1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
3936
3937
3938
3939
3940
3941
3942
3943
3944
3945
3946
3947
3948
3949
3950
3951
3952
3953
3954
3955
3956
3957
3958
3959
3960
3961
3962
3963
3964
3965
3966
3967
3968
3969
3970
3971
3972
3973
3974
3975
3976
3977
3978
3979
3980
3981
3982
3983
3984
3985
3986
3987
3988
3989
3990
3991
3992
3993
3994
3995
3996
3997
3998
3999
4000
4001
4002
4003
4004
4005
4006
4007
4008
4009
4010
4011
4012
4013
4014
4015
4016
4017
4018
4019
4020
4021
4022
4023
4024
4025
4026
4027
4028
4029
4030
4031
4032
4033
4034
4035
4036
4037
4038
4039
4040
4041
4042
4043
4044
4045
4046
4047
4048
4049
4050
4051
4052
4053
4054
4055
4056
4057
4058
4059
4060
4061
4062
4063
4064
4065
4066
4067
4068
4069
4070
4071
4072
4073
4074
4075
4076
4077
4078
4079
4080
4081
4082
4083
4084
4085
4086
4087
4088
// Copyright 2018 The Fuchsia Authors. All rights reserved.
// Use of this source code is governed by a BSD-style license that can be
// found in the LICENSE file.

// After updating the following doc comment, make sure to run the following
// command to update `README.md` based on its contents:
//
//   ./generate-readme.sh > README.md

//! Utilities for safe zero-copy parsing and serialization.
//!
//! This crate provides utilities which make it easy to perform zero-copy
//! parsing and serialization by allowing zero-copy conversion to/from byte
//! slices.
//!
//! This is enabled by three core marker traits, each of which can be derived
//! (e.g., `#[derive(FromBytes)]`):
//! - [`FromBytes`] indicates that a type may safely be converted from an
//!   arbitrary byte sequence
//! - [`AsBytes`] indicates that a type may safely be converted *to* a byte
//!   sequence
//! - [`Unaligned`] indicates that a type's alignment requirement is 1
//!
//! Types which implement a subset of these traits can then be converted to/from
//! byte sequences with little to no runtime overhead.
//!
//! Note that these traits are ignorant of byte order. For byte order-aware
//! types, see the [`byteorder`] module.
//!
//! # Features
//!
//! `alloc`: By default, `zerocopy` is `no_std`. When the `alloc` feature is
//! enabled, the `alloc` crate is added as a dependency, and some
//! allocation-related functionality is added.
//!
//! `simd`: When the `simd` feature is enabled, `FromBytes` and `AsBytes` impls
//! are emitted for all stable SIMD types which exist on the target platform.
//! Note that the layout of SIMD types is not yet stabilized, so these impls may
//! be removed in the future if layout changes make them invalid. For more
//! information, see the Unsafe Code Guidelines Reference page on the [Layout of
//! packed SIMD vectors][simd-layout].
//!
//! `simd-nightly`: Enables the `simd` feature and adds support for SIMD types
//! which are only available on nightly. Since these types are unstable, support
//! for any type may be removed at any point in the future.
//!
//! [simd-layout]: https://rust-lang.github.io/unsafe-code-guidelines/layout/packed-simd-vectors.html

// Sometimes we want to use lints which were added after our MSRV.
// `unknown_lints` is `warn` by default and we deny warnings in CI, so without
// this attribute, any unknown lint would cause a CI failure when testing with
// our MSRV.
#![allow(unknown_lints)]
#![deny(renamed_and_removed_lints)]
#![deny(
    anonymous_parameters,
    deprecated_in_future,
    illegal_floating_point_literal_pattern,
    late_bound_lifetime_arguments,
    missing_copy_implementations,
    missing_debug_implementations,
    missing_docs,
    path_statements,
    patterns_in_fns_without_body,
    rust_2018_idioms,
    trivial_numeric_casts,
    unreachable_pub,
    unsafe_op_in_unsafe_fn,
    unused_extern_crates,
    unused_qualifications,
    variant_size_differences
)]
#![deny(
    clippy::all,
    clippy::alloc_instead_of_core,
    clippy::arithmetic_side_effects,
    clippy::as_underscore,
    clippy::assertions_on_result_states,
    clippy::as_conversions,
    clippy::correctness,
    clippy::dbg_macro,
    clippy::decimal_literal_representation,
    clippy::get_unwrap,
    clippy::indexing_slicing,
    clippy::missing_safety_doc,
    clippy::obfuscated_if_else,
    clippy::perf,
    clippy::print_stdout,
    clippy::std_instead_of_core,
    clippy::style,
    clippy::suspicious,
    clippy::todo,
    clippy::undocumented_unsafe_blocks,
    clippy::unimplemented,
    clippy::unnested_or_patterns,
    clippy::unwrap_used,
    clippy::use_debug
)]
// Only required on the v0.6.x branch due to behavior of older versions of
// Clippy which is no longer present on the MSRV we use on the main branch.
#![allow(clippy::vec_init_then_push)]
#![deny(
    rustdoc::bare_urls,
    rustdoc::broken_intra_doc_links,
    rustdoc::invalid_codeblock_attributes,
    rustdoc::invalid_html_tags,
    rustdoc::invalid_rust_codeblocks,
    rustdoc::missing_crate_level_docs,
    rustdoc::private_intra_doc_links
)]
// In test code, it makes sense to weight more heavily towards concise, readable
// code over correct or debuggable code.
#![cfg_attr(test, allow(
    // In tests, you get line numbers and have access to source code, so panic
    // messages are less important. You also often unwrap a lot, which would
    // make expect'ing instead very verbose.
    clippy::unwrap_used,
    // In tests, there's no harm to "panic risks" - the worst that can happen is
    // that your test will fail, and you'll fix it. By contrast, panic risks in
    // production code introduce the possibly of code panicking unexpectedly "in
    // the field".
    clippy::arithmetic_side_effects,
    clippy::indexing_slicing,
))]
#![cfg_attr(not(test), no_std)]
#![cfg_attr(feature = "simd-nightly", feature(stdsimd))]

pub mod byteorder;
#[doc(hidden)]
pub mod derive_util;
mod post_monomorphization_compile_fail_tests;

pub use crate::byteorder::*;
pub use zerocopy_derive::*;

use core::{
    cell::{Ref, RefMut},
    cmp::Ordering,
    fmt::{self, Debug, Display, Formatter},
    hash::{Hash, Hasher},
    marker::PhantomData,
    mem::{self, ManuallyDrop, MaybeUninit},
    num::{
        NonZeroI128, NonZeroI16, NonZeroI32, NonZeroI64, NonZeroI8, NonZeroIsize, NonZeroU128,
        NonZeroU16, NonZeroU32, NonZeroU64, NonZeroU8, NonZeroUsize, Wrapping,
    },
    ops::{Deref, DerefMut},
    ptr, slice,
};

#[cfg(feature = "alloc")]
extern crate alloc;
#[cfg(feature = "alloc")]
use {
    alloc::boxed::Box,
    alloc::vec::Vec,
    core::{alloc::Layout, ptr::NonNull},
};

// This is a hack to allow derives of `FromBytes`, `AsBytes`, and `Unaligned` to
// work in this crate. They assume that zerocopy is linked as an extern crate,
// so they access items from it as `zerocopy::Xxx`. This makes that still work.
mod zerocopy {
    pub(crate) use crate::*;
}

/// Types for which any byte pattern is valid.
///
/// WARNING: Do not implement this trait yourself! Instead, use
/// `#[derive(FromBytes)]`.
///
/// `FromBytes` types can safely be deserialized from an untrusted sequence of
/// bytes because any byte sequence corresponds to a valid instance of the type.
///
/// `FromBytes` is ignorant of byte order. For byte order-aware types, see the
/// [`byteorder`] module.
///
/// # Safety
///
/// If `T: FromBytes`, then unsafe code may assume that it is sound to treat any
/// initialized sequence of bytes of length `size_of::<T>()` as a `T`. If a type
/// is marked as `FromBytes` which violates this contract, it may cause
/// undefined behavior.
///
/// If a type has the following properties, then it is safe to implement
/// `FromBytes` for that type:
/// - If the type is a struct:
///   - All of its fields must implement `FromBytes`
/// - If the type is an enum:
///   - It must be a C-like enum (meaning that all variants have no fields)
///   - It must have a defined representation (`repr`s `C`, `u8`, `u16`, `u32`,
///     `u64`, `usize`, `i8`, `i16`, `i32`, `i64`, or `isize`).
///   - The maximum number of discriminants must be used (so that every possible
///     bit pattern is a valid one). Be very careful when using the `C`,
///     `usize`, or `isize` representations, as their size is
///     platform-dependent.
///
/// # Rationale
///
/// ## Why isn't an explicit representation required for structs?
///
/// Per the [Rust reference](reference),
/// > The representation of a type can change the padding between fields, but
/// does not change the layout of the fields themselves.
///
/// [reference]: https://doc.rust-lang.org/reference/type-layout.html#representations
///
/// Since the layout of structs only consists of padding bytes and field bytes,
/// a struct is soundly `FromBytes` if:
/// 1. its padding is soundly `FromBytes`, and
/// 2. its fields are soundly `FromBytes`.
///
/// The answer to the first question is always yes: padding bytes do not have
/// any validity constraints. A [discussion] of this question in the Unsafe Code
/// Guidelines Working Group concluded that it would be virtually unimaginable
/// for future versions of rustc to add validity constraints to padding bytes.
///
/// [discussion]: https://github.com/rust-lang/unsafe-code-guidelines/issues/174
///
/// Whether a struct is soundly `FromBytes` therefore solely depends on whether
/// its fields are `FromBytes`.
pub unsafe trait FromBytes {
    // The `Self: Sized` bound makes it so that `FromBytes` is still object
    // safe.
    #[doc(hidden)]
    fn only_derive_is_allowed_to_implement_this_trait()
    where
        Self: Sized;

    /// Reads a copy of `Self` from `bytes`.
    ///
    /// If `bytes.len() != size_of::<Self>()`, `read_from` returns `None`.
    fn read_from<B: ByteSlice>(bytes: B) -> Option<Self>
    where
        Self: Sized,
    {
        let lv = LayoutVerified::<_, Unalign<Self>>::new_unaligned(bytes)?;
        Some(lv.read().into_inner())
    }

    /// Reads a copy of `Self` from the prefix of `bytes`.
    ///
    /// `read_from_prefix` reads a `Self` from the first `size_of::<Self>()`
    /// bytes of `bytes`. If `bytes.len() < size_of::<Self>()`, it returns
    /// `None`.
    fn read_from_prefix<B: ByteSlice>(bytes: B) -> Option<Self>
    where
        Self: Sized,
    {
        let (lv, _suffix) = LayoutVerified::<_, Unalign<Self>>::new_unaligned_from_prefix(bytes)?;
        Some(lv.read().into_inner())
    }

    /// Reads a copy of `Self` from the suffix of `bytes`.
    ///
    /// `read_from_suffix` reads a `Self` from the last `size_of::<Self>()`
    /// bytes of `bytes`. If `bytes.len() < size_of::<Self>()`, it returns
    /// `None`.
    fn read_from_suffix<B: ByteSlice>(bytes: B) -> Option<Self>
    where
        Self: Sized,
    {
        let (_prefix, lv) = LayoutVerified::<_, Unalign<Self>>::new_unaligned_from_suffix(bytes)?;
        Some(lv.read().into_inner())
    }

    /// Creates an instance of `Self` from zeroed bytes.
    fn new_zeroed() -> Self
    where
        Self: Sized,
    {
        // SAFETY: `FromBytes` says all bit patterns (including zeroes) are
        // legal.
        unsafe { mem::zeroed() }
    }

    /// Creates a `Box<Self>` from zeroed bytes.
    ///
    /// This function is useful for allocating large values on the heap and
    /// zero-initializing them, without ever creating a temporary instance of
    /// `Self` on the stack. For example, `<[u8; 1048576]>::new_box_zeroed()`
    /// will allocate `[u8; 1048576]` directly on the heap; it does not require
    /// storing `[u8; 1048576]` in a temporary variable on the stack.
    ///
    /// On systems that use a heap implementation that supports allocating from
    /// pre-zeroed memory, using `new_box_zeroed` (or related functions) may
    /// have performance benefits.
    ///
    /// Note that `Box<Self>` can be converted to `Arc<Self>` and other
    /// container types without reallocation.
    ///
    /// # Panics
    ///
    /// Panics if allocation of `size_of::<Self>()` bytes fails.
    #[cfg(feature = "alloc")]
    fn new_box_zeroed() -> Box<Self>
    where
        Self: Sized,
    {
        // If `T` is a ZST, then return a proper boxed instance of it. There is
        // no allocation, but `Box` does require a correct dangling pointer.
        let layout = Layout::new::<Self>();
        if layout.size() == 0 {
            return Box::new(Self::new_zeroed());
        }

        // TODO(#61): Add a "SAFETY" comment and remove this `allow`.
        #[allow(clippy::undocumented_unsafe_blocks)]
        unsafe {
            let ptr = alloc::alloc::alloc_zeroed(layout).cast::<Self>();
            if ptr.is_null() {
                alloc::alloc::handle_alloc_error(layout);
            }
            Box::from_raw(ptr)
        }
    }

    /// Creates a `Box<[Self]>` (a boxed slice) from zeroed bytes.
    ///
    /// This function is useful for allocating large values of `[Self]` on the
    /// heap and zero-initializing them, without ever creating a temporary
    /// instance of `[Self; _]` on the stack. For example,
    /// `u8::new_box_slice_zeroed(1048576)` will allocate the slice directly on
    /// the heap; it does not require storing the slice on the stack.
    ///
    /// On systems that use a heap implementation that supports allocating from
    /// pre-zeroed memory, using `new_box_slice_zeroed` may have performance
    /// benefits.
    ///
    /// If `Self` is a zero-sized type, then this function will return a
    /// `Box<[Self]>` that has the correct `len`. Such a box cannot contain any
    /// actual information, but its `len()` property will report the correct
    /// value.
    ///
    /// # Panics
    ///
    /// * Panics if `size_of::<Self>() * len` overflows.
    /// * Panics if allocation of `size_of::<Self>() * len` bytes fails.
    #[cfg(feature = "alloc")]
    fn new_box_slice_zeroed(len: usize) -> Box<[Self]>
    where
        Self: Sized,
    {
        let size = mem::size_of::<Self>()
            .checked_mul(len)
            .expect("mem::size_of::<Self>() * len overflows `usize`");
        let align = mem::align_of::<Self>();
        // On stable Rust versions <= 1.64.0, `Layout::from_size_align` has a
        // bug in which sufficiently-large allocations (those which, when
        // rounded up to the alignment, overflow `isize`) are not rejected,
        // which can cause undefined behavior. See #64 for details.
        //
        // TODO(#67): Once our MSRV is > 1.64.0, remove this assertion.
        #[allow(clippy::as_conversions)]
        let max_alloc = (isize::MAX as usize).saturating_sub(align);
        assert!(size <= max_alloc);
        // TODO(https://github.com/rust-lang/rust/issues/55724): Use `Layout::repeat` once it's stabilized.
        let layout =
            Layout::from_size_align(size, align).expect("total allocation size overflows `isize`");

        // TODO(#61): Add a "SAFETY" comment and remove this `allow`.
        #[allow(clippy::undocumented_unsafe_blocks)]
        unsafe {
            if layout.size() != 0 {
                let ptr = alloc::alloc::alloc_zeroed(layout).cast::<Self>();
                if ptr.is_null() {
                    alloc::alloc::handle_alloc_error(layout);
                }
                Box::from_raw(slice::from_raw_parts_mut(ptr, len))
            } else {
                // `Box<[T]>` does not allocate when `T` is zero-sized or when
                // `len` is zero, but it does require a non-null dangling
                // pointer for its allocation.
                Box::from_raw(slice::from_raw_parts_mut(NonNull::<Self>::dangling().as_ptr(), len))
            }
        }
    }

    /// Creates a `Vec<Self>` from zeroed bytes.
    ///
    /// This function is useful for allocating large values of `Vec`s and
    /// zero-initializing them, without ever creating a temporary instance of
    /// `[Self; _]` (or many temporary instances of `Self`) on the stack. For
    /// example, `u8::new_vec_zeroed(1048576)` will allocate directly on the
    /// heap; it does not require storing intermediate values on the stack.
    ///
    /// On systems that use a heap implementation that supports allocating from
    /// pre-zeroed memory, using `new_vec_zeroed` may have performance benefits.
    ///
    /// If `Self` is a zero-sized type, then this function will return a
    /// `Vec<Self>` that has the correct `len`. Such a `Vec` cannot contain any
    /// actual information, but its `len()` property will report the correct
    /// value.
    ///
    /// # Panics
    ///
    /// * Panics if `size_of::<Self>() * len` overflows.
    /// * Panics if allocation of `size_of::<Self>() * len` bytes fails.
    #[cfg(feature = "alloc")]
    fn new_vec_zeroed(len: usize) -> Vec<Self>
    where
        Self: Sized,
    {
        Self::new_box_slice_zeroed(len).into()
    }
}

/// Types which are safe to treat as an immutable byte slice.
///
/// WARNING: Do not implement this trait yourself! Instead, use
/// `#[derive(AsBytes)]`.
///
/// `AsBytes` types can be safely viewed as a slice of bytes. In particular,
/// this means that, in any valid instance of the type, none of the bytes of the
/// instance are uninitialized. This precludes the following types:
/// - Structs with internal padding
/// - Unions in which not all variants have the same length
///
/// `AsBytes` is ignorant of byte order. For byte order-aware types, see the
/// [`byteorder`] module.
///
/// # Custom Derive Errors
///
/// Due to the way that the custom derive for `AsBytes` is implemented, you may
/// get an error like this:
///
/// ```text
/// error[E0080]: evaluation of constant value failed
///   --> lib.rs:1:10
///    |
///  1 | #[derive(AsBytes)]
///    |          ^^^^^^^ attempt to divide by zero
/// ```
///
/// This error means that the type being annotated has padding bytes, which is
/// illegal for `AsBytes` types. Consider either adding explicit struct fields
/// where those padding bytes would be or using `#[repr(packed)]`.
///
/// # Safety
///
/// If `T: AsBytes`, then unsafe code may assume that it is sound to treat any
/// instance of the type as an immutable `[u8]` of length `size_of::<T>()`. If a
/// type is marked as `AsBytes` which violates this contract, it may cause
/// undefined behavior.
///
/// If a type has the following properties, then it is safe to implement
/// `AsBytes` for that type
/// - If the type is a struct:
///   - It must have a defined representation (`repr(C)`, `repr(transparent)`,
///     or `repr(packed)`).
///   - All of its fields must be `AsBytes`
///   - Its layout must have no padding. This is always true for
///     `repr(transparent)` and `repr(packed)`. For `repr(C)`, see the layout
///     algorithm described in the [Rust Reference].
/// - If the type is an enum:
///   - It must be a C-like enum (meaning that all variants have no fields)
///   - It must have a defined representation (`repr`s `C`, `u8`, `u16`, `u32`,
///     `u64`, `usize`, `i8`, `i16`, `i32`, `i64`, or `isize`).
///
/// [Rust Reference]: https://doc.rust-lang.org/reference/type-layout.html
pub unsafe trait AsBytes {
    // The `Self: Sized` bound makes it so that this function doesn't prevent
    // `AsBytes` from being object safe. Note that other `AsBytes` methods
    // prevent object safety, but those provide a benefit in exchange for object
    // safety. If at some point we remove those methods, change their type
    // signatures, or move them out of this trait so that `AsBytes` is object
    // safe again, it's important that this function not prevent object safety.
    #[doc(hidden)]
    fn only_derive_is_allowed_to_implement_this_trait()
    where
        Self: Sized;

    /// Gets the bytes of this value.
    ///
    /// `as_bytes` provides access to the bytes of this value as an immutable
    /// byte slice.
    fn as_bytes(&self) -> &[u8] {
        // Note that this method does not have a `Self: Sized` bound;
        // `size_of_val` works for unsized values too.
        let len = mem::size_of_val(self);
        let slf: *const Self = self;

        // SAFETY:
        // - `slf.cast::<u8>()` is valid for reads for `len *
        //   mem::size_of::<u8>()` many bytes because...
        //   - `slf` is the same pointer as `self`, and `self` is a reference
        //     which points to an object whose size is `len`. Thus...
        //     - The entire region of `len` bytes starting at `slf` is contained
        //       within a single allocation.
        //     - `slf` is non-null.
        //   - `slf` is trivially aligned to `align_of::<u8>() == 1`.
        // - `Self: AsBytes` ensures that all of the bytes of `slf` are
        //   initialized.
        // - Since `slf` is derived from `self`, and `self` is an immutable
        //   reference, the only other references to this memory region that
        //   could exist are other immutable references, and those don't allow
        //   mutation.
        //
        //   TODO(#8): Update `AsRef` docs to require that `Self` doesn't allow
        //   interior mutability so that this bullet point is actually true.
        // - The total size of the resulting slice is no larger than
        //   `isize::MAX` because no allocation produced by safe code can be
        //   larger than `isize::MAX`.
        unsafe { slice::from_raw_parts(slf.cast::<u8>(), len) }
    }

