IntoBytes::as_bytes(self)
573 )
574 }
575
576 fn hash_slice<H>(data: &[Self], state: &mut H)
577 where
578 H: ::zerocopy::util::macro_util::core_reexport::hash::Hasher,
579 {
580 ::zerocopy::util::macro_util::core_reexport::hash::Hasher::write(
581 state,
582 ::zerocopy::IntoBytes::as_bytes(data)
583 )
584 }
585 }
586 })
587}
588
589fn derive_eq_inner(ast: &DeriveInput, _top_level: Trait) -> Result<TokenStream, Error> {
590 // This doesn't delegate to `impl_block` because `impl_block` assumes it is deriving a
591 // `zerocopy`-defined trait, and these trait impls share a common shape that `Eq` does not.
592 // In particular, `zerocopy` traits contain a method that only `zerocopy_derive` macros
593 // are supposed to implement, and `impl_block` generating this trait method is incompatible
594 // with `Eq`.
595 let type_ident = &ast.ident;
596 let (impl_generics, ty_generics, where_clause) = ast.generics.split_for_impl();
597 let where_predicates = where_clause.map(|clause| &clause.predicates);
598 Ok(quote! {
599 // TODO(#553): Add a test that generates a warning when
600 // `#[allow(deprecated)]` isn't present.
601 #[allow(deprecated)]
602 // While there are not currently any warnings that this suppresses (that
603 // we're aware of), it's good future-proofing hygiene.
604 #[automatically_derived]
605 impl #impl_generics ::zerocopy::util::macro_util::core_reexport::cmp::PartialEq for #type_ident #ty_generics
606 where
607 Self: ::zerocopy::IntoBytes + ::zerocopy::Immutable,
608 #where_predicates
609 {
610 fn eq(&self, other: &Self) -> bool {
611 ::zerocopy::util::macro_util::core_reexport::cmp::PartialEq::eq(
612 ::zerocopy::IntoBytes::as_bytes(self),
613 ::zerocopy::IntoBytes::as_bytes(other),
614 )
615 }
616 }
617
618 // TODO(#553): Add a test that generates a warning when
619 // `#[allow(deprecated)]` isn't present.
620 #[allow(deprecated)]
621 // While there are not currently any warnings that this suppresses (that
622 // we're aware of), it's good future-proofing hygiene.
623 #[automatically_derived]
624 impl #impl_generics ::zerocopy::util::macro_util::core_reexport::cmp::Eq for #type_ident #ty_generics
625 where
626 Self: ::zerocopy::IntoBytes + ::zerocopy::Immutable,
627 #where_predicates
628 {
629 }
630 })
631}
632
633/// A struct is `TryFromBytes` if:
634/// - all fields are `TryFromBytes`
635fn derive_try_from_bytes_struct(
636 ast: &DeriveInput,
637 strct: &DataStruct,
638 top_level: Trait,
639) -> Result<TokenStream, Error> {
640 let extras = try_gen_trivial_is_bit_valid(ast, top_level).unwrap_or_else(|| {
641 let fields = strct.fields();
642 let field_names = fields.iter().map(|(_vis, name, _ty)| name);
643 let field_tys = fields.iter().map(|(_vis, _name, ty)| ty);
644 quote!(
645 // SAFETY: We use `is_bit_valid` to validate that each field is
646 // bit-valid, and only return `true` if all of them are. The bit
647 // validity of a struct is just the composition of the bit
648 // validities of its fields, so this is a sound implementation of
649 // `is_bit_valid`.
650 fn is_bit_valid<___ZerocopyAliasing>(
651 mut candidate: ::zerocopy::Maybe<Self, ___ZerocopyAliasing>,
652 ) -> ::zerocopy::util::macro_util::core_reexport::primitive::bool
653 where
654 ___ZerocopyAliasing: ::zerocopy::pointer::invariant::Reference,
655 {
656 true #(&& {
657 // SAFETY:
658 // - `project` is a field projection, and so it addresses a
659 // subset of the bytes addressed by `slf`
660 // - ..., and so it preserves provenance
661 // - ..., and `*slf` is a struct, so `UnsafeCell`s exist at
662 // the same byte ranges in the returned pointer's referent
663 // as they do in `*slf`
664 let field_candidate = unsafe {
665 let project = |slf: *mut Self|
666 ::zerocopy::util::macro_util::core_reexport::ptr::addr_of_mut!((*slf).#field_names);
667
668 candidate.reborrow().project(project)
669 };
670
671 <#field_tys as ::zerocopy::TryFromBytes>::is_bit_valid(field_candidate)
672 })*
673 }
674 )
675 });
676 Ok(impl_block(
677 ast,
678 strct,
679 Trait::TryFromBytes,
680 FieldBounds::ALL_SELF,
681 SelfBounds::None,
682 None,
683 Some(extras),
684 None,
685 ))
686}
687
688/// A union is `TryFromBytes` if:
689/// - all of its fields are `TryFromBytes` and `Immutable`
690fn derive_try_from_bytes_union(
691 ast: &DeriveInput,
692 unn: &DataUnion,
693 top_level: Trait,
694) -> TokenStream {
695 // TODO(#5): Remove the `Immutable` bound.
696 let field_type_trait_bounds =
697 FieldBounds::All(&[TraitBound::Slf, TraitBound::Other(Trait::Immutable)]);
698 let extras = try_gen_trivial_is_bit_valid(ast, top_level).unwrap_or_else(|| {
699 let fields = unn.fields();
700 let field_names = fields.iter().map(|(_vis, name, _ty)| name);
701 let field_tys = fields.iter().map(|(_vis, _name, ty)| ty);
702 quote!(
703 // SAFETY: We use `is_bit_valid` to validate that any field is
704 // bit-valid; we only return `true` if at least one of them is. The
705 // bit validity of a union is not yet well defined in Rust, but it
706 // is guaranteed to be no more strict than this definition. See #696
707 // for a more in-depth discussion.