    /// Gets the bytes of this value mutably.
    ///
    /// `as_bytes_mut` provides access to the bytes of this value as a mutable
    /// byte slice.
    fn as_bytes_mut(&mut self) -> &mut [u8]
    where
        Self: FromBytes,
    {
        // Note that this method does not have a `Self: Sized` bound;
        // `size_of_val` works for unsized values too.
        let len = mem::size_of_val(self);
        let slf: *mut Self = self;

        // SAFETY:
        // - `slf.cast::<u8>()` is valid for reads and writes for `len *
        //   mem::size_of::<u8>()` many bytes because...
        //   - `slf` is the same pointer as `self`, and `self` is a reference
        //     which points to an object whose size is `len`. Thus...
        //     - The entire region of `len` bytes starting at `slf` is contained
        //       within a single allocation.
        //     - `slf` is non-null.
        //   - `slf` is trivially aligned to `align_of::<u8>() == 1`.
        // - `Self: AsBytes` ensures that all of the bytes of `slf` are
        //   initialized.
        // - `Self: FromBytes` ensures that no write to this memory region
        //   could result in it containing an invalid `Self`.
        // - Since `slf` is derived from `self`, and `self` is a mutable
        //   reference, no other references to this memory region can exist.
        // - The total size of the resulting slice is no larger than
        //   `isize::MAX` because no allocation produced by safe code can be
        //   larger than `isize::MAX`.
        unsafe { slice::from_raw_parts_mut(slf.cast::<u8>(), len) }
    }

    /// Writes a copy of `self` to `bytes`.
    ///
    /// If `bytes.len() != size_of_val(self)`, `write_to` returns `None`.
    fn write_to<B: ByteSliceMut>(&self, mut bytes: B) -> Option<()> {
        if bytes.len() != mem::size_of_val(self) {
            return None;
        }

        bytes.copy_from_slice(self.as_bytes());
        Some(())
    }

    /// Writes a copy of `self` to the prefix of `bytes`.
    ///
    /// `write_to_prefix` writes `self` to the first `size_of_val(self)` bytes
    /// of `bytes`. If `bytes.len() < size_of_val(self)`, it returns `None`.
    fn write_to_prefix<B: ByteSliceMut>(&self, mut bytes: B) -> Option<()> {
        let size = mem::size_of_val(self);
        bytes.get_mut(..size)?.copy_from_slice(self.as_bytes());
        Some(())
    }

    /// Writes a copy of `self` to the suffix of `bytes`.
    ///
    /// `write_to_suffix` writes `self` to the last `size_of_val(self)` bytes of
    /// `bytes`. If `bytes.len() < size_of_val(self)`, it returns `None`.
    fn write_to_suffix<B: ByteSliceMut>(&self, mut bytes: B) -> Option<()> {
        let start = bytes.len().checked_sub(mem::size_of_val(self))?;
        bytes
            .get_mut(start..)
            .expect("`start` should be in-bounds of `bytes`")
            .copy_from_slice(self.as_bytes());
        Some(())
    }
}

/// Types with no alignment requirement.
///
/// WARNING: Do not implement this trait yourself! Instead, use
/// `#[derive(Unaligned)]`.
///
/// If `T: Unaligned`, then `align_of::<T>() == 1`.
///
/// # Safety
///
/// If `T: Unaligned`, then unsafe code may assume that it is sound to produce a
/// reference to `T` at any memory location regardless of alignment. If a type
/// is marked as `Unaligned` which violates this contract, it may cause
/// undefined behavior.
pub unsafe trait Unaligned {
    // The `Self: Sized` bound makes it so that `Unaligned` is still object
    // safe.
    #[doc(hidden)]
    fn only_derive_is_allowed_to_implement_this_trait()
    where
        Self: Sized;
}

/// Documents multiple unsafe blocks with a single safety comment.
///
/// Invoked as:
///
/// ```rust,ignore
/// safety_comment! {
///     // Non-doc comments come first.
///     /// SAFETY:
///     /// Safety comment starts on its own line.
///     macro_1!(args);
///     macro_2! { args };
/// }
/// ```
///
/// The macro invocations are emitted, each decorated with the following
/// attribute: `#[allow(clippy::undocumented_unsafe_blocks)]`.
macro_rules! safety_comment {
    (#[doc = r" SAFETY:"] $(#[doc = $_doc:literal])* $($macro:ident!$args:tt;)*) => {
        #[allow(clippy::undocumented_unsafe_blocks)]
        const _: () = { $($macro!$args;)* };
    }
}

/// Unsafely implements trait(s) for a type.
macro_rules! unsafe_impl {
    // Implement `$trait` for `$ty` with no bounds.
    ($ty:ty: $trait:ty) => {
        unsafe impl $trait for $ty { fn only_derive_is_allowed_to_implement_this_trait() {} }
    };
    // Implement all `$traits` for `$ty` with no bounds.
    ($ty:ty: $($traits:ty),*) => {
        $( unsafe_impl!($ty: $traits); )*
    };
    // For all `$tyvar` with no bounds, implement `$trait` for `$ty`.
    ($tyvar:ident => $trait:ident for $ty:ty) => {
        unsafe impl<$tyvar> $trait for $ty { fn only_derive_is_allowed_to_implement_this_trait() {} }
    };
    // For all `$tyvar: ?Sized` with no bounds, implement `$trait` for `$ty`.
    ($tyvar:ident: ?Sized => $trait:ident for $ty:ty) => {
        unsafe impl<$tyvar: ?Sized> $trait for $ty { fn only_derive_is_allowed_to_implement_this_trait() {} }
    };
    // For all `$tyvar: $bound`, implement `$trait` for `$ty`.
    ($tyvar:ident: $bound:path => $trait:ident for $ty:ty) => {
        unsafe impl<$tyvar: $bound> $trait for $ty { fn only_derive_is_allowed_to_implement_this_trait() {} }
    };
    // For all `$tyvar: $bound + ?Sized`, implement `$trait` for `$ty`.
    ($tyvar:ident: ?Sized + $bound:path => $trait:ident for $ty:ty) => {
        unsafe impl<$tyvar: ?Sized + $bound> $trait for $ty { fn only_derive_is_allowed_to_implement_this_trait() {} }
    };
    // For all `$tyvar: $bound` and for all `const $constvar: $constty`,
    // implement `$trait` for `$ty`.
    ($tyvar:ident: $bound:path, const $constvar:ident: $constty:ty => $trait:ident for $ty:ty) => {
        unsafe impl<$tyvar: $bound, const $constvar: $constty> $trait for $ty {
            fn only_derive_is_allowed_to_implement_this_trait() {}
        }
    };
}

/// Uses `align_of` to confirm that a type or set of types have alignment 1.
///
/// Note that `align_of<T>` requires `T: Sized`, so this macro doesn't work for
/// unsized types.
macro_rules! assert_unaligned {
    ($ty:ty) => {
        // We only compile this assertion under `cfg(test)` to avoid taking an
        // extra non-dev dependency (and making this crate more expensive to
        // compile for our dependents).
        #[cfg(test)]
        static_assertions::const_assert_eq!(core::mem::align_of::<$ty>(), 1);
    };
    ($($ty:ty),*) => {
        $(assert_unaligned!($ty);)*
    };
}

safety_comment! {
    /// SAFETY:
    /// Per the reference [1], "the unit tuple (`()`) ... is guaranteed as a
    /// zero-sized type to have a size of 0 and an alignment of 1."
    /// - `FromBytes`: There is only one possible sequence of 0 bytes, and `()`
    ///   is inhabited.
    /// - `AsBytes`: Since `()` has size 0, it contains no padding bytes.
    /// - `Unaligned`: `()` has alignment 1.
    ///
    /// [1] https://doc.rust-lang.org/reference/type-layout.html#tuple-layout
    unsafe_impl!((): FromBytes, AsBytes, Unaligned);
    assert_unaligned!(());
}

safety_comment! {
    /// SAFETY:
    /// - `FromBytes`: all bit patterns are valid for integers [1]
    /// - `AsBytes`: integers have no padding bytes [1]
    /// - `Unaligned` (`u8` and `i8` only): The reference [2] specifies the size
    ///   of `u8` and `i8` as 1 byte. We also know that:
    ///   - Alignment is >= 1
    ///   - Size is an integer multiple of alignment
    ///   - The only value >= 1 for which 1 is an integer multiple is 1
    ///   Therefore, the only possible alignment for `u8` and `i8` is 1.
    ///
    /// [1] TODO(https://github.com/rust-lang/reference/issues/1291): Once the
    ///     reference explicitly guarantees these properties, cite it.
    /// [2] https://doc.rust-lang.org/reference/type-layout.html#primitive-data-layout
    unsafe_impl!(u8: FromBytes, AsBytes, Unaligned);
    unsafe_impl!(i8: FromBytes, AsBytes, Unaligned);
    assert_unaligned!(u8, i8);
    unsafe_impl!(u16: FromBytes, AsBytes);
    unsafe_impl!(i16: FromBytes, AsBytes);
    unsafe_impl!(u32: FromBytes, AsBytes);
    unsafe_impl!(i32: FromBytes, AsBytes);
    unsafe_impl!(u64: FromBytes, AsBytes);
    unsafe_impl!(i64: FromBytes, AsBytes);
    unsafe_impl!(u128: FromBytes, AsBytes);
    unsafe_impl!(i128: FromBytes, AsBytes);
    unsafe_impl!(usize: FromBytes, AsBytes);
    unsafe_impl!(isize: FromBytes, AsBytes);
}

safety_comment! {
    /// SAFETY:
    /// - `FromBytes`: the `{f32,f64}::from_bits` constructors' documentation
    ///   [1,2] states that they are currently equivalent to `transmute`. [3]
    /// - `AsBytes`: the `{f32,f64}::to_bits` methods' documentation [4,5]
    ///   states that they are currently equivalent to `transmute`. [3]
    ///
    /// TODO: Make these arguments more precisely in terms of the documentation.
    ///
    /// [1] https://doc.rust-lang.org/nightly/std/primitive.f32.html#method.from_bits
    /// [2] https://doc.rust-lang.org/nightly/std/primitive.f64.html#method.from_bits
    /// [3] TODO(https://github.com/rust-lang/reference/issues/1291): Once the
    ///     reference explicitly guarantees these properties, cite it.
    /// [4] https://doc.rust-lang.org/nightly/std/primitive.f32.html#method.to_bits
    /// [5] https://doc.rust-lang.org/nightly/std/primitive.f64.html#method.to_bits
    unsafe_impl!(f32: FromBytes, AsBytes);
    unsafe_impl!(f64: FromBytes, AsBytes);
}

safety_comment! {
    /// SAFETY:
    /// - `AsBytes`: Per the reference [1], `bool` always has a size of 1 with
    ///   valid bit patterns 0x01 and 0x00, so the only byte of the bool is
    ///   always initialized
    /// - `Unaligned`: Per the reference [1], "[a]n object with the boolean type
    ///   has a size and alignment of 1 each."
    ///
    /// [1] https://doc.rust-lang.org/reference/types/boolean.html
    unsafe_impl!(bool: AsBytes, Unaligned);
    assert_unaligned!(bool);
}
safety_comment! {
    /// SAFETY:
    /// - `AsBytes`: `char` is represented as a 32-bit unsigned word (`u32`)
    ///   [1], which is `AsBytes`. Note that unlike `u32`, not all bit patterns
    ///   are valid for `char`.
    ///
    /// [1] https://doc.rust-lang.org/reference/types/textual.html
    unsafe_impl!(char: AsBytes);
}
safety_comment! {
    /// SAFETY:
    /// - `AsBytes`, `Unaligned`: Per the reference [1], `str` has the same
    ///   layout as `[u8]`, and `[u8]` is `AsBytes` and `Unaligned`.
    ///
    /// Note that we don't `assert_unaligned!(str)` because `assert_unaligned!`
    /// uses `align_of`, which only works for `Sized` types.
    ///
    /// [1] https://doc.rust-lang.org/reference/type-layout.html#str-layout
    unsafe_impl!(str: AsBytes, Unaligned);
}

safety_comment! {
    // `NonZeroXxx` is `AsBytes`, but not `FromBytes`.
    //
    /// SAFETY:
    /// - `AsBytes`: `NonZeroXxx` has the same layout as its associated
    ///    primitive. Since it is the same size, this guarantees it has no
    ///    padding - integers have no padding, and there's no room for padding
    ///    if it can represent all of the same values except 0.
    /// - `Unaligned`: `NonZeroU8` and `NonZeroI8` document that
    ///   `Option<NonZeroU8>` and `Option<NonZeroI8>` both have size 1. [1] [2]
    ///   This is worded in a way that makes it unclear whether it's meant as a
    ///   guarantee, but given the purpose of those types, it's virtually
    ///   unthinkable that that would ever change. `Option` cannot be smaller
    ///   than its contained type, which implies that, and `NonZeroX8` are of
    ///   size 1 or 0. `NonZeroX8` can represent multiple states, so they cannot
    ///   be 0 bytes, which means that they must be 1 byte. The only valid
    ///   alignment for a 1-byte type is 1.
    ///
    /// [1] https://doc.rust-lang.org/stable/std/num/struct.NonZeroU8.html
    /// [2] https://doc.rust-lang.org/stable/std/num/struct.NonZeroI8.html
    /// TODO(https://github.com/rust-lang/rust/pull/104082): Cite documentation
    /// that layout is the same as primitive layout.
    unsafe_impl!(NonZeroU8: AsBytes, Unaligned);
    unsafe_impl!(NonZeroI8: AsBytes, Unaligned);
    assert_unaligned!(NonZeroU8, NonZeroI8);
    unsafe_impl!(NonZeroU16: AsBytes);
    unsafe_impl!(NonZeroI16: AsBytes);
    unsafe_impl!(NonZeroU32: AsBytes);
    unsafe_impl!(NonZeroI32: AsBytes);
    unsafe_impl!(NonZeroU64: AsBytes);
    unsafe_impl!(NonZeroI64: AsBytes);
    unsafe_impl!(NonZeroU128: AsBytes);
    unsafe_impl!(NonZeroI128: AsBytes);
    unsafe_impl!(NonZeroUsize: AsBytes);
    unsafe_impl!(NonZeroIsize: AsBytes);
}
safety_comment! {
    /// SAFETY:
    /// - `FromBytes`, `AsBytes`: The Rust compiler reuses `0` value to
    ///   represent `None`, so `size_of::<Option<NonZeroXxx>>() ==
    ///   size_of::<xxx>()`; see `NonZeroXxx` documentation.
    /// - `Unaligned`: `NonZeroU8` and `NonZeroI8` document that
    ///   `Option<NonZeroU8>` and `Option<NonZeroI8>` both have size 1. [1] [2]
    ///   This is worded in a way that makes it unclear whether it's meant as a
    ///   guarantee, but given the purpose of those types, it's virtually
    ///   unthinkable that that would ever change. The only valid alignment for
    ///   a 1-byte type is 1.
    ///
    /// [1] https://doc.rust-lang.org/stable/std/num/struct.NonZeroU8.html
    /// [2] https://doc.rust-lang.org/stable/std/num/struct.NonZeroI8.html
    ///
    /// TODO(https://github.com/rust-lang/rust/pull/104082): Cite documentation
    /// for layout guarantees.
    unsafe_impl!(Option<NonZeroU8>: FromBytes, AsBytes, Unaligned);
    unsafe_impl!(Option<NonZeroI8>: FromBytes, AsBytes, Unaligned);
    assert_unaligned!(Option<NonZeroU8>, Option<NonZeroI8>);
    unsafe_impl!(Option<NonZeroU16>: FromBytes, AsBytes);
    unsafe_impl!(Option<NonZeroI16>: FromBytes, AsBytes);
    unsafe_impl!(Option<NonZeroU32>: FromBytes, AsBytes);
    unsafe_impl!(Option<NonZeroI32>: FromBytes, AsBytes);
    unsafe_impl!(Option<NonZeroU64>: FromBytes, AsBytes);
    unsafe_impl!(Option<NonZeroI64>: FromBytes, AsBytes);
    unsafe_impl!(Option<NonZeroU128>: FromBytes, AsBytes);
    unsafe_impl!(Option<NonZeroI128>: FromBytes, AsBytes);
    unsafe_impl!(Option<NonZeroUsize>: FromBytes, AsBytes);
    unsafe_impl!(Option<NonZeroIsize>: FromBytes, AsBytes);
}

safety_comment! {
    /// SAFETY:
    /// For all `T`, `PhantomData<T>` has size 0 and alignment 1. [1]
    /// - `FromBytes`: There is only one possible sequence of 0 bytes, and
    ///   `PhantomData` is inhabited.
    /// - `AsBytes`: Since `PhantomData` has size 0, it contains no padding
    ///   bytes.
    /// - `Unaligned`: Per the preceding reference, `PhantomData` has alignment
    ///   1.
    ///
    /// [1] https://doc.rust-lang.org/std/marker/struct.PhantomData.html#layout-1
    unsafe_impl!(T: ?Sized => FromBytes for PhantomData<T>);
    unsafe_impl!(T: ?Sized => AsBytes for PhantomData<T>);
    unsafe_impl!(T: ?Sized => Unaligned for PhantomData<T>);
    assert_unaligned!(PhantomData<()>, PhantomData<u8>, PhantomData<u64>);
}
safety_comment! {
    /// SAFETY:
    /// `Wrapping<T>` is guaranteed by its docs [1] to have the same layout as
    /// `T`. Also, `Wrapping<T>` is `#[repr(transparent)]`, and has a single
    /// field, which is `pub`. Per the reference [2], this means that the
    /// `#[repr(transparent)]` attribute is "considered part of the public ABI".
    ///
    /// [1] https://doc.rust-lang.org/nightly/core/num/struct.Wrapping.html#layout-1
    /// [2] https://doc.rust-lang.org/nomicon/other-reprs.html#reprtransparent
    unsafe_impl!(T: FromBytes => FromBytes for Wrapping<T>);
    unsafe_impl!(T: AsBytes => AsBytes for Wrapping<T>);
    unsafe_impl!(T: Unaligned => Unaligned for Wrapping<T>);
    assert_unaligned!(Wrapping<()>, Wrapping<u8>);
}
safety_comment! {
    // `MaybeUninit<T>` is `FromBytes`, but never `AsBytes` since it may contain
    // uninitialized bytes.
    //
    /// SAFETY:
    /// - `FromBytes`: `MaybeUninit<T>` has no restrictions on its contents.
    ///   Unfortunately, in addition to bit validity, `FromZeroes` and
    ///   `FromBytes` also require that implementers contain no `UnsafeCell`s.
    ///   Thus, we require `T: FromZeroes` and `T: FromBytes` in order to ensure
    ///   that `T` - and thus `MaybeUninit<T>` - contains to `UnsafeCell`s.
    ///   Thus, requiring that `T` implement each of these traits is sufficient
    /// - `Unaligned`: `MaybeUninit<T>` is guaranteed by its documentation [1]
    ///   to have the same alignment as `T`.
    ///
    /// [1] https://doc.rust-lang.org/nightly/core/mem/union.MaybeUninit.html#layout-1
    ///
    /// TODO(https://github.com/google/zerocopy/issues/251): If we split
    /// `FromBytes` and `RefFromBytes`, or if we introduce a separate
    /// `NoCell`/`Freeze` trait, we can relax the trait bounds for `FromZeroes`
    /// and `FromBytes`.
    unsafe_impl!(T: FromBytes => FromBytes for MaybeUninit<T>);
    unsafe_impl!(T: Unaligned => Unaligned for MaybeUninit<T>);
    assert_unaligned!(MaybeUninit<()>, MaybeUninit<u8>);
}
safety_comment! {
    /// SAFETY:
    /// `ManuallyDrop` has the same layout as `T`, and accessing the inner value
    /// is safe (meaning that it's unsound to leave the inner value
    /// uninitialized while exposing the `ManuallyDrop` to safe code).
    /// - `FromBytes`: Since it has the same layout as `T`, any valid `T` is a
    ///   valid `ManuallyDrop<T>`. Since `T: FromBytes`, any sequence of bytes
    ///   is a valid `T`, and thus a valid `ManuallyDrop<T>`.
    /// - `AsBytes`: Since it has the same layout as `T`, and since it's unsound
    ///   to let safe code access a `ManuallyDrop` whose inner value is
    ///   uninitialized, safe code can only ever access a `ManuallyDrop` whose
    ///   contents are a valid `T`. Since `T: AsBytes`, this means that safe
    ///   code can only ever access a `ManuallyDrop` with all initialized bytes.
    /// - `Unaligned`: `ManuallyDrop` has the same layout (and thus alignment)
    ///   as `T`, and `T: Unaligned` guarantees that that alignment is 1.
    unsafe_impl!(T: ?Sized + FromBytes => FromBytes for ManuallyDrop<T>);
    unsafe_impl!(T: ?Sized + AsBytes => AsBytes for ManuallyDrop<T>);
    unsafe_impl!(T: ?Sized + Unaligned => Unaligned for ManuallyDrop<T>);
    assert_unaligned!(ManuallyDrop<()>, ManuallyDrop<u8>);
}
safety_comment! {
    /// SAFETY:
    /// Per the reference [1]:
    ///
    ///   An array of `[T; N]` has a size of `size_of::<T>() * N` and the same
    ///   alignment of `T`. Arrays are laid out so that the zero-based `nth`
    ///   element of the array is offset from the start of the array by `n *
    ///   size_of::<T>()` bytes.
    ///
    ///   ...
    ///
    ///   Slices have the same layout as the section of the array they slice.
    ///
    /// In other words, the layout of a `[T]` or `[T; N]` is a sequence of `T`s
    /// laid out back-to-back with no bytes in between. Therefore, `[T]` or `[T;
    /// N]` are `FromBytes` and `AsBytes` if `T` is (respectively). Furthermore,
    /// since an array/slice has "the same alignment of `T`", `[T]` and `[T; N]`
    /// are `Unaligned` if `T` is.
    ///
    /// Note that we don't `assert_unaligned!` for slice types because
    /// `assert_unaligned!` uses `align_of`, which only works for `Sized` types.
    ///
    /// [1] https://doc.rust-lang.org/reference/type-layout.html#array-layout
    unsafe_impl!(T: FromBytes, const N: usize => FromBytes for [T; N]);
    unsafe_impl!(T: AsBytes, const N: usize => AsBytes for [T; N]);
    unsafe_impl!(T: Unaligned, const N: usize => Unaligned for [T; N]);
    assert_unaligned!([(); 0], [(); 1], [u8; 0], [u8; 1]);
    unsafe_impl!(T: FromBytes => FromBytes for [T]);
    unsafe_impl!(T: AsBytes => AsBytes for [T]);
    unsafe_impl!(T: Unaligned => Unaligned for [T]);
}