708 fn is_bit_valid<___ZerocopyAliasing>(
709 mut candidate: ::zerocopy::Maybe<'_, Self,___ZerocopyAliasing>
710 ) -> ::zerocopy::util::macro_util::core_reexport::primitive::bool
711 where
712 ___ZerocopyAliasing: ::zerocopy::pointer::invariant::Reference,
713 {
714 false #(|| {
715 // SAFETY:
716 // - `project` is a field projection, and so it addresses a
717 // subset of the bytes addressed by `slf`
718 // - ..., and so it preserves provenance
719 // - Since `Self: Immutable` is enforced by
720 // `self_type_trait_bounds`, neither `*slf` nor the
721 // returned pointer's referent contain any `UnsafeCell`s
722 let field_candidate = unsafe {
723 let project = |slf: *mut Self|
724 ::zerocopy::util::macro_util::core_reexport::ptr::addr_of_mut!((*slf).#field_names);
725
726 candidate.reborrow().project(project)
727 };
728
729 <#field_tys as ::zerocopy::TryFromBytes>::is_bit_valid(field_candidate)
730 })*
731 }
732 )
733 });
734 impl_block(
735 ast,
736 unn,
737 Trait::TryFromBytes,
738 field_type_trait_bounds,
739 SelfBounds::None,
740 None,
741 Some(extras),
742 None,
743 )
744}
745
746fn derive_try_from_bytes_enum(
747 ast: &DeriveInput,
748 enm: &DataEnum,
749 top_level: Trait,
750) -> Result<TokenStream, Error> {
751 let repr = EnumRepr::from_attrs(&ast.attrs)?;
752
753 // If an enum has no fields, it has a well-defined integer representation,
754 // and every possible bit pattern corresponds to a valid discriminant tag,
755 // then it *could* be `FromBytes` (even if the user hasn't derived
756 // `FromBytes`). This holds if, for `repr(uN)` or `repr(iN)`, there are 2^N
757 // variants.
758 let could_be_from_bytes = enum_size_from_repr(&repr)
759 .map(|size| enm.fields().is_empty() && enm.variants.len() == 1usize << size)
760 .unwrap_or(false);
761
762 let trivial_is_bit_valid = try_gen_trivial_is_bit_valid(ast, top_level);
763 let extra = match (trivial_is_bit_valid, could_be_from_bytes) {
764 (Some(is_bit_valid), _) => is_bit_valid,
765 // SAFETY: It would be sound for the enum to implement `FomBytes`, as
766 // required by `gen_trivial_is_bit_valid_unchecked`.
767 (None, true) => unsafe { gen_trivial_is_bit_valid_unchecked() },
768 (None, false) => r#enum::derive_is_bit_valid(&ast.ident, &repr, &ast.generics, enm)?,
769 };
770
771 Ok(impl_block(
772 ast,
773 enm,
774 Trait::TryFromBytes,
775 FieldBounds::ALL_SELF,
776 SelfBounds::None,
777 None,
778 Some(extra),
779 None,
780 ))
781}
782
783/// Attempts to generate a `TryFromBytes::is_bit_valid` instance that
784/// unconditionally returns true.
785///
786/// This is possible when the `top_level` trait is `FromBytes` and there are no
787/// generic type parameters. In this case, we know that compilation will succeed
788/// only if the type is unconditionally `FromBytes`. Type parameters are not
789/// supported because a type with type parameters could be `TryFromBytes` but
790/// not `FromBytes` depending on its type parameters, and so deriving a trivial
791/// `is_bit_valid` would be either unsound or, assuming we add a defensive
792/// `Self: FromBytes` bound (as we currently do), overly restrictive. Consider,
793/// for example, that `Foo<bool>` ought to be `TryFromBytes` but not `FromBytes`
794/// in this example:
795///
796/// ```rust,ignore
797/// #[derive(FromBytes)]
798/// #[repr(transparent)]
799/// struct Foo<T>(T);
800/// ```
801///
802/// This should be used where possible. Using this impl is faster to codegen,
803/// faster to compile, and is friendlier on the optimizer.
804fn try_gen_trivial_is_bit_valid(
805 ast: &DeriveInput,
806 top_level: Trait,
807) -> Option<proc_macro2::TokenStream> {
808 // If the top-level trait is `FromBytes` and `Self` has no type parameters,
809 // then the `FromBytes` derive will fail compilation if `Self` is not
810 // actually soundly `FromBytes`, and so we can rely on that for our
811 // `is_bit_valid` impl. It's plausible that we could make changes - or Rust
812 // could make changes (such as the "trivial bounds" language feature) - that
813 // make this no longer true. To hedge against these, we include an explicit
814 // `Self: FromBytes` check in the generated `is_bit_valid`, which is
815 // bulletproof.
816 if top_level == Trait::FromBytes && ast.generics.params.is_empty() {
817 Some(quote!(
818 // SAFETY: See inline.
819 fn is_bit_valid<___ZerocopyAliasing>(
820 _candidate: ::zerocopy::Maybe<Self, ___ZerocopyAliasing>,
821 ) -> ::zerocopy::util::macro_util::core_reexport::primitive::bool
822 where
823 ___ZerocopyAliasing: ::zerocopy::pointer::invariant::Reference,
824 {
825 if false {
826 fn assert_is_from_bytes<T>()
827 where
828 T: ::zerocopy::FromBytes,
829 T: ?::zerocopy::util::macro_util::core_reexport::marker::Sized,
830 {
831 }
832
833 assert_is_from_bytes::<Self>();
834 }
835
836 // SAFETY: The preceding code only compiles if `Self:
837 // FromBytes`. Thus, this code only compiles if all initialized
838 // byte sequences represent valid instances of `Self`.
839 true
840 }
841 ))
842 } else {
843 None
844 }
845}
846
847/// Generates a `TryFromBytes::is_bit_valid` instance that unconditionally
848/// returns true.