// SIMD support
//
// Per the Unsafe Code Guidelines Reference [1]:
//
//   Packed SIMD vector types are `repr(simd)` homogeneous tuple-structs
//   containing `N` elements of type `T` where `N` is a power-of-two and the
//   size and alignment requirements of `T` are equal:
//
//   ```rust
//   #[repr(simd)]
//   struct Vector<T, N>(T_0, ..., T_(N - 1));
//   ```
//
//   ...
//
//   The size of `Vector` is `N * size_of::<T>()` and its alignment is an
//   implementation-defined function of `T` and `N` greater than or equal to
//   `align_of::<T>()`.
//
//   ...
//
//   Vector elements are laid out in source field order, enabling random access
//   to vector elements by reinterpreting the vector as an array:
//
//   ```rust
//   union U {
//      vec: Vector<T, N>,
//      arr: [T; N]
//   }
//
//   assert_eq!(size_of::<Vector<T, N>>(), size_of::<[T; N]>());
//   assert!(align_of::<Vector<T, N>>() >= align_of::<[T; N]>());
//
//   unsafe {
//     let u = U { vec: Vector<T, N>(t_0, ..., t_(N - 1)) };
//
//     assert_eq!(u.vec.0, u.arr[0]);
//     // ...
//     assert_eq!(u.vec.(N - 1), u.arr[N - 1]);
//   }
//   ```
//
// Given this background, we can observe that:
// - The size and bit pattern requirements of a SIMD type are equivalent to the
//   equivalent array type. Thus, for any SIMD type whose primitive `T` is
//   `FromBytes`, that SIMD type is also `FromBytes`. The same holds for
//   `AsBytes`.
// - Since no upper bound is placed on the alignment, no SIMD type can be
//   guaranteed to be `Unaligned`.
//
// Also per [1]:
//
//   This chapter represents the consensus from issue #38. The statements in
//   here are not (yet) "guaranteed" not to change until an RFC ratifies them.
//
// See issue #38 [2]. While this behavior is not technically guaranteed, the
// likelihood that the behavior will change such that SIMD types are no longer
// `FromBytes` or `AsBytes` is next to zero, as that would defeat the entire
// purpose of SIMD types. Nonetheless, we put this behavior behind the `simd`
// Cargo feature, which requires consumers to opt into this stability hazard.
//
// [1] https://rust-lang.github.io/unsafe-code-guidelines/layout/packed-simd-vectors.html
// [2] https://github.com/rust-lang/unsafe-code-guidelines/issues/38
#[cfg(feature = "simd")]
mod simd {
    /// Defines a module which implements `FromBytes` and `AsBytes` for a set of
    /// types from a module in `core::arch`.
    ///
    /// `$arch` is both the name of the defined module and the name of the
    /// module in `core::arch`, and `$typ` is the list of items from that module
    /// to implement `FromBytes` and `AsBytes` for.
    #[allow(unused_macros)] // `allow(unused_macros)` is needed because some
                            // target/feature combinations don't emit any impls
                            // and thus don't use this macro.
    macro_rules! simd_arch_mod {
        ($arch:ident, $($typ:ident),*) => {
            mod $arch {
                use core::arch::$arch::{$($typ),*};

                use crate::*;
                safety_comment! {
                    /// SAFETY:
                    /// See comment on module definition for justification.
                    $( unsafe_impl!($typ: FromBytes, AsBytes); )*
                }
            }
        };
    }

    #[cfg(target_arch = "x86")]
    simd_arch_mod!(x86, __m128, __m128d, __m128i, __m256, __m256d, __m256i);
    #[cfg(target_arch = "x86_64")]
    simd_arch_mod!(x86_64, __m128, __m128d, __m128i, __m256, __m256d, __m256i);
    #[cfg(target_arch = "wasm32")]
    simd_arch_mod!(wasm32, v128);
    #[cfg(all(feature = "simd-nightly", target_arch = "powerpc"))]
    simd_arch_mod!(
        powerpc,
        vector_bool_long,
        vector_double,
        vector_signed_long,
        vector_unsigned_long
    );
    #[cfg(all(feature = "simd-nightly", target_arch = "powerpc64"))]
    simd_arch_mod!(
        powerpc64,
        vector_bool_long,
        vector_double,
        vector_signed_long,
        vector_unsigned_long
    );
    #[cfg(target_arch = "aarch64")]
    #[rustfmt::skip]
    simd_arch_mod!(
        aarch64, float32x2_t, float32x4_t, float64x1_t, float64x2_t, int8x8_t, int8x8x2_t,
        int8x8x3_t, int8x8x4_t, int8x16_t, int8x16x2_t, int8x16x3_t, int8x16x4_t, int16x4_t,
        int16x8_t, int32x2_t, int32x4_t, int64x1_t, int64x2_t, poly8x8_t, poly8x8x2_t, poly8x8x3_t,
        poly8x8x4_t, poly8x16_t, poly8x16x2_t, poly8x16x3_t, poly8x16x4_t, poly16x4_t, poly16x8_t,
        poly64x1_t, poly64x2_t, uint8x8_t, uint8x8x2_t, uint8x8x3_t, uint8x8x4_t, uint8x16_t,
        uint8x16x2_t, uint8x16x3_t, uint8x16x4_t, uint16x4_t, uint16x8_t, uint32x2_t, uint32x4_t,
        uint64x1_t, uint64x2_t
    );
    #[cfg(all(feature = "simd-nightly", target_arch = "arm"))]
    #[rustfmt::skip]
    simd_arch_mod!(arm, int8x4_t, uint8x4_t);
}

/// A type with no alignment requirement.
///
/// An `Unalign` wraps a `T`, removing any alignment requirement. `Unalign<T>`
/// has the same size and bit validity as `T`, but not necessarily the same
/// alignment [or ABI]. This is useful if a type with an alignment requirement
/// needs to be read from a chunk of memory which provides no alignment
/// guarantees.
///
/// Since `Unalign` has no alignment requirement, the inner `T` may not be
/// properly aligned in memory. There are five ways to access the inner `T`:
/// - by value, using [`get`] or [`into_inner`]
/// - by reference inside of a callback, using [`update`]
/// - fallibly by reference, using [`try_deref`] or [`try_deref_mut`]; these can
///   fail if the `Unalign` does not satisfy `T`'s alignment requirement at
///   runtime
/// - unsafely by reference, using [`deref_unchecked`] or
///   [`deref_mut_unchecked`]; it is the caller's responsibility to ensure that
///   the `Unalign` satisfies `T`'s alignment requirement
/// - (where `T: Unaligned`) infallibly by reference, using [`Deref::deref`] or
///   [`DerefMut::deref_mut`]
///
/// [or ABI]: https://github.com/google/zerocopy/issues/164
/// [`get`]: Unalign::get
/// [`into_inner`]: Unalign::into_inner
/// [`update`]: Unalign::update
/// [`try_deref`]: Unalign::try_deref
/// [`try_deref_mut`]: Unalign::try_deref_mut
/// [`deref_unchecked`]: Unalign::deref_unchecked
/// [`deref_mut_unchecked`]: Unalign::deref_mut_unchecked
// NOTE: This type is sound to use with types that need to be dropped. The
// reason is that the compiler-generated drop code automatically moves all
// values to aligned memory slots before dropping them in-place. This is not
// well-documented, but it's hinted at in places like [1] and [2]. However, this
// also means that `T` must be `Sized`; unless something changes, we can never
// support unsized `T`. [3]
//
// [1] https://github.com/rust-lang/rust/issues/54148#issuecomment-420529646
// [2] https://github.com/google/zerocopy/pull/126#discussion_r1018512323
// [3] https://github.com/google/zerocopy/issues/209
#[allow(missing_debug_implementations)]
#[derive(FromBytes, Unaligned, Default, Copy)]
#[repr(C, packed)]
pub struct Unalign<T>(T);

// Note that `Unalign: Clone` only if `T: Copy`. Since the inner `T` may not be
// aligned, there's no way to safely call `T::clone`, and so a `T: Clone` bound
// is not sufficient to implement `Clone` for `Unalign`.
impl<T: Copy> Clone for Unalign<T> {
    fn clone(&self) -> Unalign<T> {
        *self
    }
}

impl<T> Unalign<T> {
    /// Constructs a new `Unalign`.
    pub const fn new(val: T) -> Unalign<T> {
        Unalign(val)
    }

    /// Consumes `self`, returning the inner `T`.
    pub const fn into_inner(self) -> T {
        // Use this instead of `mem::transmute` since the latter can't tell
        // that `Unalign<T>` and `T` have the same size.
        #[repr(C)]
        union Transmute<T> {
            u: ManuallyDrop<Unalign<T>>,
            t: ManuallyDrop<T>,
        }

        // SAFETY: Since `Unalign` is `#[repr(C, packed)]`, it has the same
        // layout as `T`. `ManuallyDrop<U>` is guaranteed to have the same
        // layout as `U`, and so `ManuallyDrop<Unalign<T>>` has the same layout
        // as `ManuallyDrop<T>`. Since `Transmute<T>` is `#[repr(C)]`, its `t`
        // and `u` fields both start at the same offset (namely, 0) within the
        // union.
        //
        // We do this instead of just destructuring in order to prevent
        // `Unalign`'s `Drop::drop` from being run, since dropping is not
        // supported in `const fn`s.
        //
        // TODO(https://github.com/rust-lang/rust/issues/73255): Destructure
        // instead of using unsafe.
        unsafe { ManuallyDrop::into_inner(Transmute { u: ManuallyDrop::new(self) }.t) }
    }

    /// Attempts to return a reference to the wrapped `T`, failing if `self` is
    /// not properly aligned.
    ///
    /// If `self` does not satisfy `mem::align_of::<T>()`, then it is unsound to
    /// return a reference to the wrapped `T`, and `try_deref` returns `None`.
    ///
    /// If `T: Unaligned`, then `Unalign<T>` implements [`Deref`], and callers
    /// may prefer [`Deref::deref`], which is infallible.
    pub fn try_deref(&self) -> Option<&T> {
        if !aligned_to::<_, T>(self) {
            return None;
        }

        // SAFETY: `deref_unchecked`'s safety requirement is that `self` is
        // aligned to `align_of::<T>()`, which we just checked.
        unsafe { Some(self.deref_unchecked()) }
    }

    /// Attempts to return a mutable reference to the wrapped `T`, failing if
    /// `self` is not properly aligned.
    ///
    /// If `self` does not satisfy `mem::align_of::<T>()`, then it is unsound to
    /// return a reference to the wrapped `T`, and `try_deref_mut` returns
    /// `None`.
    ///
    /// If `T: Unaligned`, then `Unalign<T>` implements [`DerefMut`], and
    /// callers may prefer [`DerefMut::deref_mut`], which is infallible.
    pub fn try_deref_mut(&mut self) -> Option<&mut T> {
        if !aligned_to::<_, T>(&*self) {
            return None;
        }

        // SAFETY: `deref_mut_unchecked`'s safety requirement is that `self` is
        // aligned to `align_of::<T>()`, which we just checked.
        unsafe { Some(self.deref_mut_unchecked()) }
    }

    /// Returns a reference to the wrapped `T` without checking alignment.
    ///
    /// If `T: Unaligned`, then `Unalign<T>` implements[ `Deref`], and callers
    /// may prefer [`Deref::deref`], which is safe.
    ///
    /// # Safety
    ///
    /// If `self` does not satisfy `mem::align_of::<T>()`, then
    /// `self.deref_unchecked()` may cause undefined behavior.
    pub const unsafe fn deref_unchecked(&self) -> &T {
        // SAFETY: `Unalign<T>` is `repr(transparent)`, so there is a valid `T`
        // at the same memory location as `self`. It has no alignment guarantee,
        // but the caller has promised that `self` is properly aligned, so we
        // know that it is sound to create a reference to `T` at this memory
        // location.
        //
        // We use `mem::transmute` instead of `&*self.get_ptr()` because
        // dereferencing pointers is not stable in `const` on our current MSRV
        // (1.56 as of this writing).
        unsafe { mem::transmute(self) }
    }

    /// Returns a mutable reference to the wrapped `T` without checking
    /// alignment.
    ///
    /// If `T: Unaligned`, then `Unalign<T>` implements[ `DerefMut`], and
    /// callers may prefer [`DerefMut::deref_mut`], which is safe.
    ///
    /// # Safety
    ///
    /// If `self` does not satisfy `mem::align_of::<T>()`, then
    /// `self.deref_mut_unchecked()` may cause undefined behavior.
    pub unsafe fn deref_mut_unchecked(&mut self) -> &mut T {
        // SAFETY: `self.get_mut_ptr()` returns a raw pointer to a valid `T` at
        // the same memory location as `self`. It has no alignment guarantee,
        // but the caller has promised that `self` is properly aligned, so we
        // know that the pointer itself is aligned, and thus that it is sound to
        // create a reference to a `T` at this memory location.
        unsafe { &mut *self.get_mut_ptr() }
    }

    /// Gets an unaligned raw pointer to the inner `T`.
    ///
    /// # Safety
    ///
    /// The returned raw pointer is not necessarily aligned to
    /// `align_of::<T>()`. Most functions which operate on raw pointers require
    /// those pointers to be aligned, so calling those functions with the result
    /// of `get_ptr` will be undefined behavior if alignment is not guaranteed
    /// using some out-of-band mechanism. In general, the only functions which
    /// are safe to call with this pointer are those which are explicitly
    /// documented as being sound to use with an unaligned pointer, such as
    /// [`read_unaligned`].
    ///
    /// [`read_unaligned`]: core::ptr::read_unaligned
    pub const fn get_ptr(&self) -> *const T {
        ptr::addr_of!(self.0)
    }

    /// Gets an unaligned mutable raw pointer to the inner `T`.
    ///
    /// # Safety
    ///
    /// The returned raw pointer is not necessarily aligned to
    /// `align_of::<T>()`. Most functions which operate on raw pointers require
    /// those pointers to be aligned, so calling those functions with the result
    /// of `get_ptr` will be undefined behavior if alignment is not guaranteed
    /// using some out-of-band mechanism. In general, the only functions which
    /// are safe to call with this pointer are those which are explicitly
    /// documented as being sound to use with an unaligned pointer, such as
    /// [`read_unaligned`].
    ///
    /// [`read_unaligned`]: core::ptr::read_unaligned
    // TODO(https://github.com/rust-lang/rust/issues/57349): Make this `const`.
    pub fn get_mut_ptr(&mut self) -> *mut T {
        ptr::addr_of_mut!(self.0)
    }

    /// Sets the inner `T`, dropping the previous value.
    // TODO(https://github.com/rust-lang/rust/issues/57349): Make this `const`.
    pub fn set(&mut self, t: T) {
        *self = Unalign::new(t);
    }

    /// Updates the inner `T` by calling a function on it.
    ///
    /// For large types, this method may be expensive, as it requires copying
    /// `2 * size_of::<T>()` bytes. \[1\]
    ///
    /// \[1\] Since the inner `T` may not be aligned, it would not be sound to
    /// invoke `f` on it directly. Instead, `update` moves it into a
    /// properly-aligned location in the local stack frame, calls `f` on it, and
    /// then moves it back to its original location in `self`.
    pub fn update<O, F: FnOnce(&mut T) -> O>(&mut self, f: F) -> O {
        // On drop, this moves `copy` out of itself and uses `ptr::write` to
        // overwrite `slf`.
        struct WriteBackOnDrop<T> {
            copy: ManuallyDrop<T>,
            slf: *mut Unalign<T>,
        }

        impl<T> Drop for WriteBackOnDrop<T> {
            fn drop(&mut self) {
                // SAFETY: See inline comments.
                unsafe {
                    // SAFETY: We never use `copy` again as required by
                    // `ManuallyDrop::take`.
                    let copy = ManuallyDrop::take(&mut self.copy);
                    // SAFETY: `slf` is the raw pointer value of `self`. We know
                    // it is valid for writes and properly aligned because
                    // `self` is a mutable reference, which guarantees both of
                    // these properties.
                    ptr::write(self.slf, Unalign::new(copy));
                }
            }
        }

        // SAFETY: We know that `self` is valid for reads, properly aligned, and
        // points to an initialized `Unalign<T>` because it is a mutable
        // reference, which guarantees all of these properties.
        //
        // Since `T: !Copy`, it would be unsound in the general case to allow
        // both the original `Unalign<T>` and the copy to be used by safe code.
        // We guarantee that the copy is used to overwrite the original in the
        // `Drop::drop` impl of `WriteBackOnDrop`. So long as this `drop` is
        // called before any other safe code executes, soundness is upheld.
        // While this method can terminate in two ways (by returning normally or
        // by unwinding due to a panic in `f`), in both cases, `write_back` is
        // dropped - and its `drop` called - before any other safe code can
        // execute.
        let copy = unsafe { ptr::read(self) }.into_inner();
        let mut write_back = WriteBackOnDrop { copy: ManuallyDrop::new(copy), slf: self };

        let ret = f(&mut write_back.copy);

        drop(write_back);
        ret
    }
}

impl<T: Copy> Unalign<T> {
    /// Gets a copy of the inner `T`.
    // TODO(https://github.com/rust-lang/rust/issues/57349): Make this `const`.
    pub fn get(&self) -> T {
        let Unalign(val) = *self;
        val
    }
}

safety_comment! {
    /// SAFETY:
    /// Since `T: AsBytes`, we know that it's safe to construct a `&[u8]` from
    /// an aligned `&T`. Since `&[u8]` itself has no alignment requirements, it
    /// must also be safe to construct a `&[u8]` from a `&T` at any address.
    /// Since `Unalign<T>` is `#[repr(C, packed)]`, everything about its layout
    /// except for its alignment is the same as `T`'s layout.
    unsafe_impl!(T: AsBytes => AsBytes for Unalign<T>);
}

impl<T: Unaligned> Deref for Unalign<T> {
    type Target = T;

    fn deref(&self) -> &T {
        // SAFETY: `deref_unchecked`'s safety requirement is that `self` is
        // aligned to `align_of::<T>()`. `T: Unaligned` guarantees that
        // `align_of::<T>() == 1`, and all pointers are one-aligned because all
        // addresses are divisible by 1.
        unsafe { self.deref_unchecked() }
    }
}

impl<T: Unaligned> DerefMut for Unalign<T> {
    fn deref_mut(&mut self) -> &mut T {
        // SAFETY: `deref_mut_unchecked`'s safety requirement is that `self` is
        // aligned to `align_of::<T>()`. `T: Unaligned` guarantees that
        // `align_of::<T>() == 1`, and all pointers are one-aligned because all
        // addresses are divisible by 1.
        unsafe { self.deref_mut_unchecked() }
    }
}

impl<T: Unaligned + PartialOrd> PartialOrd<Unalign<T>> for Unalign<T> {
    fn partial_cmp(&self, other: &Unalign<T>) -> Option<Ordering> {
        PartialOrd::partial_cmp(self.deref(), other.deref())
    }
}

impl<T: Unaligned + Ord> Ord for Unalign<T> {
    fn cmp(&self, other: &Unalign<T>) -> Ordering {
        Ord::cmp(self.deref(), other.deref())
    }
}

impl<T: Unaligned + PartialEq> PartialEq<Unalign<T>> for Unalign<T> {
    fn eq(&self, other: &Unalign<T>) -> bool {
        PartialEq::eq(self.deref(), other.deref())
    }
}

impl<T: Unaligned + Eq> Eq for Unalign<T> {}

impl<T: Unaligned + Hash> Hash for Unalign<T> {
    fn hash<H>(&self, state: &mut H)
    where
        H: Hasher,
    {
        self.deref().hash(state);
    }
}

impl<T: Unaligned + Debug> Debug for Unalign<T> {
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
        Debug::fmt(self.deref(), f)
    }
}

impl<T: Unaligned + Display> Display for Unalign<T> {
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
        Display::fmt(self.deref(), f)
    }
}

// Used in `transmute!` below.
#[doc(hidden)]
pub use core::mem::transmute as __real_transmute;