849///
850/// This should be used where possible, (although `try_gen_trivial_is_bit_valid`
851/// should be preferred over this for safety reasons). Using this impl is faster
852/// to codegen, faster to compile, and is friendlier on the optimizer.
853///
854/// # Safety
855///
856/// The caller must ensure that all initialized bit patterns are valid for
857/// `Self`.
858unsafe fn gen_trivial_is_bit_valid_unchecked() -> proc_macro2::TokenStream {
859 quote!(
860 // SAFETY: The caller of `gen_trivial_is_bit_valid_unchecked` has
861 // promised that all initialized bit patterns are valid for `Self`.
862 fn is_bit_valid<___ZerocopyAliasing>(
863 _candidate: ::zerocopy::Maybe<Self, ___ZerocopyAliasing>,
864 ) -> ::zerocopy::util::macro_util::core_reexport::primitive::bool
865 where
866 ___ZerocopyAliasing: ::zerocopy::pointer::invariant::Reference,
867 {
868 true
869 }
870 )
871}
872
873/// A struct is `FromZeros` if:
874/// - all fields are `FromZeros`
875fn derive_from_zeros_struct(ast: &DeriveInput, strct: &DataStruct) -> TokenStream {
876 impl_block(
877 ast,
878 strct,
879 Trait::FromZeros,
880 FieldBounds::ALL_SELF,
881 SelfBounds::None,
882 None,
883 None,
884 None,
885 )
886}
887
888/// Returns `Ok(index)` if variant `index` of the enum has a discriminant of
889/// zero. If `Err(bool)` is returned, the boolean is true if the enum has
890/// unknown discriminants (e.g. discriminants set to const expressions which we
891/// can't evaluate in a proc macro). If the enum has unknown discriminants, then
892/// it might have a zero variant that we just can't detect.
893fn find_zero_variant(enm: &DataEnum) -> Result<usize, bool> {
894 // Discriminants can be anywhere in the range [i128::MIN, u128::MAX] because
895 // the discriminant type may be signed or unsigned. Since we only care about
896 // tracking the discriminant when it's less than or equal to zero, we can
897 // avoid u128 -> i128 conversions and bounds checking by making the "next
898 // discriminant" value implicitly negative.
899 // Technically 64 bits is enough, but 128 is better for future compatibility
900 // with https://github.com/rust-lang/rust/issues/56071
901 let mut next_negative_discriminant = Some(0);
902
903 // Sometimes we encounter explicit discriminants that we can't know the
904 // value of (e.g. a constant expression that requires evaluation). These
905 // could evaluate to zero or a negative number, but we can't assume that
906 // they do (no false positives allowed!). So we treat them like strictly-
907 // positive values that can't result in any zero variants, and track whether
908 // we've encountered any unknown discriminants.
909 let mut has_unknown_discriminants = false;
910
911 for (i, v) in enm.variants.iter().enumerate() {
912 match v.discriminant.as_ref() {
913 // Implicit discriminant
914 None => {
915 match next_negative_discriminant.as_mut() {
916 Some(0) => return Ok(i),
917 // n is nonzero so subtraction is always safe
918 Some(n) => *n -= 1,
919 None => (),
920 }
921 }
922 // Explicit positive discriminant
923 Some((_, Expr::Lit(ExprLit { lit: Lit::Int(int), .. }))) => {
924 match int.base10_parse::<u128>().ok() {
925 Some(0) => return Ok(i),
926 Some(_) => next_negative_discriminant = None,
927 None => {
928 // Numbers should never fail to parse, but just in case:
929 has_unknown_discriminants = true;
930 next_negative_discriminant = None;
931 }
932 }
933 }
934 // Explicit negative discriminant
935 Some((_, Expr::Unary(ExprUnary { op: UnOp::Neg(_), expr, .. }))) => match &**expr {
936 Expr::Lit(ExprLit { lit: Lit::Int(int), .. }) => {
937 match int.base10_parse::<u128>().ok() {
938 Some(0) => return Ok(i),
939 // x is nonzero so subtraction is always safe
940 Some(x) => next_negative_discriminant = Some(x - 1),
941 None => {
942 // Numbers should never fail to parse, but just in
943 // case:
944 has_unknown_discriminants = true;
945 next_negative_discriminant = None;
946 }
947 }
948 }
949 // Unknown negative discriminant (e.g. const repr)
950 _ => {
951 has_unknown_discriminants = true;
952 next_negative_discriminant = None;
953 }
954 },
955 // Unknown discriminant (e.g. const expr)
956 _ => {
957 has_unknown_discriminants = true;
958 next_negative_discriminant = None;
959 }
960 }
961 }
962
963 Err(has_unknown_discriminants)
964}
965
966/// An enum is `FromZeros` if:
967/// - one of the variants has a discriminant of `0`
968/// - that variant's fields are all `FromZeros`
969fn derive_from_zeros_enum(ast: &DeriveInput, enm: &DataEnum) -> Result<TokenStream, Error> {
970 let repr = EnumRepr::from_attrs(&ast.attrs)?;
971
972 // We don't actually care what the repr is; we just care that it's one of
973 // the allowed ones.