/// Safely transmutes a value of one type to a value of another type of the same
/// size.
///
/// The expression `$e` must have a concrete type, `T`, which implements
/// `AsBytes`. The `transmute!` expression must also have a concrete type, `U`
/// (`U` is inferred from the calling context), and `U` must implement
/// `FromBytes`.
///
/// Note that the `T` produced by the expression `$e` will *not* be dropped.
/// Semantically, its bits will be copied into a new value of type `U`, the
/// original `T` will be forgotten, and the value of type `U` will be returned.
#[macro_export]
macro_rules! transmute {
    ($e:expr) => {{
        // NOTE: This must be a macro (rather than a function with trait bounds)
        // because there's no way, in a generic context, to enforce that two
        // types have the same size. `core::mem::transmute` uses compiler magic
        // to enforce this so long as the types are concrete.

        let e = $e;
        if false {
            // This branch, though never taken, ensures that the type of `e` is
            // `AsBytes` and that the type of this macro invocation expression
            // is `FromBytes`.
            const fn transmute<T: $crate::AsBytes, U: $crate::FromBytes>(_t: T) -> U {
                unreachable!()
            }
            transmute(e)
        } else {
            // SAFETY: `core::mem::transmute` ensures that the type of `e` and
            // the type of this macro invocation expression have the same size.
            // We know this transmute is safe thanks to the `AsBytes` and
            // `FromBytes` bounds enforced by the `false` branch.
            //
            // We use `$crate::__real_transmute` because we know it will always
            // be available for crates which are using the 2015 edition of Rust.
            // By contrast, if we were to use `std::mem::transmute`, this macro
            // would not work for such crates in `no_std` contexts, and if we
            // were to use `core::mem::transmute`, this macro would not work in
            // `std` contexts in which `core` was not manually imported. This is
            // not a problem for 2018 edition crates.
            //
            // Some older versions of Clippy have a bug in which they don't
            // recognize the preceding safety comment.
            #[allow(clippy::undocumented_unsafe_blocks)]
            unsafe { $crate::__real_transmute(e) }
        }
    }}
}

/// A length- and alignment-checked reference to a byte slice which can safely
/// be reinterpreted as another type.
///
/// `LayoutVerified` is a byte slice reference (`&[u8]`, `&mut [u8]`,
/// `Ref<[u8]>`, `RefMut<[u8]>`, etc) with the invariant that the slice's length
/// and alignment are each greater than or equal to the length and alignment of
/// `T`. Using this invariant, it implements `Deref` for `T` so long as `T:
/// FromBytes` and `DerefMut` so long as `T: FromBytes + AsBytes`.
///
/// # Examples
///
/// `LayoutVerified` can be used to treat a sequence of bytes as a structured
/// type, and to read and write the fields of that type as if the byte slice
/// reference were simply a reference to that type.
///
/// ```rust
/// use zerocopy::{AsBytes, ByteSlice, ByteSliceMut, FromBytes, LayoutVerified, Unaligned};
///
/// #[derive(FromBytes, AsBytes, Unaligned)]
/// #[repr(C)]
/// struct UdpHeader {
///     src_port: [u8; 2],
///     dst_port: [u8; 2],
///     length: [u8; 2],
///     checksum: [u8; 2],
/// }
///
/// struct UdpPacket<B> {
///     header: LayoutVerified<B, UdpHeader>,
///     body: B,
/// }
///
/// impl<B: ByteSlice> UdpPacket<B> {
///     pub fn parse(bytes: B) -> Option<UdpPacket<B>> {
///         let (header, body) = LayoutVerified::new_unaligned_from_prefix(bytes)?;
///         Some(UdpPacket { header, body })
///     }
///
///     pub fn get_src_port(&self) -> [u8; 2] {
///         self.header.src_port
///     }
/// }
///
/// impl<B: ByteSliceMut> UdpPacket<B> {
///     pub fn set_src_port(&mut self, src_port: [u8; 2]) {
///         self.header.src_port = src_port;
///     }
/// }
/// ```
pub struct LayoutVerified<B, T: ?Sized>(B, PhantomData<T>);

impl<B, T> LayoutVerified<B, T>
where
    B: ByteSlice,
{
    /// Constructs a new `LayoutVerified`.
    ///
    /// `new` verifies that `bytes.len() == size_of::<T>()` and that `bytes` is
    /// aligned to `align_of::<T>()`, and constructs a new `LayoutVerified`. If
    /// either of these checks fail, it returns `None`.
    #[inline]
    pub fn new(bytes: B) -> Option<LayoutVerified<B, T>> {
        if bytes.len() != mem::size_of::<T>() || !aligned_to::<_, T>(bytes.deref()) {
            return None;
        }
        Some(LayoutVerified(bytes, PhantomData))
    }

    /// Constructs a new `LayoutVerified` from the prefix of a byte slice.
    ///
    /// `new_from_prefix` verifies that `bytes.len() >= size_of::<T>()` and that
    /// `bytes` is aligned to `align_of::<T>()`. It consumes the first
    /// `size_of::<T>()` bytes from `bytes` to construct a `LayoutVerified`, and
    /// returns the remaining bytes to the caller. If either the length or
    /// alignment checks fail, it returns `None`.
    #[inline]
    pub fn new_from_prefix(bytes: B) -> Option<(LayoutVerified<B, T>, B)> {
        if bytes.len() < mem::size_of::<T>() || !aligned_to::<_, T>(bytes.deref()) {
            return None;
        }
        let (bytes, suffix) = bytes.split_at(mem::size_of::<T>());
        Some((LayoutVerified(bytes, PhantomData), suffix))
    }

    /// Constructs a new `LayoutVerified` from the suffix of a byte slice.
    ///
    /// `new_from_suffix` verifies that `bytes.len() >= size_of::<T>()` and that
    /// the last `size_of::<T>()` bytes of `bytes` are aligned to
    /// `align_of::<T>()`. It consumes the last `size_of::<T>()` bytes from
    /// `bytes` to construct a `LayoutVerified`, and returns the preceding bytes
    /// to the caller. If either the length or alignment checks fail, it returns
    /// `None`.
    #[inline]
    pub fn new_from_suffix(bytes: B) -> Option<(B, LayoutVerified<B, T>)> {
        let bytes_len = bytes.len();
        let split_at = bytes_len.checked_sub(mem::size_of::<T>())?;
        let (prefix, bytes) = bytes.split_at(split_at);
        if !aligned_to::<_, T>(bytes.deref()) {
            return None;
        }
        Some((prefix, LayoutVerified(bytes, PhantomData)))
    }
}

impl<B, T> LayoutVerified<B, [T]>
where
    B: ByteSlice,
{
    /// Constructs a new `LayoutVerified` of a slice type.
    ///
    /// `new_slice` verifies that `bytes.len()` is a multiple of
    /// `size_of::<T>()` and that `bytes` is aligned to `align_of::<T>()`, and
    /// constructs a new `LayoutVerified`. If either of these checks fail, it
    /// returns `None`.
    ///
    /// # Panics
    ///
    /// `new_slice` panics if `T` is a zero-sized type.
    #[inline]
    pub fn new_slice(bytes: B) -> Option<LayoutVerified<B, [T]>> {
        let remainder = bytes
            .len()
            .checked_rem(mem::size_of::<T>())
            .expect("LayoutVerified::new_slice called on a zero-sized type");
        if remainder != 0 || !aligned_to::<_, T>(bytes.deref()) {
            return None;
        }
        Some(LayoutVerified(bytes, PhantomData))
    }

    /// Constructs a new `LayoutVerified` of a slice type from the prefix of a
    /// byte slice.
    ///
    /// `new_slice_from_prefix` verifies that `bytes.len() >= size_of::<T>() *
    /// count` and that `bytes` is aligned to `align_of::<T>()`. It consumes the
    /// first `size_of::<T>() * count` bytes from `bytes` to construct a
    /// `LayoutVerified`, and returns the remaining bytes to the caller. It also
    /// ensures that `sizeof::<T>() * count` does not overflow a `usize`. If any
    /// of the length, alignment, or overflow checks fail, it returns `None`.
    ///
    /// # Panics
    ///
    /// `new_slice_from_prefix` panics if `T` is a zero-sized type.
    #[inline]
    pub fn new_slice_from_prefix(bytes: B, count: usize) -> Option<(LayoutVerified<B, [T]>, B)> {
        let expected_len = match mem::size_of::<T>().checked_mul(count) {
            Some(len) => len,
            None => return None,
        };
        if bytes.len() < expected_len {
            return None;
        }
        let (prefix, bytes) = bytes.split_at(expected_len);
        Self::new_slice(prefix).map(move |l| (l, bytes))
    }

    /// Constructs a new `LayoutVerified` of a slice type from the suffix of a
    /// byte slice.
    ///
    /// `new_slice_from_suffix` verifies that `bytes.len() >= size_of::<T>() *
    /// count` and that `bytes` is aligned to `align_of::<T>()`. It consumes the
    /// last `size_of::<T>() * count` bytes from `bytes` to construct a
    /// `LayoutVerified`, and returns the preceding bytes to the caller. It also
    /// ensures that `sizeof::<T>() * count` does not overflow a `usize`. If any
    /// of the length, alignment, or overflow checks fail, it returns `None`.
    ///
    /// # Panics
    ///
    /// `new_slice_from_suffix` panics if `T` is a zero-sized type.
    #[inline]
    pub fn new_slice_from_suffix(bytes: B, count: usize) -> Option<(B, LayoutVerified<B, [T]>)> {
        let expected_len = match mem::size_of::<T>().checked_mul(count) {
            Some(len) => len,
            None => return None,
        };
        let split_at = bytes.len().checked_sub(expected_len)?;
        let (bytes, suffix) = bytes.split_at(split_at);
        Self::new_slice(suffix).map(move |l| (bytes, l))
    }
}

fn map_zeroed<B: ByteSliceMut, T: ?Sized>(
    opt: Option<LayoutVerified<B, T>>,
) -> Option<LayoutVerified<B, T>> {
    match opt {
        Some(mut lv) => {
            lv.0.fill(0);
            Some(lv)
        }
        None => None,
    }
}

fn map_prefix_tuple_zeroed<B: ByteSliceMut, T: ?Sized>(
    opt: Option<(LayoutVerified<B, T>, B)>,
) -> Option<(LayoutVerified<B, T>, B)> {
    match opt {
        Some((mut lv, rest)) => {
            lv.0.fill(0);
            Some((lv, rest))
        }
        None => None,
    }
}

fn map_suffix_tuple_zeroed<B: ByteSliceMut, T: ?Sized>(
    opt: Option<(B, LayoutVerified<B, T>)>,
) -> Option<(B, LayoutVerified<B, T>)> {
    map_prefix_tuple_zeroed(opt.map(|(a, b)| (b, a))).map(|(a, b)| (b, a))
}

impl<B, T> LayoutVerified<B, T>
where
    B: ByteSliceMut,
{
    /// Constructs a new `LayoutVerified` after zeroing the bytes.
    ///
    /// `new_zeroed` verifies that `bytes.len() == size_of::<T>()` and that
    /// `bytes` is aligned to `align_of::<T>()`, and constructs a new
    /// `LayoutVerified`. If either of these checks fail, it returns `None`.
    ///
    /// If the checks succeed, then `bytes` will be initialized to zero. This
    /// can be useful when re-using buffers to ensure that sensitive data
    /// previously stored in the buffer is not leaked.
    #[inline]
    pub fn new_zeroed(bytes: B) -> Option<LayoutVerified<B, T>> {
        map_zeroed(Self::new(bytes))
    }

    /// Constructs a new `LayoutVerified` from the prefix of a byte slice,
    /// zeroing the prefix.
    ///
    /// `new_from_prefix_zeroed` verifies that `bytes.len() >= size_of::<T>()`
    /// and that `bytes` is aligned to `align_of::<T>()`. It consumes the first
    /// `size_of::<T>()` bytes from `bytes` to construct a `LayoutVerified`, and
    /// returns the remaining bytes to the caller. If either the length or
    /// alignment checks fail, it returns `None`.
    ///
    /// If the checks succeed, then the prefix which is consumed will be
    /// initialized to zero. This can be useful when re-using buffers to ensure
    /// that sensitive data previously stored in the buffer is not leaked.
    #[inline]
    pub fn new_from_prefix_zeroed(bytes: B) -> Option<(LayoutVerified<B, T>, B)> {
        map_prefix_tuple_zeroed(Self::new_from_prefix(bytes))
    }

    /// Constructs a new `LayoutVerified` from the suffix of a byte slice,
    /// zeroing the suffix.
    ///
    /// `new_from_suffix_zeroed` verifies that `bytes.len() >= size_of::<T>()`
    /// and that the last `size_of::<T>()` bytes of `bytes` are aligned to
    /// `align_of::<T>()`. It consumes the last `size_of::<T>()` bytes from
    /// `bytes` to construct a `LayoutVerified`, and returns the preceding bytes
    /// to the caller. If either the length or alignment checks fail, it returns
    /// `None`.
    ///
    /// If the checks succeed, then the suffix which is consumed will be
    /// initialized to zero. This can be useful when re-using buffers to ensure
    /// that sensitive data previously stored in the buffer is not leaked.
    #[inline]
    pub fn new_from_suffix_zeroed(bytes: B) -> Option<(B, LayoutVerified<B, T>)> {
        map_suffix_tuple_zeroed(Self::new_from_suffix(bytes))
    }
}

impl<B, T> LayoutVerified<B, [T]>
where
    B: ByteSliceMut,
{
    /// Constructs a new `LayoutVerified` of a slice type after zeroing the
    /// bytes.
    ///
    /// `new_slice_zeroed` verifies that `bytes.len()` is a multiple of
    /// `size_of::<T>()` and that `bytes` is aligned to `align_of::<T>()`, and
    /// constructs a new `LayoutVerified`. If either of these checks fail, it
    /// returns `None`.
    ///
    /// If the checks succeed, then `bytes` will be initialized to zero. This
    /// can be useful when re-using buffers to ensure that sensitive data
    /// previously stored in the buffer is not leaked.
    ///
    /// # Panics
    ///
    /// `new_slice` panics if `T` is a zero-sized type.
    #[inline]
    pub fn new_slice_zeroed(bytes: B) -> Option<LayoutVerified<B, [T]>> {
        map_zeroed(Self::new_slice(bytes))
    }

    /// Constructs a new `LayoutVerified` of a slice type from the prefix of a
    /// byte slice, after zeroing the bytes.
    ///
    /// `new_slice_from_prefix` verifies that `bytes.len() >= size_of::<T>() *
    /// count` and that `bytes` is aligned to `align_of::<T>()`. It consumes the
    /// first `size_of::<T>() * count` bytes from `bytes` to construct a
    /// `LayoutVerified`, and returns the remaining bytes to the caller. It also
    /// ensures that `sizeof::<T>() * count` does not overflow a `usize`. If any
    /// of the length, alignment, or overflow checks fail, it returns `None`.
    ///
    /// If the checks succeed, then the suffix which is consumed will be
    /// initialized to zero. This can be useful when re-using buffers to ensure
    /// that sensitive data previously stored in the buffer is not leaked.
    ///
    /// # Panics
    ///
    /// `new_slice_from_prefix_zeroed` panics if `T` is a zero-sized type.
    #[inline]
    pub fn new_slice_from_prefix_zeroed(
        bytes: B,
        count: usize,
    ) -> Option<(LayoutVerified<B, [T]>, B)> {
        map_prefix_tuple_zeroed(Self::new_slice_from_prefix(bytes, count))
    }

    /// Constructs a new `LayoutVerified` of a slice type from the prefix of a
    /// byte slice, after zeroing the bytes.
    ///
    /// `new_slice_from_suffix` verifies that `bytes.len() >= size_of::<T>() *
    /// count` and that `bytes` is aligned to `align_of::<T>()`. It consumes the
    /// last `size_of::<T>() * count` bytes from `bytes` to construct a
    /// `LayoutVerified`, and returns the preceding bytes to the caller. It also
    /// ensures that `sizeof::<T>() * count` does not overflow a `usize`. If any
    /// of the length, alignment, or overflow checks fail, it returns `None`.
    ///
    /// If the checks succeed, then the consumed suffix will be initialized to
    /// zero. This can be useful when re-using buffers to ensure that sensitive
    /// data previously stored in the buffer is not leaked.
    ///
    /// # Panics
    ///
    /// `new_slice_from_suffix_zeroed` panics if `T` is a zero-sized type.
    #[inline]
    pub fn new_slice_from_suffix_zeroed(
        bytes: B,
        count: usize,
    ) -> Option<(B, LayoutVerified<B, [T]>)> {
        map_suffix_tuple_zeroed(Self::new_slice_from_suffix(bytes, count))
    }
}

impl<B, T> LayoutVerified<B, T>
where
    B: ByteSlice,
    T: Unaligned,
{
    /// Constructs a new `LayoutVerified` for a type with no alignment
    /// requirement.
    ///
    /// `new_unaligned` verifies that `bytes.len() == size_of::<T>()` and
    /// constructs a new `LayoutVerified`. If the check fails, it returns
    /// `None`.
    #[inline]
    pub fn new_unaligned(bytes: B) -> Option<LayoutVerified<B, T>> {
        if bytes.len() != mem::size_of::<T>() {
            return None;
        }
        Some(LayoutVerified(bytes, PhantomData))
    }

    /// Constructs a new `LayoutVerified` from the prefix of a byte slice for a
    /// type with no alignment requirement.
    ///
    /// `new_unaligned_from_prefix` verifies that `bytes.len() >=
    /// size_of::<T>()`. It consumes the first `size_of::<T>()` bytes from
    /// `bytes` to construct a `LayoutVerified`, and returns the remaining bytes
    /// to the caller. If the length check fails, it returns `None`.
    #[inline]
    pub fn new_unaligned_from_prefix(bytes: B) -> Option<(LayoutVerified<B, T>, B)> {
        if bytes.len() < mem::size_of::<T>() {
            return None;
        }
        let (bytes, suffix) = bytes.split_at(mem::size_of::<T>());
        Some((LayoutVerified(bytes, PhantomData), suffix))
    }

    /// Constructs a new `LayoutVerified` from the suffix of a byte slice for a
    /// type with no alignment requirement.
    ///
    /// `new_unaligned_from_suffix` verifies that `bytes.len() >=
    /// size_of::<T>()`. It consumes the last `size_of::<T>()` bytes from
    /// `bytes` to construct a `LayoutVerified`, and returns the preceding bytes
    /// to the caller. If the length check fails, it returns `None`.
    #[inline]
    pub fn new_unaligned_from_suffix(bytes: B) -> Option<(B, LayoutVerified<B, T>)> {
        let bytes_len = bytes.len();
        let split_at = bytes_len.checked_sub(mem::size_of::<T>())?;
        let (prefix, bytes) = bytes.split_at(split_at);
        Some((prefix, LayoutVerified(bytes, PhantomData)))
    }
}

impl<B, T> LayoutVerified<B, [T]>
where
    B: ByteSlice,
    T: Unaligned,
{
    /// Constructs a new `LayoutVerified` of a slice type with no alignment
    /// requirement.
    ///
    /// `new_slice_unaligned` verifies that `bytes.len()` is a multiple of
    /// `size_of::<T>()` and constructs a new `LayoutVerified`. If the check
    /// fails, it returns `None`.
    ///
    /// # Panics
    ///
    /// `new_slice` panics if `T` is a zero-sized type.
    #[inline]
    pub fn new_slice_unaligned(bytes: B) -> Option<LayoutVerified<B, [T]>> {
        let remainder = bytes
            .len()
            .checked_rem(mem::size_of::<T>())
            .expect("LayoutVerified::new_slice_unaligned called on a zero-sized type");
        if remainder != 0 {
            return None;
        }
        Some(LayoutVerified(bytes, PhantomData))
    }

    /// Constructs a new `LayoutVerified` of a slice type with no alignment
    /// requirement from the prefix of a byte slice.
    ///
    /// `new_slice_from_prefix` verifies that `bytes.len() >= size_of::<T>() *
    /// count`. It consumes the first `size_of::<T>() * count` bytes from
    /// `bytes` to construct a `LayoutVerified`, and returns the remaining bytes
    /// to the caller. It also ensures that `sizeof::<T>() * count` does not
    /// overflow a `usize`. If either the length, or overflow checks fail, it
    /// returns `None`.
    ///
    /// # Panics
    ///
    /// `new_slice_unaligned_from_prefix` panics if `T` is a zero-sized type.
    #[inline]
    pub fn new_slice_unaligned_from_prefix(
        bytes: B,
        count: usize,
    ) -> Option<(LayoutVerified<B, [T]>, B)> {
        let expected_len = match mem::size_of::<T>().checked_mul(count) {
            Some(len) => len,
            None => return None,
        };
        if bytes.len() < expected_len {
            return None;
        }
        let (prefix, bytes) = bytes.split_at(expected_len);
        Self::new_slice_unaligned(prefix).map(move |l| (l, bytes))
    }