974 match repr {
975 Repr::Compound(
976 Spanned { t: CompoundRepr::C | CompoundRepr::Primitive(_), span: _ },
977 _,
978 ) => {}
979 Repr::Transparent(_)
980 | Repr::Compound(Spanned { t: CompoundRepr::Rust, span: _ }, _) => return Err(Error::new(Span::call_site(), "must have #[repr(C)] or #[repr(Int)] attribute in order to guarantee this type's memory layout")),
981 }
982
983 let zero_variant = match find_zero_variant(enm) {
984 Ok(index) => enm.variants.iter().nth(index).unwrap(),
985 // Has unknown variants
986 Err(true) => {
987 return Err(Error::new_spanned(
988 ast,
989 "FromZeros only supported on enums with a variant that has a discriminant of `0`\n\
990 help: This enum has discriminants which are not literal integers. One of those may \
991 define or imply which variant has a discriminant of zero. Use a literal integer to \
992 define or imply the variant with a discriminant of zero.",
993 ));
994 }
995 // Does not have unknown variants
996 Err(false) => {
997 return Err(Error::new_spanned(
998 ast,
999 "FromZeros only supported on enums with a variant that has a discriminant of `0`",
1000 ));
1001 }
1002 };
1003
1004 let explicit_bounds = zero_variant
1005 .fields
1006 .iter()
1007 .map(|field| {
1008 let ty = &field.ty;
1009 parse_quote! { #ty: ::zerocopy::FromZeros }
1010 })
1011 .collect::<Vec<WherePredicate>>();
1012
1013 Ok(impl_block(
1014 ast,
1015 enm,
1016 Trait::FromZeros,
1017 FieldBounds::Explicit(explicit_bounds),
1018 SelfBounds::None,
1019 None,
1020 None,
1021 None,
1022 ))
1023}
1024
1025/// Unions are `FromZeros` if
1026/// - all fields are `FromZeros` and `Immutable`
1027fn derive_from_zeros_union(ast: &DeriveInput, unn: &DataUnion) -> TokenStream {
1028 // TODO(#5): Remove the `Immutable` bound. It's only necessary for
1029 // compatibility with `derive(TryFromBytes)` on unions; not for soundness.
1030 let field_type_trait_bounds =
1031 FieldBounds::All(&[TraitBound::Slf, TraitBound::Other(Trait::Immutable)]);
1032 impl_block(
1033 ast,
1034 unn,
1035 Trait::FromZeros,
1036 field_type_trait_bounds,
1037 SelfBounds::None,
1038 None,
1039 None,
1040 None,
1041 )
1042}
1043
1044/// A struct is `FromBytes` if:
1045/// - all fields are `FromBytes`
1046fn derive_from_bytes_struct(ast: &DeriveInput, strct: &DataStruct) -> TokenStream {
1047 impl_block(
1048 ast,
1049 strct,
1050 Trait::FromBytes,
1051 FieldBounds::ALL_SELF,
1052 SelfBounds::None,
1053 None,
1054 None,
1055 None,
1056 )
1057}
1058
1059/// An enum is `FromBytes` if:
1060/// - Every possible bit pattern must be valid, which means that every bit
1061/// pattern must correspond to a different enum variant. Thus, for an enum
1062/// whose layout takes up N bytes, there must be 2^N variants.
1063/// - Since we must know N, only representations which guarantee the layout's
1064/// size are allowed. These are `repr(uN)` and `repr(iN)` (`repr(C)` implies an
1065/// implementation-defined size). `usize` and `isize` technically guarantee the
1066/// layout's size, but would require us to know how large those are on the
1067/// target platform. This isn't terribly difficult - we could emit a const
1068/// expression that could call `core::mem::size_of` in order to determine the
1069/// size and check against the number of enum variants, but a) this would be
1070/// platform-specific and, b) even on Rust's smallest bit width platform (32),
1071/// this would require ~4 billion enum variants, which obviously isn't a thing.
1072/// - All fields of all variants are `FromBytes`.
1073fn derive_from_bytes_enum(ast: &DeriveInput, enm: &DataEnum) -> Result<TokenStream, Error> {
1074 let repr = EnumRepr::from_attrs(&ast.attrs)?;
1075
1076 let variants_required = 1usize << enum_size_from_repr(&repr)?;
1077 if enm.variants.len() != variants_required {
1078 return Err(Error::new_spanned(
1079 ast,
1080 format!(
1081 "FromBytes only supported on {} enum with {} variants",
1082 repr.repr_type_name(),
1083 variants_required
1084 ),
1085 ));
1086 }
1087
1088 Ok(impl_block(
1089 ast,
1090 enm,
1091 Trait::FromBytes,
1092 FieldBounds::ALL_SELF,
1093 SelfBounds::None,
1094 None,
1095 None,
1096 None,
1097 ))
1098}
1099
1100// Returns `None` if the enum's size is not guaranteed by the repr.
1101fn enum_size_from_repr(repr: &EnumRepr) -> Result<usize, Error> {
1102 use {CompoundRepr::*, PrimitiveRepr::*, Repr::*};
1103 match repr {
1104 Transparent(span)
1105 | Compound(
1106 Spanned { t: C | Rust | Primitive(U32 | I32 | U64 | I64 | Usize | Isize), span },
1107 _,
1108 ) => Err(Error::new(*span, "`FromBytes` only supported on enums with `#[repr(...)]` attributes `u8`, `i8`, `u16`, or `i16`")),
1109 Compound(Spanned { t: Primitive(U8 | I8), span: _ }, _align) => Ok(8),
1110 Compound(Spanned { t: Primitive(U16 | I16), span: _ }, _align) => Ok(16),
1111 }
1112}
1113
1114/// Unions are `FromBytes` if
1115/// - all fields are `FromBytes` and `Immutable`
1116fn derive_from_bytes_union(ast: &DeriveInput, unn: &DataUnion) -> TokenStream {
1117 // TODO(#5): Remove the `Immutable` bound. It's only necessary for
1118 // compatibility with `derive(TryFromBytes)` on unions; not for soundness.
1119 let field_type_trait_bounds =
1120 FieldBounds::All(&[TraitBound::Slf, TraitBound::Other(Trait::Immutable)]);
1121 impl_block(
1122 ast,
1123 unn,
1124 Trait::FromBytes,
1125 field_type_trait_bounds,
1126 SelfBounds::None,
1127 None,
1128 None,
1129 None,
1130 )
1131}
1132
1133fn derive_into_bytes_struct(ast: &DeriveInput, strct: &DataStruct) -> Result<TokenStream, Error> {
1134 let repr = StructUnionRepr::from_attrs(&ast.attrs)?;
1135
1136 let is_transparent = repr.is_transparent();
1137 let is_c = repr.is_c();
1138 let is_packed_1 = repr.is_packed_1();
1139 let num_fields = strct.fields().len();
1140
1141 let (padding_check, require_unaligned_fields) = if is_transparent || is_packed_1 {
1142 // No padding check needed.