    /// Constructs a new `LayoutVerified` of a slice type with no alignment
    /// requirement from the suffix of a byte slice.
    ///
    /// `new_slice_from_suffix` verifies that `bytes.len() >= size_of::<T>() *
    /// count`. It consumes the last `size_of::<T>() * count` bytes from `bytes`
    /// to construct a `LayoutVerified`, and returns the remaining bytes to the
    /// caller. It also ensures that `sizeof::<T>() * count` does not overflow a
    /// `usize`. If either the length, or overflow checks fail, it returns
    /// `None`.
    ///
    /// # Panics
    ///
    /// `new_slice_unaligned_from_suffix` panics if `T` is a zero-sized type.
    #[inline]
    pub fn new_slice_unaligned_from_suffix(
        bytes: B,
        count: usize,
    ) -> Option<(B, LayoutVerified<B, [T]>)> {
        let expected_len = match mem::size_of::<T>().checked_mul(count) {
            Some(len) => len,
            None => return None,
        };
        if bytes.len() < expected_len {
            return None;
        }
        let (bytes, suffix) = bytes.split_at(expected_len);
        Self::new_slice_unaligned(suffix).map(move |l| (bytes, l))
    }
}

impl<B, T> LayoutVerified<B, T>
where
    B: ByteSliceMut,
    T: Unaligned,
{
    /// Constructs a new `LayoutVerified` for a type with no alignment
    /// requirement, zeroing the bytes.
    ///
    /// `new_unaligned_zeroed` verifies that `bytes.len() == size_of::<T>()` and
    /// constructs a new `LayoutVerified`. If the check fails, it returns
    /// `None`.
    ///
    /// If the check succeeds, then `bytes` will be initialized to zero. This
    /// can be useful when re-using buffers to ensure that sensitive data
    /// previously stored in the buffer is not leaked.
    #[inline]
    pub fn new_unaligned_zeroed(bytes: B) -> Option<LayoutVerified<B, T>> {
        map_zeroed(Self::new_unaligned(bytes))
    }

    /// Constructs a new `LayoutVerified` from the prefix of a byte slice for a
    /// type with no alignment requirement, zeroing the prefix.
    ///
    /// `new_unaligned_from_prefix_zeroed` verifies that `bytes.len() >=
    /// size_of::<T>()`. It consumes the first `size_of::<T>()` bytes from
    /// `bytes` to construct a `LayoutVerified`, and returns the remaining bytes
    /// to the caller. If the length check fails, it returns `None`.
    ///
    /// If the check succeeds, then the prefix which is consumed will be
    /// initialized to zero. This can be useful when re-using buffers to ensure
    /// that sensitive data previously stored in the buffer is not leaked.
    #[inline]
    pub fn new_unaligned_from_prefix_zeroed(bytes: B) -> Option<(LayoutVerified<B, T>, B)> {
        map_prefix_tuple_zeroed(Self::new_unaligned_from_prefix(bytes))
    }

    /// Constructs a new `LayoutVerified` from the suffix of a byte slice for a
    /// type with no alignment requirement, zeroing the suffix.
    ///
    /// `new_unaligned_from_suffix_zeroed` verifies that `bytes.len() >=
    /// size_of::<T>()`. It consumes the last `size_of::<T>()` bytes from
    /// `bytes` to construct a `LayoutVerified`, and returns the preceding bytes
    /// to the caller. If the length check fails, it returns `None`.
    ///
    /// If the check succeeds, then the suffix which is consumed will be
    /// initialized to zero. This can be useful when re-using buffers to ensure
    /// that sensitive data previously stored in the buffer is not leaked.
    #[inline]
    pub fn new_unaligned_from_suffix_zeroed(bytes: B) -> Option<(B, LayoutVerified<B, T>)> {
        map_suffix_tuple_zeroed(Self::new_unaligned_from_suffix(bytes))
    }
}

impl<B, T> LayoutVerified<B, [T]>
where
    B: ByteSliceMut,
    T: Unaligned,
{
    /// Constructs a new `LayoutVerified` for a slice type with no alignment
    /// requirement, zeroing the bytes.
    ///
    /// `new_slice_unaligned_zeroed` verifies that `bytes.len()` is a multiple
    /// of `size_of::<T>()` and constructs a new `LayoutVerified`. If the check
    /// fails, it returns `None`.
    ///
    /// If the check succeeds, then `bytes` will be initialized to zero. This
    /// can be useful when re-using buffers to ensure that sensitive data
    /// previously stored in the buffer is not leaked.
    ///
    /// # Panics
    ///
    /// `new_slice` panics if `T` is a zero-sized type.
    #[inline]
    pub fn new_slice_unaligned_zeroed(bytes: B) -> Option<LayoutVerified<B, [T]>> {
        map_zeroed(Self::new_slice_unaligned(bytes))
    }

    /// Constructs a new `LayoutVerified` of a slice type with no alignment
    /// requirement from the prefix of a byte slice, after zeroing the bytes.
    ///
    /// `new_slice_from_prefix` verifies that `bytes.len() >= size_of::<T>() *
    /// count`. It consumes the first `size_of::<T>() * count` bytes from
    /// `bytes` to construct a `LayoutVerified`, and returns the remaining bytes
    /// to the caller. It also ensures that `sizeof::<T>() * count` does not
    /// overflow a `usize`. If either the length, or overflow checks fail, it
    /// returns `None`.
    ///
    /// If the checks succeed, then the prefix will be initialized to zero. This
    /// can be useful when re-using buffers to ensure that sensitive data
    /// previously stored in the buffer is not leaked.
    ///
    /// # Panics
    ///
    /// `new_slice_unaligned_from_prefix_zeroed` panics if `T` is a zero-sized
    /// type.
    #[inline]
    pub fn new_slice_unaligned_from_prefix_zeroed(
        bytes: B,
        count: usize,
    ) -> Option<(LayoutVerified<B, [T]>, B)> {
        map_prefix_tuple_zeroed(Self::new_slice_unaligned_from_prefix(bytes, count))
    }

    /// Constructs a new `LayoutVerified` of a slice type with no alignment
    /// requirement from the suffix of a byte slice, after zeroing the bytes.
    ///
    /// `new_slice_from_suffix` verifies that `bytes.len() >= size_of::<T>() *
    /// count`. It consumes the last `size_of::<T>() * count` bytes from `bytes`
    /// to construct a `LayoutVerified`, and returns the remaining bytes to the
    /// caller. It also ensures that `sizeof::<T>() * count` does not overflow a
    /// `usize`. If either the length, or overflow checks fail, it returns
    /// `None`.
    ///
    /// If the checks succeed, then the suffix will be initialized to zero. This
    /// can be useful when re-using buffers to ensure that sensitive data
    /// previously stored in the buffer is not leaked.
    ///
    /// # Panics
    ///
    /// `new_slice_unaligned_from_suffix_zeroed` panics if `T` is a zero-sized
    /// type.
    #[inline]
    pub fn new_slice_unaligned_from_suffix_zeroed(
        bytes: B,
        count: usize,
    ) -> Option<(B, LayoutVerified<B, [T]>)> {
        map_suffix_tuple_zeroed(Self::new_slice_unaligned_from_suffix(bytes, count))
    }
}

impl<'a, B, T> LayoutVerified<B, T>
where
    B: 'a + ByteSlice,
    T: FromBytes,
{
    /// Converts this `LayoutVerified` into a reference.
    ///
    /// `into_ref` consumes the `LayoutVerified`, and returns a reference to
    /// `T`.
    pub fn into_ref(self) -> &'a T {
        assert!(B::INTO_REF_INTO_MUT_ARE_SOUND);

        // SAFETY: According to the safety preconditions on
        // `ByteSlice::INTO_REF_INTO_MUT_ARE_SOUND`, the preceding assert
        // ensures that, given `B: 'a`, it is sound to drop `self` and still
        // access the underlying memory using reads for `'a`.
        unsafe { self.deref_helper() }
    }
}

impl<'a, B, T> LayoutVerified<B, T>
where
    B: 'a + ByteSliceMut,
    T: FromBytes + AsBytes,
{
    /// Converts this `LayoutVerified` into a mutable reference.
    ///
    /// `into_mut` consumes the `LayoutVerified`, and returns a mutable
    /// reference to `T`.
    pub fn into_mut(mut self) -> &'a mut T {
        assert!(B::INTO_REF_INTO_MUT_ARE_SOUND);

        // SAFETY: According to the safety preconditions on
        // `ByteSlice::INTO_REF_INTO_MUT_ARE_SOUND`, the preceding assert
        // ensures that, given `B: 'a + ByteSliceMut`, it is sound to drop
        // `self` and still access the underlying memory using both reads and
        // writes for `'a`.
        unsafe { self.deref_mut_helper() }
    }
}

impl<'a, B, T> LayoutVerified<B, [T]>
where
    B: 'a + ByteSlice,
    T: FromBytes,
{
    /// Converts this `LayoutVerified` into a slice reference.
    ///
    /// `into_slice` consumes the `LayoutVerified`, and returns a reference to
    /// `[T]`.
    pub fn into_slice(self) -> &'a [T] {
        assert!(B::INTO_REF_INTO_MUT_ARE_SOUND);

        // SAFETY: According to the safety preconditions on
        // `ByteSlice::INTO_REF_INTO_MUT_ARE_SOUND`, the preceding assert
        // ensures that, given `B: 'a`, it is sound to drop `self` and still
        // access the underlying memory using reads for `'a`.
        unsafe { self.deref_slice_helper() }
    }
}

impl<'a, B, T> LayoutVerified<B, [T]>
where
    B: 'a + ByteSliceMut,
    T: FromBytes + AsBytes,
{
    /// Converts this `LayoutVerified` into a mutable slice reference.
    ///
    /// `into_mut_slice` consumes the `LayoutVerified`, and returns a mutable
    /// reference to `[T]`.
    pub fn into_mut_slice(mut self) -> &'a mut [T] {
        assert!(B::INTO_REF_INTO_MUT_ARE_SOUND);

        // SAFETY: According to the safety preconditions on
        // `ByteSlice::INTO_REF_INTO_MUT_ARE_SOUND`, the preceding assert
        // ensures that, given `B: 'a + ByteSliceMut`, it is sound to drop
        // `self` and still access the underlying memory using both reads and
        // writes for `'a`.
        unsafe { self.deref_mut_slice_helper() }
    }
}

impl<B, T> LayoutVerified<B, T>
where
    B: ByteSlice,
    T: FromBytes,
{
    /// Creates an immutable reference to `T` with a specific lifetime.
    ///
    /// # Safety
    ///
    /// The type bounds on this method guarantee that it is safe to create an
    /// immutable reference to `T` from `self`. However, since the lifetime `'a`
    /// is not required to be shorter than the lifetime of the reference to
    /// `self`, the caller must guarantee that the lifetime `'a` is valid for
    /// this reference. In particular, the referent must exist for all of `'a`,
    /// and no mutable references to the same memory may be constructed during
    /// `'a`.
    unsafe fn deref_helper<'a>(&self) -> &'a T {
        // TODO(#61): Add a "SAFETY" comment and remove this `allow`.
        #[allow(clippy::undocumented_unsafe_blocks)]
        unsafe {
            &*self.0.as_ptr().cast::<T>()
        }
    }
}

impl<B, T> LayoutVerified<B, T>
where
    B: ByteSliceMut,
    T: FromBytes + AsBytes,
{
    /// Creates a mutable reference to `T` with a specific lifetime.
    ///
    /// # Safety
    ///
    /// The type bounds on this method guarantee that it is safe to create a
    /// mutable reference to `T` from `self`. However, since the lifetime `'a`
    /// is not required to be shorter than the lifetime of the reference to
    /// `self`, the caller must guarantee that the lifetime `'a` is valid for
    /// this reference. In particular, the referent must exist for all of `'a`,
    /// and no other references - mutable or immutable - to the same memory may
    /// be constructed during `'a`.
    unsafe fn deref_mut_helper<'a>(&mut self) -> &'a mut T {
        // TODO(#61): Add a "SAFETY" comment and remove this `allow`.
        #[allow(clippy::undocumented_unsafe_blocks)]
        unsafe {
            &mut *self.0.as_mut_ptr().cast::<T>()
        }
    }
}

impl<B, T> LayoutVerified<B, [T]>
where
    B: ByteSlice,
    T: FromBytes,
{
    /// Creates an immutable reference to `[T]` with a specific lifetime.
    ///
    /// # Safety
    ///
    /// `deref_slice_helper` has the same safety requirements as `deref_helper`.
    unsafe fn deref_slice_helper<'a>(&self) -> &'a [T] {
        let len = self.0.len();
        let elem_size = mem::size_of::<T>();
        debug_assert_ne!(elem_size, 0);
        // `LayoutVerified<_, [T]>` maintains the invariant that `size_of::<T>()
        // > 0`. Thus, neither the mod nor division operations here can panic.
        #[allow(clippy::arithmetic_side_effects)]
        let elems = {
            debug_assert_eq!(len % elem_size, 0);
            len / elem_size
        };
        // TODO(#61): Add a "SAFETY" comment and remove this `allow`.
        #[allow(clippy::undocumented_unsafe_blocks)]
        unsafe {
            slice::from_raw_parts(self.0.as_ptr().cast::<T>(), elems)
        }
    }
}

impl<B, T> LayoutVerified<B, [T]>
where
    B: ByteSliceMut,
    T: FromBytes + AsBytes,
{
    /// Creates a mutable reference to `[T]` with a specific lifetime.
    ///
    /// # Safety
    ///
    /// `deref_mut_slice_helper` has the same safety requirements as
    /// `deref_mut_helper`.
    unsafe fn deref_mut_slice_helper<'a>(&mut self) -> &'a mut [T] {
        let len = self.0.len();
        let elem_size = mem::size_of::<T>();
        debug_assert_ne!(elem_size, 0);
        // `LayoutVerified<_, [T]>` maintains the invariant that `size_of::<T>()
        // > 0`. Thus, neither the mod nor division operations here can panic.
        #[allow(clippy::arithmetic_side_effects)]
        let elems = {
            debug_assert_eq!(len % elem_size, 0);
            len / elem_size
        };
        // TODO(#61): Add a "SAFETY" comment and remove this `allow`.
        #[allow(clippy::undocumented_unsafe_blocks)]
        unsafe {
            slice::from_raw_parts_mut(self.0.as_mut_ptr().cast::<T>(), elems)
        }
    }
}

trait AsAddress {
    fn addr(self) -> usize;
}

impl<'a, T: ?Sized> AsAddress for &'a T {
    #[inline(always)]
    fn addr(self) -> usize {
        #![allow(clippy::needless_return)]

        let ptr: *const T = self;
        // TODO(https://github.com/rust-lang/rust/issues/95228): Use `.addr()`
        // instead of `as usize` once it's stable, and get rid of this `allow`.
        // Currently, `as usize` is the only way to accomplish this.
        #[allow(clippy::as_conversions)]
        return ptr.cast::<()>() as usize;
    }
}

impl<'a, T: ?Sized> AsAddress for &'a mut T {
    #[inline(always)]
    fn addr(self) -> usize {
        #![allow(clippy::needless_return)]

        let ptr: *mut T = self;
        // TODO(https://github.com/rust-lang/rust/issues/95228): Use `.addr()`
        // instead of `as usize` once it's stable, and get rid of this `allow`.
        // Currently, `as usize` is the only way to accomplish this.
        #[allow(clippy::as_conversions)]
        return ptr.cast::<()>() as usize;
    }
}

impl<T: ?Sized> AsAddress for *const T {
    #[inline(always)]
    fn addr(self) -> usize {
        #![allow(clippy::needless_return)]

        // TODO(https://github.com/rust-lang/rust/issues/95228): Use `.addr()`
        // instead of `as usize` once it's stable, and get rid of this `allow`.
        // Currently, `as usize` is the only way to accomplish this.
        #[allow(clippy::as_conversions)]
        return self.cast::<()>() as usize;
    }
}

impl<T: ?Sized> AsAddress for *mut T {
    #[inline(always)]
    fn addr(self) -> usize {
        #![allow(clippy::needless_return)]

        // TODO(https://github.com/rust-lang/rust/issues/95228): Use `.addr()`
        // instead of `as usize` once it's stable, and get rid of this `allow`.
        // Currently, `as usize` is the only way to accomplish this.
        #[allow(clippy::as_conversions)]
        return self.cast::<()>() as usize;
    }
}

/// Is `t` aligned to `mem::align_of::<U>()`?
#[inline(always)]
fn aligned_to<T: AsAddress, U>(t: T) -> bool {
    // `mem::align_of::<U>()` is guaranteed to return a non-zero value, which in
    // turn guarantees that this mod operation will not panic.
    #[allow(clippy::arithmetic_side_effects)]
    let remainder = t.addr() % mem::align_of::<U>();
    remainder == 0
}

impl<B, T> LayoutVerified<B, T>
where
    B: ByteSlice,
    T: ?Sized,
{
    /// Gets the underlying bytes.
    #[inline]
    pub fn bytes(&self) -> &[u8] {
        &self.0
    }
}

impl<B, T> LayoutVerified<B, T>
where
    B: ByteSliceMut,
    T: ?Sized,
{
    /// Gets the underlying bytes mutably.
    #[inline]
    pub fn bytes_mut(&mut self) -> &mut [u8] {
        &mut self.0
    }
}

impl<B, T> LayoutVerified<B, T>
where
    B: ByteSlice,
    T: FromBytes,
{
    /// Reads a copy of `T`.
    #[inline]
    pub fn read(&self) -> T {
        // SAFETY: Because of the invariants on `LayoutVerified`, we know that
        // `self.0` is at least `size_of::<T>()` bytes long, and that it is at
        // least as aligned as `align_of::<T>()`. Because `T: FromBytes`, it is
        // sound to interpret these bytes as a `T`.
        unsafe { ptr::read(self.0.as_ptr().cast::<T>()) }
    }
}

impl<B, T> LayoutVerified<B, T>
where
    B: ByteSliceMut,
    T: AsBytes,
{
    /// Writes the bytes of `t` and then forgets `t`.
    #[inline]
    pub fn write(&mut self, t: T) {
        // SAFETY: Because of the invariants on `LayoutVerified`, we know that
        // `self.0` is at least `size_of::<T>()` bytes long, and that it is at
        // least as aligned as `align_of::<T>()`. Writing `t` to the buffer will
        // allow all of the bytes of `t` to be accessed as a `[u8]`, but because
        // `T: AsBytes`, we know this is sound.
        unsafe { ptr::write(self.0.as_mut_ptr().cast::<T>(), t) }
    }
}

impl<B, T> Deref for LayoutVerified<B, T>
where
    B: ByteSlice,
    T: FromBytes,
{
    type Target = T;
    #[inline]
    fn deref(&self) -> &T {
        // SAFETY: This is sound because the lifetime of `self` is the same as
        // the lifetime of the return value, meaning that a) the returned
        // reference cannot outlive `self` and, b) no mutable methods on `self`
        // can be called during the lifetime of the returned reference. See the
        // documentation on `deref_helper` for what invariants we are required
        // to uphold.
        unsafe { self.deref_helper() }
    }
}

impl<B, T> DerefMut for LayoutVerified<B, T>
where
    B: ByteSliceMut,
    T: FromBytes + AsBytes,
{
    #[inline]
    fn deref_mut(&mut self) -> &mut T {
        // SAFETY: This is sound because the lifetime of `self` is the same as
        // the lifetime of the return value, meaning that a) the returned
        // reference cannot outlive `self` and, b) no other methods on `self`
        // can be called during the lifetime of the returned reference. See the
        // documentation on `deref_mut_helper` for what invariants we are
        // required to uphold.
        unsafe { self.deref_mut_helper() }
    }
}

impl<B, T> Deref for LayoutVerified<B, [T]>
where
    B: ByteSlice,
    T: FromBytes,
{
    type Target = [T];
    #[inline]
    fn deref(&self) -> &[T] {
        // SAFETY: This is sound because the lifetime of `self` is the same as
        // the lifetime of the return value, meaning that a) the returned
        // reference cannot outlive `self` and, b) no mutable methods on `self`
        // can be called during the lifetime of the returned reference. See the
        // documentation on `deref_slice_helper` for what invariants we are
        // required to uphold.
        unsafe { self.deref_slice_helper() }
    }
}

impl<B, T> DerefMut for LayoutVerified<B, [T]>
where
    B: ByteSliceMut,
    T: FromBytes + AsBytes,
{
    #[inline]
    fn deref_mut(&mut self) -> &mut [T] {
        // SAFETY: This is sound because the lifetime of `self` is the same as
        // the lifetime of the return value, meaning that a) the returned
        // reference cannot outlive `self` and, b) no other methods on `self`
        // can be called during the lifetime of the returned reference. See the
        // documentation on `deref_mut_slice_helper` for what invariants we are
        // required to uphold.
        unsafe { self.deref_mut_slice_helper() }
    }
}

impl<T, B> Display for LayoutVerified<B, T>
where
    B: ByteSlice,
    T: FromBytes + Display,
{
    #[inline]
    fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
        let inner: &T = self;
        inner.fmt(fmt)
    }
}

impl<T, B> Display for LayoutVerified<B, [T]>
where
    B: ByteSlice,
    T: FromBytes,
    [T]: Display,
{
    #[inline]
    fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
        let inner: &[T] = self;
        inner.fmt(fmt)
    }
}

impl<T, B> Debug for LayoutVerified<B, T>
where
    B: ByteSlice,
    T: FromBytes + Debug,
{
    #[inline]
    fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
        let inner: &T = self;
        fmt.debug_tuple("LayoutVerified").field(&inner).finish()
    }
}

impl<T, B> Debug for LayoutVerified<B, [T]>
where
    B: ByteSlice,
    T: FromBytes + Debug,
{
    #[inline]
    fn fmt(&self, fmt: &mut Formatter<'_>) -> fmt::Result {
        let inner: &[T] = self;
        fmt.debug_tuple("LayoutVerified").field(&inner).finish()
    }
}

impl<T, B> Eq for LayoutVerified<B, T>
where
    B: ByteSlice,
    T: FromBytes + Eq,
{
}

impl<T, B> Eq for LayoutVerified<B, [T]>
where
    B: ByteSlice,
    T: FromBytes + Eq,
{
}

impl<T, B> PartialEq for LayoutVerified<B, T>
where
    B: ByteSlice,
    T: FromBytes + PartialEq,
{
    #[inline]
    fn eq(&self, other: &Self) -> bool {
        self.deref().eq(other.deref())
    }
}

impl<T, B> PartialEq for LayoutVerified<B, [T]>
where
    B: ByteSlice,
    T: FromBytes + PartialEq,
{
    #[inline]
    fn eq(&self, other: &Self) -> bool {
        self.deref().eq(other.deref())
    }
}

impl<T, B> Ord for LayoutVerified<B, T>
where
    B: ByteSlice,
    T: FromBytes + Ord,
{
    #[inline]
    fn cmp(&self, other: &Self) -> Ordering {
        let inner: &T = self;
        let other_inner: &T = other;
        inner.cmp(other_inner)
    }
}

impl<T, B> Ord for LayoutVerified<B, [T]>
where
    B: ByteSlice,
    T: FromBytes + Ord,
{
    #[inline]
    fn cmp(&self, other: &Self) -> Ordering {
        let inner: &[T] = self;
        let other_inner: &[T] = other;
        inner.cmp(other_inner)
    }
}

impl<T, B> PartialOrd for LayoutVerified<B, T>
where
    B: ByteSlice,
    T: FromBytes + PartialOrd,
{
    #[inline]
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        let inner: &T = self;
        let other_inner: &T = other;
        inner.partial_cmp(other_inner)
    }
}

impl<T, B> PartialOrd for LayoutVerified<B, [T]>
where
    B: ByteSlice,
    T: FromBytes + PartialOrd,
{
    #[inline]
    fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
        let inner: &[T] = self;
        let other_inner: &[T] = other;
        inner.partial_cmp(other_inner)
    }
}

mod sealed {
    use core::cell::{Ref, RefMut};

    pub trait Sealed {}
    impl<'a> Sealed for &'a [u8] {}
    impl<'a> Sealed for &'a mut [u8] {}
    impl<'a> Sealed for Ref<'a, [u8]> {}
    impl<'a> Sealed for RefMut<'a, [u8]> {}
}

// ByteSlice and ByteSliceMut abstract over [u8] references (&[u8], &mut [u8],
// Ref<[u8]>, RefMut<[u8]>, etc). We rely on various behaviors of these
// references such as that a given reference will never changes its length
// between calls to deref() or deref_mut(), and that split_at() works as
// expected. If ByteSlice or ByteSliceMut were not sealed, consumers could
// implement them in a way that violated these behaviors, and would break our
// unsafe code. Thus, we seal them and implement it only for known-good
// reference types. For the same reason, they're unsafe traits.

#[allow(clippy::missing_safety_doc)] // TODO(fxbug.dev/99068)
/// A mutable or immutable reference to a byte slice.
///
/// `ByteSlice` abstracts over the mutability of a byte slice reference, and is
/// implemented for various special reference types such as `Ref<[u8]>` and
/// `RefMut<[u8]>`.
///
/// Note that, while it would be technically possible, `ByteSlice` is not
/// implemented for [`Vec<u8>`], as the only way to implement the [`split_at`]
/// method would involve reallocation, and `split_at` must be a very cheap
/// operation in order for the utilities in this crate to perform as designed.
///
/// [`Vec<u8>`]: alloc::vec::Vec
/// [`split_at`]: crate::ByteSlice::split_at
pub unsafe trait ByteSlice: Deref<Target = [u8]> + Sized + self::sealed::Sealed {
    /// Are the [`Ref::into_ref`] and [`Ref::into_mut`] methods sound when used
    /// with `Self`? If not, evaluating this constant must panic at compile
    /// time.
    ///
    /// This exists to work around #716 on versions of zerocopy prior to 0.8.
    ///
    /// # Safety
    ///
    /// This may only be set to true if the following holds: Given the
    /// following:
    /// - `Self: 'a`
    /// - `bytes: Self`
    /// - `let ptr = bytes.as_ptr()`
    ///
    /// ...then:
    /// - Using `ptr` to read the memory previously addressed by `bytes` is
    ///   sound for `'a` even after `bytes` has been dropped.
    /// - If `Self: ByteSliceMut`, using `ptr` to write the memory previously
    ///   addressed by `bytes` is sound for `'a` even after `bytes` has been
    ///   dropped.
    #[doc(hidden)]
    const INTO_REF_INTO_MUT_ARE_SOUND: bool;

    /// Gets a raw pointer to the first byte in the slice.
    #[inline]
    fn as_ptr(&self) -> *const u8 {
        <[u8]>::as_ptr(self)
    }

    /// Splits the slice at the midpoint.
    ///
    /// `x.split_at(mid)` returns `x[..mid]` and `x[mid..]`.
    ///
    /// # Panics
    ///
    /// `x.split_at(mid)` panics if `mid > x.len()`.
    fn split_at(self, mid: usize) -> (Self, Self);
}

#[allow(clippy::missing_safety_doc)] // TODO(fxbug.dev/99068)
/// A mutable reference to a byte slice.
///
/// `ByteSliceMut` abstracts over various ways of storing a mutable reference to
/// a byte slice, and is implemented for various special reference types such as
/// `RefMut<[u8]>`.
pub unsafe trait ByteSliceMut: ByteSlice + DerefMut {
    /// Gets a mutable raw pointer to the first byte in the slice.
    #[inline]
    fn as_mut_ptr(&mut self) -> *mut u8 {
        <[u8]>::as_mut_ptr(self)
    }
}

// TODO(#61): Add a "SAFETY" comment and remove this `allow`.
#[allow(clippy::undocumented_unsafe_blocks)]
unsafe impl<'a> ByteSlice for &'a [u8] {
    // SAFETY: If `&'b [u8]: 'a`, then the underlying memory is treated as
    // borrowed immutably for `'a` even if the slice itself is dropped.
    const INTO_REF_INTO_MUT_ARE_SOUND: bool = true;

    #[inline]
    fn split_at(self, mid: usize) -> (Self, Self) {
        <[u8]>::split_at(self, mid)
    }
}

// TODO(#61): Add a "SAFETY" comment and remove this `allow`.
#[allow(clippy::undocumented_unsafe_blocks)]
unsafe impl<'a> ByteSlice for &'a mut [u8] {
    // SAFETY: If `&'b mut [u8]: 'a`, then the underlying memory is treated as
    // borrowed mutably for `'a` even if the slice itself is dropped.
    const INTO_REF_INTO_MUT_ARE_SOUND: bool = true;

    #[inline]
    fn split_at(self, mid: usize) -> (Self, Self) {
        <[u8]>::split_at_mut(self, mid)
    }
}

// TODO(#61): Add a "SAFETY" comment and remove this `allow`.
#[allow(clippy::undocumented_unsafe_blocks)]
unsafe impl<'a> ByteSlice for Ref<'a, [u8]> {
    const INTO_REF_INTO_MUT_ARE_SOUND: bool = if !cfg!(doc) {
        panic!("Ref::into_ref and Ref::into_mut are unsound when used with core::cell::Ref; see https://github.com/google/zerocopy/issues/716")
    } else {
        // When compiling documentation, allow the evaluation of this constant
        // to succeed. This doesn't represent a soundness hole - it just delays
        // any error to runtime. The reason we need this is that, otherwise,
        // `rustdoc` will fail when trying to document this item.
        false
    };

    #[inline]
    fn split_at(self, mid: usize) -> (Self, Self) {
        Ref::map_split(self, |slice| <[u8]>::split_at(slice, mid))
    }
}

// TODO(#61): Add a "SAFETY" comment and remove this `allow`.
#[allow(clippy::undocumented_unsafe_blocks)]
unsafe impl<'a> ByteSlice for RefMut<'a, [u8]> {
    const INTO_REF_INTO_MUT_ARE_SOUND: bool = if !cfg!(doc) {
        panic!("Ref::into_ref and Ref::into_mut are unsound when used with core::cell::RefMut; see https://github.com/google/zerocopy/issues/716")
    } else {
        // When compiling documentation, allow the evaluation of this constant
        // to succeed. This doesn't represent a soundness hole - it just delays
        // any error to runtime. The reason we need this is that, otherwise,
        // `rustdoc` will fail when trying to document this item.
        false
    };

    #[inline]
    fn split_at(self, mid: usize) -> (Self, Self) {
        RefMut::map_split(self, |slice| <[u8]>::split_at_mut(slice, mid))
    }
}

// TODO(#61): Add a "SAFETY" comment and remove this `allow`.
#[allow(clippy::undocumented_unsafe_blocks)]
unsafe impl<'a> ByteSliceMut for &'a mut [u8] {}

// TODO(#61): Add a "SAFETY" comment and remove this `allow`.
#[allow(clippy::undocumented_unsafe_blocks)]
unsafe impl<'a> ByteSliceMut for RefMut<'a, [u8]> {}

#[cfg(feature = "alloc")]
mod alloc_support {
    use alloc::vec::Vec;

    use super::*;

    /// Extends a `Vec<T>` by pushing `additional` new items onto the end of the
    /// vector. The new items are initialized with zeroes.
    ///
    /// # Panics
    ///
    /// Panics if `Vec::reserve(additional)` fails to reserve enough memory.
    pub fn extend_vec_zeroed<T: FromBytes>(v: &mut Vec<T>, additional: usize) {
        insert_vec_zeroed(v, v.len(), additional);
    }

    /// Inserts `additional` new items into `Vec<T>` at `position`.
    /// The new items are initialized with zeroes.
    ///
    /// # Panics
    ///
    /// * Panics if `position > v.len()`.
    /// * Panics if `Vec::reserve(additional)` fails to reserve enough memory.
    pub fn insert_vec_zeroed<T: FromBytes>(v: &mut Vec<T>, position: usize, additional: usize) {
        assert!(position <= v.len());
        v.reserve(additional);
        // SAFETY: The `reserve` call guarantees that these cannot overflow:
        // * `ptr.add(position)`
        // * `position + additional`
        // * `v.len() + additional`
        //
        // `v.len() - position` cannot overflow because we asserted that
        // `position <= v.len()`.
        unsafe {
            // This is a potentially overlapping copy.
            let ptr = v.as_mut_ptr();
            #[allow(clippy::arithmetic_side_effects)]
            ptr.add(position).copy_to(ptr.add(position + additional), v.len() - position);
            ptr.add(position).write_bytes(0, additional);
            #[allow(clippy::arithmetic_side_effects)]
            v.set_len(v.len() + additional);
        }
    }

    #[cfg(test)]
    mod tests {
        use super::*;

        #[test]
        fn test_extend_vec_zeroed() {
            // Test extending when there is an existing allocation.
            let mut v = vec![100u64, 200, 300];
            extend_vec_zeroed(&mut v, 3);
            assert_eq!(v.len(), 6);
            assert_eq!(&*v, &[100, 200, 300, 0, 0, 0]);
            drop(v);

            // Test extending when there is no existing allocation.
            let mut v: Vec<u64> = Vec::new();
            extend_vec_zeroed(&mut v, 3);
            assert_eq!(v.len(), 3);
            assert_eq!(&*v, &[0, 0, 0]);
            drop(v);
        }

        #[test]
        fn test_extend_vec_zeroed_zst() {
            // Test extending when there is an existing (fake) allocation.
            let mut v = vec![(), (), ()];
            extend_vec_zeroed(&mut v, 3);
            assert_eq!(v.len(), 6);
            assert_eq!(&*v, &[(), (), (), (), (), ()]);
            drop(v);

            // Test extending when there is no existing (fake) allocation.
            let mut v: Vec<()> = Vec::new();
            extend_vec_zeroed(&mut v, 3);
            assert_eq!(&*v, &[(), (), ()]);
            drop(v);
        }

        #[test]
        fn test_insert_vec_zeroed() {
            // Insert at start (no existing allocation).
            let mut v: Vec<u64> = Vec::new();
            insert_vec_zeroed(&mut v, 0, 2);
            assert_eq!(v.len(), 2);
            assert_eq!(&*v, &[0, 0]);
            drop(v);

            // Insert at start.
            let mut v = vec![100u64, 200, 300];
            insert_vec_zeroed(&mut v, 0, 2);
            assert_eq!(v.len(), 5);
            assert_eq!(&*v, &[0, 0, 100, 200, 300]);
            drop(v);

            // Insert at middle.
            let mut v = vec![100u64, 200, 300];
            insert_vec_zeroed(&mut v, 1, 1);
            assert_eq!(v.len(), 4);
            assert_eq!(&*v, &[100, 0, 200, 300]);
            drop(v);

            // Insert at end.
            let mut v = vec![100u64, 200, 300];
            insert_vec_zeroed(&mut v, 3, 1);
            assert_eq!(v.len(), 4);
            assert_eq!(&*v, &[100, 200, 300, 0]);
            drop(v);
        }

        #[test]
        fn test_insert_vec_zeroed_zst() {
            // Insert at start (no existing fake allocation).
            let mut v: Vec<()> = Vec::new();
            insert_vec_zeroed(&mut v, 0, 2);
            assert_eq!(v.len(), 2);
            assert_eq!(&*v, &[(), ()]);
            drop(v);

            // Insert at start.
            let mut v = vec![(), (), ()];
            insert_vec_zeroed(&mut v, 0, 2);
            assert_eq!(v.len(), 5);
            assert_eq!(&*v, &[(), (), (), (), ()]);
            drop(v);

            // Insert at middle.
            let mut v = vec![(), (), ()];
            insert_vec_zeroed(&mut v, 1, 1);
            assert_eq!(v.len(), 4);
            assert_eq!(&*v, &[(), (), (), ()]);
            drop(v);

            // Insert at end.
            let mut v = vec![(), (), ()];
            insert_vec_zeroed(&mut v, 3, 1);
            assert_eq!(v.len(), 4);
            assert_eq!(&*v, &[(), (), (), ()]);
            drop(v);
        }

        #[test]
        fn test_new_box_zeroed() {
            assert_eq!(*u64::new_box_zeroed(), 0);
        }

        #[test]
        fn test_new_box_zeroed_array() {
            drop(<[u32; 0x1000]>::new_box_zeroed());
        }

        #[test]
        fn test_new_box_zeroed_zst() {
            // This test exists in order to exercise unsafe code, especially
            // when running under Miri.
            #[allow(clippy::unit_cmp)]
            {
                assert_eq!(*<()>::new_box_zeroed(), ());
            }
        }

        #[test]
        fn test_new_box_slice_zeroed() {
            let mut s: Box<[u64]> = u64::new_box_slice_zeroed(3);
            assert_eq!(s.len(), 3);
            assert_eq!(&*s, &[0, 0, 0]);
            s[1] = 3;
            assert_eq!(&*s, &[0, 3, 0]);
        }

        #[test]
        fn test_new_box_slice_zeroed_empty() {
            let s: Box<[u64]> = u64::new_box_slice_zeroed(0);
            assert_eq!(s.len(), 0);
        }

        #[test]
        fn test_new_box_slice_zeroed_zst() {
            let mut s: Box<[()]> = <()>::new_box_slice_zeroed(3);
            assert_eq!(s.len(), 3);
            assert!(s.get(10).is_none());
            // This test exists in order to exercise unsafe code, especially
            // when running under Miri.
            #[allow(clippy::unit_cmp)]
            {
                assert_eq!(s[1], ());
            }
            s[2] = ();
        }

        #[test]
        fn test_new_box_slice_zeroed_zst_empty() {
            let s: Box<[()]> = <()>::new_box_slice_zeroed(0);
            assert_eq!(s.len(), 0);
        }

        #[test]
        #[should_panic(expected = "mem::size_of::<Self>() * len overflows `usize`")]
        fn test_new_box_slice_zeroed_panics_mul_overflow() {
            let _ = u16::new_box_slice_zeroed(usize::MAX);
        }

        // This test fails on stable <= 1.64.0, but succeeds on 1.65.0-beta.2
        // (2022-09-13). In particular, on stable <= 1.64.0,
        // `new_box_slice_zeroed` attempts to perform the allocation (which of
        // course fails). `Layout::from_size_align` should be returning an error
        // due to `isize` overflow, but it doesn't. I (joshlf) haven't
        // investigated enough to confirm, but my guess is that this was a bug
        // that was fixed recently.
        //
        // Triggering the bug requires calling `FromBytes::new_box_slice_zeroed`
        // with an allocation which overflows `isize`, and all that happens is
        // that the program panics due to a failed allocation. Even on 32-bit
        // platforms, this requires a 2GB allocation. On 64-bit platforms, this
        // requires a 2^63-byte allocation. In both cases, even a slightly
        // smaller allocation that didn't trigger this bug would likely
        // (absolutely certainly in the case of 64-bit platforms) fail to
        // allocate in exactly the same way regardless.
        //
        // Given how minor the impact is, and given that the bug seems fixed in
        // 1.65.0, I've chosen to just release the code as-is and disable the
        // test on buggy toolchains. Once our MSRV is at or above 1.65.0, we can
        // remove this conditional compilation (and this comment) entirely.
        #[rustversion::since(1.65.0)]
        #[test]
        #[should_panic(expected = "assertion failed: size <= max_alloc")]
        fn test_new_box_slice_zeroed_panics_isize_overflow() {
            // TODO: Move this to the top of the module once this test is
            // compiled unconditionally. Right now, it causes an unused import
            // warning (which in CI becomes an error) on versions prior to
            // 1.65.0.
            use core::convert::TryFrom as _;

            let max = usize::try_from(isize::MAX).unwrap();
            let _ = u16::new_box_slice_zeroed((max / mem::size_of::<u16>()) + 1);
        }
    }
}

#[cfg(feature = "alloc")]
#[doc(inline)]
pub use alloc_support::*;

#[cfg(test)]
mod tests {
    #![allow(clippy::unreadable_literal)]

    use core::{ops::Deref, panic::AssertUnwindSafe};

    use static_assertions::assert_impl_all;

    use super::*;

    /// A `T` which is aligned to at least `align_of::<A>()`.
    #[derive(Default)]
    struct Align<T, A> {
        t: T,
        _a: [A; 0],
    }

    impl<T: Default, A> Align<T, A> {
        fn set_default(&mut self) {
            self.t = T::default();
        }
    }

    impl<T, A> Align<T, A> {
        const fn new(t: T) -> Align<T, A> {
            Align { t, _a: [] }
        }
    }

    /// A `T` which is guaranteed not to satisfy `align_of::<A>()`.
    ///
    /// It must be the case that `align_of::<T>() < align_of::<A>()` in order
    /// fot this type to work properly.
    #[repr(C)]
    struct ForceUnalign<T, A> {
        // The outer struct is aligned to `A`, and, thanks to `repr(C)`, `t` is
        // placed at the minimum offset that guarantees its alignment. If
        // `align_of::<T>() < align_of::<A>()`, then that offset will be
        // guaranteed *not* to satisfy `align_of::<A>()`.
        _u: u8,
        t: T,
        _a: [A; 0],
    }

    impl<T, A> ForceUnalign<T, A> {
        const fn new(t: T) -> ForceUnalign<T, A> {
            ForceUnalign { _u: 0, t, _a: [] }
        }
    }

    // A `u64` with alignment 8.
    //
    // Though `u64` has alignment 8 on some platforms, it's not guaranteed.
    // By contrast, `AU64` is guaranteed to have alignment 8.
    #[derive(FromBytes, AsBytes, Eq, PartialEq, Ord, PartialOrd, Default, Debug, Copy, Clone)]
    #[repr(C, align(8))]
    struct AU64(u64);

    impl Display for AU64 {
        fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
            Display::fmt(&self.0, f)
        }
    }

    // Converts an `AU64` to bytes using this platform's endianness.
    fn au64_to_bytes(u: AU64) -> [u8; 8] {
        transmute!(u)
    }

    // An unsized type.
    //
    // This is used to test the custom derives of our traits. The `[u8]` type
    // gets a hand-rolled impl, so it doesn't exercise our custom derives.
    #[derive(Debug, Eq, PartialEq, FromBytes, AsBytes, Unaligned)]
    #[repr(transparent)]
    struct Unsized([u8]);

    impl Unsized {
        fn from_mut_slice(slc: &mut [u8]) -> &mut Unsized {
            // SAFETY: This *probably* sound - since the layouts of `[u8]` and
            // `Unsized` are the same, so are the layouts of `&mut [u8]` and
            // `&mut Unsized`. [1] Even if it turns out that this isn't actually
            // guaranteed by the language spec, we can just change this since
            // it's in test code.
            //
            // [1] https://github.com/rust-lang/unsafe-code-guidelines/issues/375
            unsafe { mem::transmute(slc) }
        }
    }

    #[test]
    fn test_object_safety() {
        fn _takes_from_bytes(_: &dyn FromBytes) {}
        fn _takes_unaligned(_: &dyn Unaligned) {}
    }

    #[test]
    fn test_unalign() {
        // Test methods that don't depend on alignment.
        let mut u = Unalign::new(AU64(123));
        assert_eq!(u.get(), AU64(123));
        assert_eq!(u.into_inner(), AU64(123));
        assert_eq!(u.get_ptr(), <*const _>::cast::<AU64>(&u));
        assert_eq!(u.get_mut_ptr(), <*mut _>::cast::<AU64>(&mut u));
        u.set(AU64(321));
        assert_eq!(u.get(), AU64(321));