1143 // - repr(transparent): The layout and ABI of the whole struct is the
1144 // same as its only non-ZST field (meaning there's no padding outside
1145 // of that field) and we require that field to be `IntoBytes` (meaning
1146 // there's no padding in that field).
1147 // - repr(packed): Any inter-field padding bytes are removed, meaning
1148 // that any padding bytes would need to come from the fields, all of
1149 // which we require to be `IntoBytes` (meaning they don't have any
1150 // padding). Note that this holds regardless of other `repr`
1151 // attributes, including `repr(Rust)`. [1]
1152 //
1153 // [1] Per https://doc.rust-lang.org/1.81.0/reference/type-layout.html#the-alignment-modifiers:
1154 //
1155 // An important consequence of these rules is that a type with
1156 // `#[repr(packed(1))]`` (or `#[repr(packed)]``) will have no
1157 // inter-field padding.
1158 (None, false)
1159 } else if is_c && !repr.is_align_gt_1() && num_fields <= 1 {
1160 // No padding check needed. A repr(C) struct with zero or one field has
1161 // no padding unless #[repr(align)] explicitly adds padding, which we
1162 // check for in this branch's condition.
1163 (None, false)
1164 } else if ast.generics.params.is_empty() {
1165 // Since there are no generics, we can emit a padding check. All reprs
1166 // guarantee that fields won't overlap [1], so the padding check is
1167 // sound. This is more permissive than the next case, which requires
1168 // that all field types implement `Unaligned`.
1169 //
1170 // [1] Per https://doc.rust-lang.org/1.81.0/reference/type-layout.html#the-rust-representation:
1171 //
1172 // The only data layout guarantees made by [`repr(Rust)`] are those
1173 // required for soundness. They are:
1174 // ...
1175 // 2. The fields do not overlap.
1176 // ...
1177 (Some(PaddingCheck::Struct), false)
1178 } else if is_c && !repr.is_align_gt_1() {
1179 // We can't use a padding check since there are generic type arguments.
1180 // Instead, we require all field types to implement `Unaligned`. This
1181 // ensures that the `repr(C)` layout algorithm will not insert any
1182 // padding unless #[repr(align)] explicitly adds padding, which we check
1183 // for in this branch's condition.
1184 //
1185 // TODO(#10): Support type parameters for non-transparent, non-packed
1186 // structs without requiring `Unaligned`.
1187 (None, true)
1188 } else {
1189 return Err(Error::new(Span::call_site(), "must have a non-align #[repr(...)] attribute in order to guarantee this type's memory layout"));
1190 };
1191
1192 let field_bounds = if require_unaligned_fields {
1193 FieldBounds::All(&[TraitBound::Slf, TraitBound::Other(Trait::Unaligned)])
1194 } else {
1195 FieldBounds::ALL_SELF
1196 };
1197
1198 Ok(impl_block(
1199 ast,
1200 strct,
1201 Trait::IntoBytes,
1202 field_bounds,
1203 SelfBounds::None,
1204 padding_check,
1205 None,
1206 None,
1207 ))
1208}
1209
1210/// If the type is an enum:
1211/// - It must have a defined representation (`repr`s `C`, `u8`, `u16`, `u32`,
1212/// `u64`, `usize`, `i8`, `i16`, `i32`, `i64`, or `isize`).
1213/// - It must have no padding bytes.
1214/// - Its fields must be `IntoBytes`.
1215fn derive_into_bytes_enum(ast: &DeriveInput, enm: &DataEnum) -> Result<TokenStream, Error> {
1216 let repr = EnumRepr::from_attrs(&ast.attrs)?;
1217 if !repr.is_c() && !repr.is_primitive() {
1218 return Err(Error::new(Span::call_site(), "must have #[repr(C)] or #[repr(Int)] attribute in order to guarantee this type's memory layout"));
1219 }
1220
1221 let tag_type_definition = r#enum::generate_tag_enum(&repr, enm);
1222 Ok(impl_block(
1223 ast,
1224 enm,
1225 Trait::IntoBytes,
1226 FieldBounds::ALL_SELF,
1227 SelfBounds::None,
1228 Some(PaddingCheck::Enum { tag_type_definition }),
1229 None,
1230 None,
1231 ))
1232}
1233
1234/// A union is `IntoBytes` if:
1235/// - all fields are `IntoBytes`
1236/// - `repr(C)`, `repr(transparent)`, or `repr(packed)`
1237/// - no padding (size of union equals size of each field type)
1238fn derive_into_bytes_union(ast: &DeriveInput, unn: &DataUnion) -> Result<TokenStream, Error> {
1239 // See #1792 for more context.
1240 //
1241 // By checking for `zerocopy_derive_union_into_bytes` both here and in the
1242 // generated code, we ensure that `--cfg zerocopy_derive_union_into_bytes`
1243 // need only be passed *either* when compiling this crate *or* when
1244 // compiling the user's crate. The former is preferable, but in some
1245 // situations (such as when cross-compiling using `cargo build --target`),
1246 // it doesn't get propagated to this crate's build by default.
1247 let cfg_compile_error = if cfg!(zerocopy_derive_union_into_bytes) {
1248 quote!()
1249 } else {
1250 quote!(
1251 const _: () = {
1252 #[cfg(not(zerocopy_derive_union_into_bytes))]
1253 ::zerocopy::util::macro_util::core_reexport::compile_error!(
1254 "requires --cfg zerocopy_derive_union_into_bytes;
1255please let us know you use this feature: https://github.com/google/zerocopy/discussions/1802"
1256 );
1257 };
1258 )
1259 };
1260
1261 // TODO(#10): Support type parameters.