        // Test methods that depend on alignment (when alignment is satisfied).
        let mut u: Align<_, AU64> = Align::new(Unalign::new(AU64(123)));
        assert_eq!(u.t.try_deref(), Some(&AU64(123)));
        assert_eq!(u.t.try_deref_mut(), Some(&mut AU64(123)));
        // SAFETY: The `Align<_, AU64>` guarantees proper alignment.
        assert_eq!(unsafe { u.t.deref_unchecked() }, &AU64(123));
        // SAFETY: The `Align<_, AU64>` guarantees proper alignment.
        assert_eq!(unsafe { u.t.deref_mut_unchecked() }, &mut AU64(123));
        *u.t.try_deref_mut().unwrap() = AU64(321);
        assert_eq!(u.t.get(), AU64(321));

        // Test methods that depend on alignment (when alignment is not
        // satisfied).
        let mut u: ForceUnalign<_, AU64> = ForceUnalign::new(Unalign::new(AU64(123)));
        assert_eq!(u.t.try_deref(), None);
        assert_eq!(u.t.try_deref_mut(), None);

        // Test methods that depend on `T: Unaligned`.
        let mut u = Unalign::new(123u8);
        assert_eq!(u.try_deref(), Some(&123));
        assert_eq!(u.try_deref_mut(), Some(&mut 123));
        assert_eq!(u.deref(), &123);
        assert_eq!(u.deref_mut(), &mut 123);
        *u = 21;
        assert_eq!(u.get(), 21);

        // Test that some `Unalign` functions and methods are `const`.
        const _UNALIGN: Unalign<u64> = Unalign::new(0);
        const _UNALIGN_PTR: *const u64 = _UNALIGN.get_ptr();
        const _U64: u64 = _UNALIGN.into_inner();
        // Make sure all code is considered "used".
        //
        // TODO(https://github.com/rust-lang/rust/issues/104084): Remove this
        // attribute.
        #[allow(dead_code)]
        const _: () = {
            let x: Align<_, AU64> = Align::new(Unalign::new(AU64(123)));
            // Make sure that `deref_unchecked` is `const`.
            //
            // SAFETY: The `Align<_, AU64>` guarantees proper alignment.
            let au64 = unsafe { x.t.deref_unchecked() };
            match au64 {
                AU64(123) => {}
                _ => unreachable!(),
            }
        };
    }

    #[test]
    fn test_unalign_update() {
        let mut u = Unalign::new(AU64(123));
        u.update(|a| a.0 += 1);
        assert_eq!(u.get(), AU64(124));

        // Test that, even if the callback panics, the original is still
        // correctly overwritten. Use a `Box` so that Miri is more likely to
        // catch any unsoundness (which would likely result in two `Box`es for
        // the same heap object, which is the sort of thing that Miri would
        // probably catch).
        let mut u = Unalign::new(Box::new(AU64(123)));
        let res = std::panic::catch_unwind(AssertUnwindSafe(|| {
            u.update(|a| {
                a.0 += 1;
                panic!();
            })
        }));
        // Only required on the v0.6.x branch due to behavior of older versions
        // of Clippy which is no longer present on the MSRV we use on the main
        // branch.
        #[allow(clippy::assertions_on_result_states)]
        {
            assert!(res.is_err());
        }
        assert_eq!(u.into_inner(), Box::new(AU64(124)));
    }

    #[test]
    fn test_read_write() {
        const VAL: u64 = 0x12345678;
        #[cfg(target_endian = "big")]
        const VAL_BYTES: [u8; 8] = VAL.to_be_bytes();
        #[cfg(target_endian = "little")]
        const VAL_BYTES: [u8; 8] = VAL.to_le_bytes();

        // Test `FromBytes::{read_from, read_from_prefix, read_from_suffix}`.

        assert_eq!(u64::read_from(&VAL_BYTES[..]), Some(VAL));
        // The first 8 bytes are from `VAL_BYTES` and the second 8 bytes are all
        // zeroes.
        let bytes_with_prefix: [u8; 16] = transmute!([VAL_BYTES, [0; 8]]);
        assert_eq!(u64::read_from_prefix(&bytes_with_prefix[..]), Some(VAL));
        assert_eq!(u64::read_from_suffix(&bytes_with_prefix[..]), Some(0));
        // The first 8 bytes are all zeroes and the second 8 bytes are from
        // `VAL_BYTES`
        let bytes_with_suffix: [u8; 16] = transmute!([[0; 8], VAL_BYTES]);
        assert_eq!(u64::read_from_prefix(&bytes_with_suffix[..]), Some(0));
        assert_eq!(u64::read_from_suffix(&bytes_with_suffix[..]), Some(VAL));

        // Test `AsBytes::{write_to, write_to_prefix, write_to_suffix}`.

        let mut bytes = [0u8; 8];
        assert_eq!(VAL.write_to(&mut bytes[..]), Some(()));
        assert_eq!(bytes, VAL_BYTES);
        let mut bytes = [0u8; 16];
        assert_eq!(VAL.write_to_prefix(&mut bytes[..]), Some(()));
        let want: [u8; 16] = transmute!([VAL_BYTES, [0; 8]]);
        assert_eq!(bytes, want);
        let mut bytes = [0u8; 16];
        assert_eq!(VAL.write_to_suffix(&mut bytes[..]), Some(()));
        let want: [u8; 16] = transmute!([[0; 8], VAL_BYTES]);
        assert_eq!(bytes, want);
    }

    #[test]
    fn test_transmute() {
        // Test that memory is transmuted as expected.
        let array_of_u8s = [0u8, 1, 2, 3, 4, 5, 6, 7];
        let array_of_arrays = [[0, 1], [2, 3], [4, 5], [6, 7]];
        let x: [[u8; 2]; 4] = transmute!(array_of_u8s);
        assert_eq!(x, array_of_arrays);
        let x: [u8; 8] = transmute!(array_of_arrays);
        assert_eq!(x, array_of_u8s);

        // Test that the source expression's value is forgotten rather than
        // dropped.
        #[derive(AsBytes)]
        #[repr(transparent)]
        struct PanicOnDrop(());
        impl Drop for PanicOnDrop {
            fn drop(&mut self) {
                panic!("PanicOnDrop::drop");
            }
        }
        let _: () = transmute!(PanicOnDrop(()));

        // Test that `transmute!` is legal in a const context.
        const ARRAY_OF_U8S: [u8; 8] = [0u8, 1, 2, 3, 4, 5, 6, 7];
        const ARRAY_OF_ARRAYS: [[u8; 2]; 4] = [[0, 1], [2, 3], [4, 5], [6, 7]];
        const X: [[u8; 2]; 4] = transmute!(ARRAY_OF_U8S);
        assert_eq!(X, ARRAY_OF_ARRAYS);
    }

    #[test]
    fn test_address() {
        // Test that the `Deref` and `DerefMut` implementations return a
        // reference which points to the right region of memory.

        let buf = [0];
        let lv = LayoutVerified::<_, u8>::new(&buf[..]).unwrap();
        let buf_ptr = buf.as_ptr();
        let deref_ptr: *const u8 = lv.deref();
        assert_eq!(buf_ptr, deref_ptr);

        let buf = [0];
        let lv = LayoutVerified::<_, [u8]>::new_slice(&buf[..]).unwrap();
        let buf_ptr = buf.as_ptr();
        let deref_ptr = lv.deref().as_ptr();
        assert_eq!(buf_ptr, deref_ptr);
    }

    // Verify that values written to a `LayoutVerified` are properly shared
    // between the typed and untyped representations, that reads via `deref` and
    // `read` behave the same, and that writes via `deref_mut` and `write`
    // behave the same.
    fn test_new_helper(mut lv: LayoutVerified<&mut [u8], AU64>) {
        // assert that the value starts at 0
        assert_eq!(*lv, AU64(0));
        assert_eq!(lv.read(), AU64(0));

        // Assert that values written to the typed value are reflected in the
        // byte slice.
        const VAL1: AU64 = AU64(0xFF00FF00FF00FF00);
        *lv = VAL1;
        assert_eq!(lv.bytes(), &au64_to_bytes(VAL1));
        *lv = AU64(0);
        lv.write(VAL1);
        assert_eq!(lv.bytes(), &au64_to_bytes(VAL1));

        // Assert that values written to the byte slice are reflected in the
        // typed value.
        const VAL2: AU64 = AU64(!VAL1.0); // different from `VAL1`
        lv.bytes_mut().copy_from_slice(&au64_to_bytes(VAL2)[..]);
        assert_eq!(*lv, VAL2);
        assert_eq!(lv.read(), VAL2);
    }

    // Verify that values written to a `LayoutVerified` are properly shared
    // between the typed and untyped representations; pass a value with
    // `typed_len` `AU64`s backed by an array of `typed_len * 8` bytes.
    fn test_new_helper_slice(mut lv: LayoutVerified<&mut [u8], [AU64]>, typed_len: usize) {
        // Assert that the value starts out zeroed.
        assert_eq!(&*lv, vec![AU64(0); typed_len].as_slice());

        // Check the backing storage is the exact same slice.
        let untyped_len = typed_len * 8;
        assert_eq!(lv.bytes().len(), untyped_len);
        assert_eq!(lv.bytes().as_ptr(), lv.as_ptr().cast::<u8>());

        // Assert that values written to the typed value are reflected in the
        // byte slice.
        const VAL1: AU64 = AU64(0xFF00FF00FF00FF00);
        for typed in &mut *lv {
            *typed = VAL1;
        }
        assert_eq!(lv.bytes(), VAL1.0.to_ne_bytes().repeat(typed_len).as_slice());

        // Assert that values written to the byte slice are reflected in the
        // typed value.
        const VAL2: AU64 = AU64(!VAL1.0); // different from VAL1
        lv.bytes_mut().copy_from_slice(&VAL2.0.to_ne_bytes().repeat(typed_len));
        assert!(lv.iter().copied().all(|x| x == VAL2));
    }

    // Verify that values written to a `LayoutVerified` are properly shared
    // between the typed and untyped representations, that reads via `deref` and
    // `read` behave the same, and that writes via `deref_mut` and `write`
    // behave the same.
    fn test_new_helper_unaligned(mut lv: LayoutVerified<&mut [u8], [u8; 8]>) {
        // assert that the value starts at 0
        assert_eq!(*lv, [0; 8]);
        assert_eq!(lv.read(), [0; 8]);

        // Assert that values written to the typed value are reflected in the
        // byte slice.
        const VAL1: [u8; 8] = [0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00];
        *lv = VAL1;
        assert_eq!(lv.bytes(), &VAL1);
        *lv = [0; 8];
        lv.write(VAL1);
        assert_eq!(lv.bytes(), &VAL1);

        // Assert that values written to the byte slice are reflected in the
        // typed value.
        const VAL2: [u8; 8] = [0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF, 0x00, 0xFF]; // different from VAL1
        lv.bytes_mut().copy_from_slice(&VAL2[..]);
        assert_eq!(*lv, VAL2);
        assert_eq!(lv.read(), VAL2);
    }

    // Verify that values written to a `LayoutVerified` are properly shared
    // between the typed and untyped representations; pass a value with `len`
    // `u8`s backed by an array of `len` bytes.
    fn test_new_helper_slice_unaligned(mut lv: LayoutVerified<&mut [u8], [u8]>, len: usize) {
        // Assert that the value starts out zeroed.
        assert_eq!(&*lv, vec![0u8; len].as_slice());

        // Check the backing storage is the exact same slice.
        assert_eq!(lv.bytes().len(), len);
        assert_eq!(lv.bytes().as_ptr(), lv.as_ptr());

        // Assert that values written to the typed value are reflected in the
        // byte slice.
        let mut expected_bytes = [0xFF, 0x00].iter().copied().cycle().take(len).collect::<Vec<_>>();
        lv.copy_from_slice(&expected_bytes);
        assert_eq!(lv.bytes(), expected_bytes.as_slice());

        // Assert that values written to the byte slice are reflected in the
        // typed value.
        for byte in &mut expected_bytes {
            *byte = !*byte; // different from `expected_len`
        }
        lv.bytes_mut().copy_from_slice(&expected_bytes);
        assert_eq!(&*lv, expected_bytes.as_slice());
    }

    #[test]
    fn test_new_aligned_sized() {
        // Test that a properly-aligned, properly-sized buffer works for new,
        // new_from_prefix, and new_from_suffix, and that new_from_prefix and
        // new_from_suffix return empty slices. Test that a properly-aligned
        // buffer whose length is a multiple of the element size works for
        // new_slice. Test that xxx_zeroed behaves the same, and zeroes the
        // memory.

        // A buffer with an alignment of 8.
        let mut buf = Align::<[u8; 8], AU64>::default();
        // `buf.t` should be aligned to 8, so this should always succeed.
        test_new_helper(LayoutVerified::<_, AU64>::new(&mut buf.t[..]).unwrap());
        buf.t = [0xFFu8; 8];
        test_new_helper(LayoutVerified::<_, AU64>::new_zeroed(&mut buf.t[..]).unwrap());
        {
            // In a block so that `lv` and `suffix` don't live too long.
            buf.set_default();
            let (lv, suffix) = LayoutVerified::<_, AU64>::new_from_prefix(&mut buf.t[..]).unwrap();
            assert!(suffix.is_empty());
            test_new_helper(lv);
        }
        {
            buf.t = [0xFFu8; 8];
            let (lv, suffix) =
                LayoutVerified::<_, AU64>::new_from_prefix_zeroed(&mut buf.t[..]).unwrap();
            assert!(suffix.is_empty());
            test_new_helper(lv);
        }
        {
            buf.set_default();
            let (prefix, lv) = LayoutVerified::<_, AU64>::new_from_suffix(&mut buf.t[..]).unwrap();
            assert!(prefix.is_empty());
            test_new_helper(lv);
        }
        {
            buf.t = [0xFFu8; 8];
            let (prefix, lv) =
                LayoutVerified::<_, AU64>::new_from_suffix_zeroed(&mut buf.t[..]).unwrap();
            assert!(prefix.is_empty());
            test_new_helper(lv);
        }

        // A buffer with alignment 8 and length 16.
        let mut buf = Align::<[u8; 16], AU64>::default();
        // `buf.t` should be aligned to 8 and have a length which is a multiple
        // of `size_of::<AU64>()`, so this should always succeed.
        test_new_helper_slice(LayoutVerified::<_, [AU64]>::new_slice(&mut buf.t[..]).unwrap(), 2);
        buf.t = [0xFFu8; 16];
        test_new_helper_slice(
            LayoutVerified::<_, [AU64]>::new_slice_zeroed(&mut buf.t[..]).unwrap(),
            2,
        );

        {
            buf.set_default();
            buf.t[8..].fill(0xFF);
            let (lv, suffix) =
                LayoutVerified::<_, [AU64]>::new_slice_from_prefix(&mut buf.t[..], 1).unwrap();
            assert_eq!(suffix, [0xFF; 8]);
            test_new_helper_slice(lv, 1);
        }
        {
            buf.t = [0xFFu8; 16];
            let (lv, suffix) =
                LayoutVerified::<_, [AU64]>::new_slice_from_prefix_zeroed(&mut buf.t[..], 1)
                    .unwrap();
            assert_eq!(suffix, [0xFF; 8]);
            test_new_helper_slice(lv, 1);
        }
        {
            buf.set_default();
            buf.t[..8].fill(0xFF);
            let (prefix, lv) =
                LayoutVerified::<_, [AU64]>::new_slice_from_suffix(&mut buf.t[..], 1).unwrap();
            assert_eq!(prefix, [0xFF; 8]);
            test_new_helper_slice(lv, 1);
        }
        {
            buf.t = [0xFFu8; 16];
            let (prefix, lv) =
                LayoutVerified::<_, [AU64]>::new_slice_from_suffix_zeroed(&mut buf.t[..], 1)
                    .unwrap();
            assert_eq!(prefix, [0xFF; 8]);
            test_new_helper_slice(lv, 1);
        }
    }

    #[test]
    fn test_new_unaligned_sized() {
        // Test that an unaligned, properly-sized buffer works for
        // `new_unaligned`, `new_unaligned_from_prefix`, and
        // `new_unaligned_from_suffix`, and that `new_unaligned_from_prefix`
        // `new_unaligned_from_suffix` return empty slices. Test that an
        // unaligned buffer whose length is a multiple of the element size works
        // for `new_slice`. Test that `xxx_zeroed` behaves the same, and zeroes
        // the memory.

        let mut buf = [0u8; 8];
        test_new_helper_unaligned(
            LayoutVerified::<_, [u8; 8]>::new_unaligned(&mut buf[..]).unwrap(),
        );
        buf = [0xFFu8; 8];
        test_new_helper_unaligned(
            LayoutVerified::<_, [u8; 8]>::new_unaligned_zeroed(&mut buf[..]).unwrap(),
        );
        {
            // In a block so that `lv` and `suffix` don't live too long.
            buf = [0u8; 8];
            let (lv, suffix) =
                LayoutVerified::<_, [u8; 8]>::new_unaligned_from_prefix(&mut buf[..]).unwrap();
            assert!(suffix.is_empty());
            test_new_helper_unaligned(lv);
        }
        {
            buf = [0xFFu8; 8];
            let (lv, suffix) =
                LayoutVerified::<_, [u8; 8]>::new_unaligned_from_prefix_zeroed(&mut buf[..])
                    .unwrap();
            assert!(suffix.is_empty());
            test_new_helper_unaligned(lv);
        }
        {
            buf = [0u8; 8];
            let (prefix, lv) =
                LayoutVerified::<_, [u8; 8]>::new_unaligned_from_suffix(&mut buf[..]).unwrap();
            assert!(prefix.is_empty());
            test_new_helper_unaligned(lv);
        }
        {
            buf = [0xFFu8; 8];
            let (prefix, lv) =
                LayoutVerified::<_, [u8; 8]>::new_unaligned_from_suffix_zeroed(&mut buf[..])
                    .unwrap();
            assert!(prefix.is_empty());
            test_new_helper_unaligned(lv);
        }

        let mut buf = [0u8; 16];
        // `buf.t` should be aligned to 8 and have a length which is a multiple
        // of `size_of::AU64>()`, so this should always succeed.
        test_new_helper_slice_unaligned(
            LayoutVerified::<_, [u8]>::new_slice_unaligned(&mut buf[..]).unwrap(),
            16,
        );
        buf = [0xFFu8; 16];
        test_new_helper_slice_unaligned(
            LayoutVerified::<_, [u8]>::new_slice_unaligned_zeroed(&mut buf[..]).unwrap(),
            16,
        );

        {
            buf = [0u8; 16];
            let (lv, suffix) =
                LayoutVerified::<_, [u8]>::new_slice_unaligned_from_prefix(&mut buf[..], 8)
                    .unwrap();
            assert_eq!(suffix, [0; 8]);
            test_new_helper_slice_unaligned(lv, 8);
        }
        {
            buf = [0xFFu8; 16];
            let (lv, suffix) =
                LayoutVerified::<_, [u8]>::new_slice_unaligned_from_prefix_zeroed(&mut buf[..], 8)
                    .unwrap();
            assert_eq!(suffix, [0xFF; 8]);
            test_new_helper_slice_unaligned(lv, 8);
        }
        {
            buf = [0u8; 16];
            let (prefix, lv) =
                LayoutVerified::<_, [u8]>::new_slice_unaligned_from_suffix(&mut buf[..], 8)
                    .unwrap();
            assert_eq!(prefix, [0; 8]);
            test_new_helper_slice_unaligned(lv, 8);
        }
        {
            buf = [0xFFu8; 16];
            let (prefix, lv) =
                LayoutVerified::<_, [u8]>::new_slice_unaligned_from_suffix_zeroed(&mut buf[..], 8)
                    .unwrap();
            assert_eq!(prefix, [0xFF; 8]);
            test_new_helper_slice_unaligned(lv, 8);
        }
    }

    #[test]
    fn test_new_oversized() {
        // Test that a properly-aligned, overly-sized buffer works for
        // `new_from_prefix` and `new_from_suffix`, and that they return the
        // remainder and prefix of the slice respectively. Test that
        // `xxx_zeroed` behaves the same, and zeroes the memory.

        let mut buf = Align::<[u8; 16], AU64>::default();
        {
            // In a block so that `lv` and `suffix` don't live too long.
            // `buf.t` should be aligned to 8, so this should always succeed.
            let (lv, suffix) = LayoutVerified::<_, AU64>::new_from_prefix(&mut buf.t[..]).unwrap();
            assert_eq!(suffix.len(), 8);
            test_new_helper(lv);
        }
        {
            buf.t = [0xFFu8; 16];
            // `buf.t` should be aligned to 8, so this should always succeed.
            let (lv, suffix) =
                LayoutVerified::<_, AU64>::new_from_prefix_zeroed(&mut buf.t[..]).unwrap();
            // Assert that the suffix wasn't zeroed.
            assert_eq!(suffix, &[0xFFu8; 8]);
            test_new_helper(lv);
        }
        {
            buf.set_default();
            // `buf.t` should be aligned to 8, so this should always succeed.
            let (prefix, lv) = LayoutVerified::<_, AU64>::new_from_suffix(&mut buf.t[..]).unwrap();
            assert_eq!(prefix.len(), 8);
            test_new_helper(lv);
        }
        {
            buf.t = [0xFFu8; 16];
            // `buf.t` should be aligned to 8, so this should always succeed.
            let (prefix, lv) =
                LayoutVerified::<_, AU64>::new_from_suffix_zeroed(&mut buf.t[..]).unwrap();
            // Assert that the prefix wasn't zeroed.
            assert_eq!(prefix, &[0xFFu8; 8]);
            test_new_helper(lv);
        }
    }

    #[test]
    fn test_new_unaligned_oversized() {
        // Test than an unaligned, overly-sized buffer works for
        // `new_unaligned_from_prefix` and `new_unaligned_from_suffix`, and that
        // they return the remainder and prefix of the slice respectively. Test
        // that `xxx_zeroed` behaves the same, and zeroes the memory.

        let mut buf = [0u8; 16];
        {
            // In a block so that `lv` and `suffix` don't live too long.
            let (lv, suffix) =
                LayoutVerified::<_, [u8; 8]>::new_unaligned_from_prefix(&mut buf[..]).unwrap();
            assert_eq!(suffix.len(), 8);
            test_new_helper_unaligned(lv);
        }
        {
            buf = [0xFFu8; 16];
            let (lv, suffix) =
                LayoutVerified::<_, [u8; 8]>::new_unaligned_from_prefix_zeroed(&mut buf[..])
                    .unwrap();
            // Assert that the suffix wasn't zeroed.
            assert_eq!(suffix, &[0xFF; 8]);
            test_new_helper_unaligned(lv);
        }
        {
            buf = [0u8; 16];
            let (prefix, lv) =
                LayoutVerified::<_, [u8; 8]>::new_unaligned_from_suffix(&mut buf[..]).unwrap();
            assert_eq!(prefix.len(), 8);
            test_new_helper_unaligned(lv);
        }
        {
            buf = [0xFFu8; 16];
            let (prefix, lv) =
                LayoutVerified::<_, [u8; 8]>::new_unaligned_from_suffix_zeroed(&mut buf[..])
                    .unwrap();
            // Assert that the prefix wasn't zeroed.
            assert_eq!(prefix, &[0xFF; 8]);
            test_new_helper_unaligned(lv);
        }
    }

    #[test]
    #[allow(clippy::cognitive_complexity)]
    fn test_new_error() {
        // Fail because the buffer is too large.