1262 if !ast.generics.params.is_empty() {
1263 return Err(Error::new(Span::call_site(), "unsupported on types with type parameters"));
1264 }
1265
1266 // Because we don't support generics, we don't need to worry about
1267 // special-casing different reprs. So long as there is *some* repr which
1268 // guarantees the layout, our `PaddingCheck::Union` guarantees that there is
1269 // no padding.
1270 let repr = StructUnionRepr::from_attrs(&ast.attrs)?;
1271 if !repr.is_c() && !repr.is_transparent() && !repr.is_packed_1() {
1272 return Err(Error::new(
1273 Span::call_site(),
1274 "must be #[repr(C)], #[repr(packed)], or #[repr(transparent)]",
1275 ));
1276 }
1277
1278 let impl_block = impl_block(
1279 ast,
1280 unn,
1281 Trait::IntoBytes,
1282 FieldBounds::ALL_SELF,
1283 SelfBounds::None,
1284 Some(PaddingCheck::Union),
1285 None,
1286 None,
1287 );
1288 Ok(quote!(#cfg_compile_error #impl_block))
1289}
1290
1291/// A struct is `Unaligned` if:
1292/// - `repr(align)` is no more than 1 and either
1293/// - `repr(C)` or `repr(transparent)` and
1294/// - all fields `Unaligned`
1295/// - `repr(packed)`
1296fn derive_unaligned_struct(ast: &DeriveInput, strct: &DataStruct) -> Result<TokenStream, Error> {
1297 let repr = StructUnionRepr::from_attrs(&ast.attrs)?;
1298 repr.unaligned_validate_no_align_gt_1()?;
1299
1300 let field_bounds = if repr.is_packed_1() {
1301 FieldBounds::None
1302 } else if repr.is_c() || repr.is_transparent() {
1303 FieldBounds::ALL_SELF
1304 } else {
1305 return Err(Error::new(Span::call_site(), "must have #[repr(C)], #[repr(transparent)], or #[repr(packed)] attribute in order to guarantee this type's alignment"));
1306 };
1307
1308 Ok(impl_block(ast, strct, Trait::Unaligned, field_bounds, SelfBounds::None, None, None, None))
1309}
1310
1311/// An enum is `Unaligned` if:
1312/// - No `repr(align(N > 1))`
1313/// - `repr(u8)` or `repr(i8)`
1314fn derive_unaligned_enum(ast: &DeriveInput, enm: &DataEnum) -> Result<TokenStream, Error> {
1315 let repr = EnumRepr::from_attrs(&ast.attrs)?;
1316 repr.unaligned_validate_no_align_gt_1()?;
1317
1318 if !repr.is_u8() && !repr.is_i8() {
1319 return Err(Error::new(Span::call_site(), "must have #[repr(u8)] or #[repr(i8)] attribute in order to guarantee this type's alignment"));
1320 }
1321
1322 Ok(impl_block(
1323 ast,
1324 enm,
1325 Trait::Unaligned,
1326 FieldBounds::ALL_SELF,
1327 SelfBounds::None,
1328 None,
1329 None,
1330 None,
1331 ))
1332}
1333
1334/// Like structs, a union is `Unaligned` if:
1335/// - `repr(align)` is no more than 1 and either
1336/// - `repr(C)` or `repr(transparent)` and
1337/// - all fields `Unaligned`
1338/// - `repr(packed)`
1339fn derive_unaligned_union(ast: &DeriveInput, unn: &DataUnion) -> Result<TokenStream, Error> {
1340 let repr = StructUnionRepr::from_attrs(&ast.attrs)?;
1341 repr.unaligned_validate_no_align_gt_1()?;
1342
1343 let field_type_trait_bounds = if repr.is_packed_1() {
1344 FieldBounds::None
1345 } else if repr.is_c() || repr.is_transparent() {
1346 FieldBounds::ALL_SELF
1347 } else {
1348 return Err(Error::new(Span::call_site(), "must have #[repr(C)], #[repr(transparent)], or #[repr(packed)] attribute in order to guarantee this type's alignment"));
1349 };
1350
1351 Ok(impl_block(
1352 ast,
1353 unn,
1354 Trait::Unaligned,
1355 field_type_trait_bounds,
1356 SelfBounds::None,
1357 None,
1358 None,
1359 None,
1360 ))
1361}
1362
1363/// This enum describes what kind of padding check needs to be generated for the
1364/// associated impl.
1365enum PaddingCheck {
1366 /// Check that the sum of the fields' sizes exactly equals the struct's
1367 /// size.
1368 Struct,
1369 /// Check that the size of each field exactly equals the union's size.
1370 Union,
1371 /// Check that every variant of the enum contains no padding.
1372 ///
1373 /// Because doing so requires a tag enum, this padding check requires an
1374 /// additional `TokenStream` which defines the tag enum as `___ZerocopyTag`.
1375 Enum { tag_type_definition: TokenStream },
1376}
1377
1378impl PaddingCheck {
1379 /// Returns the ident of the macro to call in order to validate that a type
1380 /// passes the padding check encoded by `PaddingCheck`.
1381 fn validator_macro_ident(&self) -> Ident {
1382 let s = match self {
1383 PaddingCheck::Struct => "struct_has_padding",
1384 PaddingCheck::Union => "union_has_padding",
1385 PaddingCheck::Enum { .. } => "enum_has_padding",
1386 };
1387
1388 Ident::new(s, Span::call_site())
1389 }
1390
1391 /// Sometimes performing the padding check requires some additional
1392 /// "context" code. For enums, this is the definition of the tag enum.
1393 fn validator_macro_context(&self) -> Option<&TokenStream> {
1394 match self {
1395 PaddingCheck::Struct | PaddingCheck::Union => None,
1396 PaddingCheck::Enum { tag_type_definition } => Some(tag_type_definition),
1397 }
1398 }
1399}
1400
1401#[derive(Copy, Clone, Debug, Eq, PartialEq)]
1402enum Trait {
1403 KnownLayout,
1404 Immutable,
1405 TryFromBytes,
1406 FromZeros,
1407 FromBytes,
1408 IntoBytes,
1409 Unaligned,
1410 Sized,
1411 ByteHash,
1412 ByteEq,
1413}
1414
1415impl ToTokens for Trait {
1416 fn to_tokens(&self, tokens: &mut TokenStream) {
1417 // According to [1], the format of the derived `Debug`` output is not
1418 // stable and therefore not guaranteed to represent the variant names.
1419 // Indeed with the (unstable) `fmt-debug` compiler flag [2], it can
1420 // return only a minimalized output or empty string. To make sure this
1421 // code will work in the future and independet of the compiler flag, we
1422 // translate the variants to their names manually here.
1423 //
1424 // [1] https://doc.rust-lang.org/1.81.0/std/fmt/trait.Debug.html#stability
1425 // [2] https://doc.rust-lang.org/beta/unstable-book/compiler-flags/fmt-debug.html
1426 let s = match self {
1427 Trait::KnownLayout => "KnownLayout",
1428 Trait::Immutable => "Immutable",
1429 Trait::TryFromBytes => "TryFromBytes",
1430 Trait::FromZeros => "FromZeros",
1431 Trait::FromBytes => "FromBytes",
1432 Trait::IntoBytes => "IntoBytes",
1433 Trait::Unaligned => "Unaligned",
1434 Trait::Sized => "Sized",
1435 Trait::ByteHash => "ByteHash",
1436 Trait::ByteEq => "ByteEq",
1437 };
1438 let ident = Ident::new(s, Span::call_site());
1439 tokens.extend(core::iter::once(TokenTree::Ident(ident)));
1440 }
1441}
1442
1443impl Trait {
1444 fn crate_path(&self) -> Path {
1445 match self {
1446 Self::Sized => parse_quote!(::zerocopy::util::macro_util::core_reexport::marker::#self),
1447 _ => parse_quote!(::zerocopy::#self),
1448 }
1449 }
1450}
1451
1452#[derive(Debug, Eq, PartialEq)]
1453enum TraitBound {
1454 Slf,
1455 Other(Trait),
1456}
1457
1458enum FieldBounds<'a> {
1459 None,
1460 All(&'a [TraitBound]),
1461 Trailing(&'a [TraitBound]),
1462 Explicit(Vec<WherePredicate>),
1463}
1464
1465impl<'a> FieldBounds<'a> {
1466 const ALL_SELF: FieldBounds<'a> = FieldBounds::All(&[TraitBound::Slf]);
1467 const TRAILING_SELF: FieldBounds<'a> = FieldBounds::Trailing(&[TraitBound::Slf]);
1468}
1469
1470#[derive(Debug, Eq, PartialEq)]
1471enum SelfBounds<'a> {
1472 None,
1473 All(&'a [Trait]),
1474}
1475
1476// TODO(https://github.com/rust-lang/rust-clippy/issues/12908): This is a false positive.
1477// Explicit lifetimes are actually necessary here.
1478#[allow(clippy::needless_lifetimes)]
1479impl<'a> SelfBounds<'a> {
1480 const SIZED: Self = Self::All(&[Trait::Sized]);
1481}
1482
1483/// Normalizes a slice of bounds by replacing [`TraitBound::Slf`] with `slf`.
1484fn normalize_bounds(slf: Trait, bounds: &[TraitBound]) -> impl '_ + Iterator<Item = Trait> {
1485 bounds.iter().map(move |bound| match bound {
1486 TraitBound::Slf => slf,
1487 TraitBound::Other(trt) => *trt,
1488 })
1489}
1490
1491#[allow(clippy::too_many_arguments)]
1492fn impl_block<D: DataExt>(
1493 input: &DeriveInput,
1494 data: &D,
1495 trt: Trait,
1496 field_type_trait_bounds: FieldBounds,
1497 self_type_trait_bounds: SelfBounds,
1498 padding_check: Option<PaddingCheck>,
1499 inner_extras: Option<TokenStream>,
1500 outer_extras: Option<TokenStream>,
1501) -> TokenStream {
1502 // In this documentation, we will refer to this hypothetical struct:
1503 //
1504 // #[derive(FromBytes)]
1505 // struct Foo<T, I: Iterator>
1506 // where
1507 // T: Copy,
1508 // I: Clone,
1509 // I::Item: Clone,
1510 // {
1511 // a: u8,
1512 // b: T,
1513 // c: I::Item,
1514 // }
1515 //
1516 // We extract the field types, which in this case are `u8`, `T`, and
1517 // `I::Item`. We re-use the existing parameters and where clauses. If
1518 // `require_trait_bound == true` (as it is for `FromBytes), we add where
1519 // bounds for each field's type:
1520 //
1521 // impl<T, I: Iterator> FromBytes for Foo<T, I>
1522 // where
1523 // T: Copy,
1524 // I: Clone,
1525 // I::Item: Clone,
1526 // T: FromBytes,
1527 // I::Item: FromBytes,
1528 // {
1529 // }
1530 //
1531 // NOTE: It is standard practice to only emit bounds for the type parameters
1532 // themselves, not for field types based on those parameters (e.g., `T` vs
1533 // `T::Foo`). For a discussion of why this is standard practice, see
1534 // https://github.com/rust-lang/rust/issues/26925.
1535 //
1536 // The reason we diverge from this standard is that doing it that way for us
1537 // would be unsound. E.g., consider a type, `T` where `T: FromBytes` but
1538 // `T::Foo: !FromBytes`. It would not be sound for us to accept a type with
1539 // a `T::Foo` field as `FromBytes` simply because `T: FromBytes`.
1540 //
1541 // While there's no getting around this requirement for us, it does have the
1542 // pretty serious downside that, when lifetimes are involved, the trait
1543 // solver ties itself in knots:
1544 //
1545 // #[derive(Unaligned)]
1546 // #[repr(C)]
1547 // struct Dup<'a, 'b> {
1548 // a: PhantomData<&'a u8>,
1549 // b: PhantomData<&'b u8>,
1550 // }
1551 //
1552 // error[E0283]: type annotations required: cannot resolve `core::marker::PhantomData<&'a u8>: zerocopy::Unaligned`
1553 // --> src/main.rs:6:10
1554 // |
1555 // 6 | #[derive(Unaligned)]
1556 // | ^^^^^^^^^
1557 // |
1558 // = note: required by `zerocopy::Unaligned`
1559
1560 let type_ident = &input.ident;
1561 let trait_path = trt.crate_path();
1562 let fields = data.fields();
1563 let variants = data.variants();
1564 let tag = data.tag();
1565
1566 fn bound_tt(ty: &Type, traits: impl Iterator<Item = Trait>) -> WherePredicate {
1567 let traits = traits.map(|t| t.crate_path());
1568 parse_quote!(#ty: #(#traits)+*)
1569 }
1570 let field_type_bounds: Vec<_> = match (field_type_trait_bounds, &fields[..]) {
1571 (FieldBounds::All(traits), _) => fields
1572 .iter()
1573 .map(|(_vis, _name, ty)| bound_tt(ty, normalize_bounds(trt, traits)))
1574 .collect(),
1575 (FieldBounds::None, _) | (FieldBounds::Trailing(..), []) => vec![],
1576 (FieldBounds::Trailing(traits), [.., last]) => {
1577 vec![bound_tt(last.2, normalize_bounds(trt, traits))]
1578 }
1579 (FieldBounds::Explicit(bounds), _) => bounds,
1580 };
1581
1582 // Don't bother emitting a padding check if there are no fields.
1583 #[allow(unstable_name_collisions)] // See `BoolExt` below
1584 // Work around https://github.com/rust-lang/rust-clippy/issues/12280
1585 #[allow(clippy::incompatible_msrv)]
1586 let padding_check_bound =
1587 padding_check.and_then(|check| (!fields.is_empty()).then_some(check)).map(|check| {
1588 let variant_types = variants.iter().map(|var| {
1589 let types = var.iter().map(|(_vis, _name, ty)| ty);
1590 quote!([#(#types),*])
1591 });
1592 let validator_context = check.validator_macro_context();
1593 let validator_macro = check.validator_macro_ident();
1594 let t = tag.iter();
1595 parse_quote! {
1596 (): ::zerocopy::util::macro_util::PaddingFree<
1597 Self,
1598 {
1599 #validator_context
1600 ::zerocopy::#validator_macro!(Self, #(#t,)* #(#variant_types),*)
1601 }
1602 >
1603 }
1604 });
1605
1606 let self_bounds: Option<WherePredicate> = match self_type_trait_bounds {
1607 SelfBounds::None => None,
1608 SelfBounds::All(traits) => Some(bound_tt(&parse_quote!(Self), traits.iter().copied())),
1609 };
1610
1611 let bounds = input
1612 .generics
1613 .where_clause
1614 .as_ref()
1615 .map(|where_clause| where_clause.predicates.iter())
1616 .into_iter()
1617 .flatten()
1618 .chain(field_type_bounds.iter())
1619 .chain(padding_check_bound.iter())
1620 .chain(self_bounds.iter());
1621
1622 // The parameters with trait bounds, but without type defaults.
1623 let params = input.generics.params.clone().into_iter().map(|mut param| {
1624 match &mut param {
1625 GenericParam::Type(ty) => ty.default = None,
1626 GenericParam::Const(cnst) => cnst.default = None,
1627 GenericParam::Lifetime(_) => {}
1628 }
1629 quote!(#param)
1630 });
1631
1632 // The identifiers of the parameters without trait bounds or type defaults.
1633 let param_idents = input.generics.params.iter().map(|param| match param {
1634 GenericParam::Type(ty) => {
1635 let ident = &ty.ident;
1636 quote!(#ident)
1637 }
1638 GenericParam::Lifetime(l) => {
1639 let ident = &l.lifetime;
1640 quote!(#ident)
1641 }
1642 GenericParam::Const(cnst) => {
1643 let ident = &cnst.ident;
1644 quote!({#ident})
1645 }
1646 });
1647
1648 let impl_tokens = quote! {
1649 // TODO(#553): Add a test that generates a warning when
1650 // `#[allow(deprecated)]` isn't present.
1651 #[allow(deprecated)]
1652 // While there are not currently any warnings that this suppresses (that
1653 // we're aware of), it's good future-proofing hygiene.
1654 #[automatically_derived]
1655 unsafe impl < #(#params),* > #trait_path for #type_ident < #(#param_idents),* >
1656 where
1657 #(#bounds,)*
1658 {
1659 fn only_derive_is_allowed_to_implement_this_trait() {}
1660
1661 #inner_extras
1662 }
1663 };
1664
1665 if let Some(outer_extras) = outer_extras {
1666 // So that any items defined in `#outer_extras` don't conflict with
1667 // existing names defined in this scope.
1668 quote! {
1669 const _: () = {
1670 #impl_tokens
1671
1672 #outer_extras
1673 };
1674 }
1675 } else {
1676 impl_tokens
1677 }
1678}
1679
1680// A polyfill for `Option::then_some`, which was added after our MSRV.
1681//
1682// The `#[allow(unused)]` is necessary because, on sufficiently recent toolchain
1683// versions, `b.then_some(...)` resolves to the inherent method rather than to
1684// this trait, and so this trait is considered unused.
1685//
1686// TODO(#67): Remove this once our MSRV is >= 1.62.
1687#[allow(unused)]
1688trait BoolExt {
1689 fn then_some<T>(self, t: T) -> Option<T>;
1690}
1691
1692impl BoolExt for bool {
1693 fn then_some<T>(self, t: T) -> Option<T> {
1694 if self {
1695 Some(t)
1696 } else {
1697 None
1698 }
1699 }
1700}