        // A buffer with an alignment of 8.
        let mut buf = Align::<[u8; 16], AU64>::default();
        // `buf.t` should be aligned to 8, so only the length check should fail.
        assert!(LayoutVerified::<_, AU64>::new(&buf.t[..]).is_none());
        assert!(LayoutVerified::<_, AU64>::new_zeroed(&mut buf.t[..]).is_none());
        assert!(LayoutVerified::<_, [u8; 8]>::new_unaligned(&buf.t[..]).is_none());
        assert!(LayoutVerified::<_, [u8; 8]>::new_unaligned_zeroed(&mut buf.t[..]).is_none());

        // Fail because the buffer is too small.

        // A buffer with an alignment of 8.
        let mut buf = Align::<[u8; 4], AU64>::default();
        // `buf.t` should be aligned to 8, so only the length check should fail.
        assert!(LayoutVerified::<_, AU64>::new(&buf.t[..]).is_none());
        assert!(LayoutVerified::<_, AU64>::new_zeroed(&mut buf.t[..]).is_none());
        assert!(LayoutVerified::<_, [u8; 8]>::new_unaligned(&buf.t[..]).is_none());
        assert!(LayoutVerified::<_, [u8; 8]>::new_unaligned_zeroed(&mut buf.t[..]).is_none());
        assert!(LayoutVerified::<_, AU64>::new_from_prefix(&buf.t[..]).is_none());
        assert!(LayoutVerified::<_, AU64>::new_from_prefix_zeroed(&mut buf.t[..]).is_none());
        assert!(LayoutVerified::<_, AU64>::new_from_suffix(&buf.t[..]).is_none());
        assert!(LayoutVerified::<_, AU64>::new_from_suffix_zeroed(&mut buf.t[..]).is_none());
        assert!(LayoutVerified::<_, [u8; 8]>::new_unaligned_from_prefix(&buf.t[..]).is_none());
        assert!(LayoutVerified::<_, [u8; 8]>::new_unaligned_from_prefix_zeroed(&mut buf.t[..])
            .is_none());
        assert!(LayoutVerified::<_, [u8; 8]>::new_unaligned_from_suffix(&buf.t[..]).is_none());
        assert!(LayoutVerified::<_, [u8; 8]>::new_unaligned_from_suffix_zeroed(&mut buf.t[..])
            .is_none());

        // Fail because the length is not a multiple of the element size.

        let mut buf = Align::<[u8; 12], AU64>::default();
        // `buf.t` has length 12, but element size is 8.
        assert!(LayoutVerified::<_, [AU64]>::new_slice(&buf.t[..]).is_none());
        assert!(LayoutVerified::<_, [AU64]>::new_slice_zeroed(&mut buf.t[..]).is_none());
        assert!(LayoutVerified::<_, [[u8; 8]]>::new_slice_unaligned(&buf.t[..]).is_none());
        assert!(
            LayoutVerified::<_, [[u8; 8]]>::new_slice_unaligned_zeroed(&mut buf.t[..]).is_none()
        );

        // Fail because the buffer is too short.
        let mut buf = Align::<[u8; 12], AU64>::default();
        // `buf.t` has length 12, but the element size is 8 (and we're expecting
        // two of them).
        assert!(LayoutVerified::<_, [AU64]>::new_slice_from_prefix(&buf.t[..], 2).is_none());
        assert!(
            LayoutVerified::<_, [AU64]>::new_slice_from_prefix_zeroed(&mut buf.t[..], 2).is_none()
        );
        assert!(LayoutVerified::<_, [AU64]>::new_slice_from_suffix(&buf.t[..], 2).is_none());
        assert!(
            LayoutVerified::<_, [AU64]>::new_slice_from_suffix_zeroed(&mut buf.t[..], 2).is_none()
        );
        assert!(LayoutVerified::<_, [[u8; 8]]>::new_slice_unaligned_from_prefix(&buf.t[..], 2)
            .is_none());
        assert!(LayoutVerified::<_, [[u8; 8]]>::new_slice_unaligned_from_prefix_zeroed(
            &mut buf.t[..],
            2
        )
        .is_none());
        assert!(LayoutVerified::<_, [[u8; 8]]>::new_slice_unaligned_from_suffix(&buf.t[..], 2)
            .is_none());
        assert!(LayoutVerified::<_, [[u8; 8]]>::new_slice_unaligned_from_suffix_zeroed(
            &mut buf.t[..],
            2
        )
        .is_none());

        // Fail because the alignment is insufficient.

        // A buffer with an alignment of 8. An odd buffer size is chosen so that
        // the last byte of the buffer has odd alignment.
        let mut buf = Align::<[u8; 13], AU64>::default();
        // Slicing from 1, we get a buffer with size 12 (so the length check
        // should succeed) but an alignment of only 1, which is insufficient.
        assert!(LayoutVerified::<_, AU64>::new(&buf.t[1..]).is_none());
        assert!(LayoutVerified::<_, AU64>::new_zeroed(&mut buf.t[1..]).is_none());
        assert!(LayoutVerified::<_, AU64>::new_from_prefix(&buf.t[1..]).is_none());
        assert!(LayoutVerified::<_, AU64>::new_from_prefix_zeroed(&mut buf.t[1..]).is_none());
        assert!(LayoutVerified::<_, [AU64]>::new_slice(&buf.t[1..]).is_none());
        assert!(LayoutVerified::<_, [AU64]>::new_slice_zeroed(&mut buf.t[1..]).is_none());
        assert!(LayoutVerified::<_, [AU64]>::new_slice_from_prefix(&buf.t[1..], 1).is_none());
        assert!(
            LayoutVerified::<_, [AU64]>::new_slice_from_prefix_zeroed(&mut buf.t[1..], 1).is_none()
        );
        assert!(LayoutVerified::<_, [AU64]>::new_slice_from_suffix(&buf.t[1..], 1).is_none());
        assert!(
            LayoutVerified::<_, [AU64]>::new_slice_from_suffix_zeroed(&mut buf.t[1..], 1).is_none()
        );
        // Slicing is unnecessary here because `new_from_suffix[_zeroed]` use
        // the suffix of the slice, which has odd alignment.
        assert!(LayoutVerified::<_, AU64>::new_from_suffix(&buf.t[..]).is_none());
        assert!(LayoutVerified::<_, AU64>::new_from_suffix_zeroed(&mut buf.t[..]).is_none());

        // Fail due to arithmetic overflow.

        let mut buf = Align::<[u8; 16], AU64>::default();
        let unreasonable_len = usize::MAX / mem::size_of::<AU64>() + 1;
        assert!(LayoutVerified::<_, [AU64]>::new_slice_from_prefix(&buf.t[..], unreasonable_len)
            .is_none());
        assert!(LayoutVerified::<_, [AU64]>::new_slice_from_prefix_zeroed(
            &mut buf.t[..],
            unreasonable_len
        )
        .is_none());
        assert!(LayoutVerified::<_, [AU64]>::new_slice_from_suffix(&buf.t[..], unreasonable_len)
            .is_none());
        assert!(LayoutVerified::<_, [AU64]>::new_slice_from_suffix_zeroed(
            &mut buf.t[..],
            unreasonable_len
        )
        .is_none());
        assert!(LayoutVerified::<_, [[u8; 8]]>::new_slice_unaligned_from_prefix(
            &buf.t[..],
            unreasonable_len
        )
        .is_none());
        assert!(LayoutVerified::<_, [[u8; 8]]>::new_slice_unaligned_from_prefix_zeroed(
            &mut buf.t[..],
            unreasonable_len
        )
        .is_none());
        assert!(LayoutVerified::<_, [[u8; 8]]>::new_slice_unaligned_from_suffix(
            &buf.t[..],
            unreasonable_len
        )
        .is_none());
        assert!(LayoutVerified::<_, [[u8; 8]]>::new_slice_unaligned_from_suffix_zeroed(
            &mut buf.t[..],
            unreasonable_len
        )
        .is_none());
    }

    // Tests for ensuring that, if a ZST is passed into a slice-like function,
    // we always panic. Since these tests need to be separate per-function, and
    // they tend to take up a lot of space, we generate them using a macro in a
    // submodule instead. The submodule ensures that we can just re-use the name
    // of the function under test for the name of the test itself.
    mod test_zst_panics {
        macro_rules! zst_test {
            ($name:ident($($tt:tt)*), $constructor_in_panic_msg:tt) => {
                #[test]
                #[should_panic = concat!("LayoutVerified::", $constructor_in_panic_msg, " called on a zero-sized type")]
                fn $name() {
                    let mut buffer = [0u8];
                    let lv = $crate::LayoutVerified::<_, [()]>::$name(&mut buffer[..], $($tt)*);
                    unreachable!("should have panicked, got {:?}", lv);
                }
            }
        }
        zst_test!(new_slice(), "new_slice");
        zst_test!(new_slice_zeroed(), "new_slice");
        zst_test!(new_slice_from_prefix(1), "new_slice");
        zst_test!(new_slice_from_prefix_zeroed(1), "new_slice");
        zst_test!(new_slice_from_suffix(1), "new_slice");
        zst_test!(new_slice_from_suffix_zeroed(1), "new_slice");
        zst_test!(new_slice_unaligned(), "new_slice_unaligned");
        zst_test!(new_slice_unaligned_zeroed(), "new_slice_unaligned");
        zst_test!(new_slice_unaligned_from_prefix(1), "new_slice_unaligned");
        zst_test!(new_slice_unaligned_from_prefix_zeroed(1), "new_slice_unaligned");
        zst_test!(new_slice_unaligned_from_suffix(1), "new_slice_unaligned");
        zst_test!(new_slice_unaligned_from_suffix_zeroed(1), "new_slice_unaligned");
    }

    #[test]
    fn test_as_bytes_methods() {
        /// Run a series of tests by calling `AsBytes` methods on `t`.
        ///
        /// `bytes` is the expected byte sequence returned from `t.as_bytes()`
        /// before `t` has been modified. `post_mutation` is the expected
        /// sequence returned from `t.as_bytes()` after `t.as_bytes_mut()[0]`
        /// has had its bits flipped (by applying `^= 0xFF`).
        ///
        /// `N` is the size of `t` in bytes.
        fn test<T: FromBytes + AsBytes + Debug + Eq + ?Sized, const N: usize>(
            t: &mut T,
            bytes: &[u8],
            post_mutation: &T,
        ) {
            // Test that we can access the underlying bytes, and that we get the
            // right bytes and the right number of bytes.
            assert_eq!(t.as_bytes(), bytes);

            // Test that changes to the underlying byte slices are reflected in
            // the original object.
            t.as_bytes_mut()[0] ^= 0xFF;
            assert_eq!(t, post_mutation);
            t.as_bytes_mut()[0] ^= 0xFF;

            // `write_to` rejects slices that are too small or too large.
            assert_eq!(t.write_to(&mut vec![0; N - 1][..]), None);
            assert_eq!(t.write_to(&mut vec![0; N + 1][..]), None);

            // `write_to` works as expected.
            let mut bytes = [0; N];
            assert_eq!(t.write_to(&mut bytes[..]), Some(()));
            assert_eq!(bytes, t.as_bytes());

            // `write_to_prefix` rejects slices that are too small.
            assert_eq!(t.write_to_prefix(&mut vec![0; N - 1][..]), None);

            // `write_to_prefix` works with exact-sized slices.
            let mut bytes = [0; N];
            assert_eq!(t.write_to_prefix(&mut bytes[..]), Some(()));
            assert_eq!(bytes, t.as_bytes());

            // `write_to_prefix` works with too-large slices, and any bytes past
            // the prefix aren't modified.
            let mut too_many_bytes = vec![0; N + 1];
            too_many_bytes[N] = 123;
            assert_eq!(t.write_to_prefix(&mut too_many_bytes[..]), Some(()));
            assert_eq!(&too_many_bytes[..N], t.as_bytes());
            assert_eq!(too_many_bytes[N], 123);

            // `write_to_suffix` rejects slices that are too small.
            assert_eq!(t.write_to_suffix(&mut vec![0; N - 1][..]), None);

            // `write_to_suffix` works with exact-sized slices.
            let mut bytes = [0; N];
            assert_eq!(t.write_to_suffix(&mut bytes[..]), Some(()));
            assert_eq!(bytes, t.as_bytes());

            // `write_to_suffix` works with too-large slices, and any bytes
            // before the suffix aren't modified.
            let mut too_many_bytes = vec![0; N + 1];
            too_many_bytes[0] = 123;
            assert_eq!(t.write_to_suffix(&mut too_many_bytes[..]), Some(()));
            assert_eq!(&too_many_bytes[1..], t.as_bytes());
            assert_eq!(too_many_bytes[0], 123);
        }

        #[derive(Debug, Eq, PartialEq, FromBytes, AsBytes)]
        #[repr(C)]
        struct Foo {
            a: u32,
            b: Wrapping<u32>,
            c: Option<NonZeroU32>,
        }

        let expected_bytes: Vec<u8> = if cfg!(target_endian = "little") {
            vec![1, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0]
        } else {
            vec![0, 0, 0, 1, 0, 0, 0, 2, 0, 0, 0, 0]
        };
        let post_mutation_expected_a =
            if cfg!(target_endian = "little") { 0x00_00_00_FE } else { 0xFF_00_00_01 };
        test::<_, 12>(
            &mut Foo { a: 1, b: Wrapping(2), c: None },
            expected_bytes.as_bytes(),
            &Foo { a: post_mutation_expected_a, b: Wrapping(2), c: None },
        );
        test::<_, 3>(
            Unsized::from_mut_slice(&mut [1, 2, 3]),
            &[1, 2, 3],
            Unsized::from_mut_slice(&mut [0xFE, 2, 3]),
        );
    }

    #[test]
    fn test_array() {
        #[derive(FromBytes, AsBytes)]
        #[repr(C)]
        struct Foo {
            a: [u16; 33],
        }

        let foo = Foo { a: [0xFFFF; 33] };
        let expected = [0xFFu8; 66];
        assert_eq!(foo.as_bytes(), &expected[..]);
    }

    #[test]
    fn test_display_debug() {
        let buf = Align::<[u8; 8], u64>::default();
        let lv = LayoutVerified::<_, u64>::new(&buf.t[..]).unwrap();
        assert_eq!(format!("{}", lv), "0");
        assert_eq!(format!("{:?}", lv), "LayoutVerified(0)");

        let buf = Align::<[u8; 8], u64>::default();
        let lv = LayoutVerified::<_, [u64]>::new_slice(&buf.t[..]).unwrap();
        assert_eq!(format!("{:?}", lv), "LayoutVerified([0])");
    }

    #[test]
    fn test_eq() {
        let buf1 = 0_u64;
        let lv1 = LayoutVerified::<_, u64>::new(buf1.as_bytes()).unwrap();
        let buf2 = 0_u64;
        let lv2 = LayoutVerified::<_, u64>::new(buf2.as_bytes()).unwrap();
        assert_eq!(lv1, lv2);
    }

    #[test]
    fn test_ne() {
        let buf1 = 0_u64;
        let lv1 = LayoutVerified::<_, u64>::new(buf1.as_bytes()).unwrap();
        let buf2 = 1_u64;
        let lv2 = LayoutVerified::<_, u64>::new(buf2.as_bytes()).unwrap();
        assert_ne!(lv1, lv2);
    }

    #[test]
    fn test_ord() {
        let buf1 = 0_u64;
        let lv1 = LayoutVerified::<_, u64>::new(buf1.as_bytes()).unwrap();
        let buf2 = 1_u64;
        let lv2 = LayoutVerified::<_, u64>::new(buf2.as_bytes()).unwrap();
        assert!(lv1 < lv2);
    }

    #[test]
    fn test_new_zeroed() {
        assert_eq!(u64::new_zeroed(), 0);
        // This test exists in order to exercise unsafe code, especially when
        // running under Miri.
        #[allow(clippy::unit_cmp)]
        {
            assert_eq!(<()>::new_zeroed(), ());
        }
    }

    #[test]
    fn test_transparent_packed_generic_struct() {
        #[derive(AsBytes, FromBytes, Unaligned)]
        #[repr(transparent)]
        struct Foo<T> {
            _t: T,
            _phantom: PhantomData<()>,
        }

        assert_impl_all!(Foo<u32>: FromBytes);
        assert_impl_all!(Foo<f32>: AsBytes);
        assert_impl_all!(Foo<u8>: Unaligned);

        #[derive(AsBytes, FromBytes, Unaligned)]
        #[repr(packed)]
        struct Bar<T, U> {
            _t: T,
            _u: U,
        }

        assert_impl_all!(Bar<u8, AU64>: FromBytes, AsBytes, Unaligned);
    }

    #[test]
    fn test_impls() {
        // Asserts that `$ty` implements any `$trait` and doesn't implement any
        // `!$trait`. Note that all `$trait`s must come before any `!$trait`s.
        macro_rules! assert_impls {
            ($ty:ty: $trait:ident) => {
                #[allow(dead_code)]
                const _: () = { static_assertions::assert_impl_all!($ty: $trait); };
            };
            ($ty:ty: !$trait:ident) => {
                #[allow(dead_code)]
                const _: () = { static_assertions::assert_not_impl_any!($ty: $trait); };
            };
            ($ty:ty: $($trait:ident),* $(,)? $(!$negative_trait:ident),*) => {
                $(
                    assert_impls!($ty: $trait);
                )*

                $(
                    assert_impls!($ty: !$negative_trait);
                )*
            };
        }

        assert_impls!((): FromBytes, AsBytes, Unaligned);
        assert_impls!(u8: FromBytes, AsBytes, Unaligned);
        assert_impls!(i8: FromBytes, AsBytes, Unaligned);
        assert_impls!(u16: FromBytes, AsBytes, !Unaligned);
        assert_impls!(i16: FromBytes, AsBytes, !Unaligned);
        assert_impls!(u32: FromBytes, AsBytes, !Unaligned);
        assert_impls!(i32: FromBytes, AsBytes, !Unaligned);
        assert_impls!(u64: FromBytes, AsBytes, !Unaligned);
        assert_impls!(i64: FromBytes, AsBytes, !Unaligned);
        assert_impls!(u128: FromBytes, AsBytes, !Unaligned);
        assert_impls!(i128: FromBytes, AsBytes, !Unaligned);
        assert_impls!(usize: FromBytes, AsBytes, !Unaligned);
        assert_impls!(isize: FromBytes, AsBytes, !Unaligned);
        assert_impls!(f32: FromBytes, AsBytes, !Unaligned);
        assert_impls!(f64: FromBytes, AsBytes, !Unaligned);

        assert_impls!(bool: AsBytes, Unaligned, !FromBytes);
        assert_impls!(char: AsBytes, !FromBytes, !Unaligned);
        assert_impls!(str: AsBytes, Unaligned, !FromBytes);

        assert_impls!(NonZeroU8: AsBytes, Unaligned, !FromBytes);
        assert_impls!(NonZeroI8: AsBytes, Unaligned, !FromBytes);
        assert_impls!(NonZeroU16: AsBytes, !FromBytes, !Unaligned);
        assert_impls!(NonZeroI16: AsBytes, !FromBytes, !Unaligned);
        assert_impls!(NonZeroU32: AsBytes, !FromBytes, !Unaligned);
        assert_impls!(NonZeroI32: AsBytes, !FromBytes, !Unaligned);
        assert_impls!(NonZeroU64: AsBytes, !FromBytes, !Unaligned);
        assert_impls!(NonZeroI64: AsBytes, !FromBytes, !Unaligned);
        assert_impls!(NonZeroU128: AsBytes, !FromBytes, !Unaligned);
        assert_impls!(NonZeroI128: AsBytes, !FromBytes, !Unaligned);
        assert_impls!(NonZeroUsize: AsBytes, !FromBytes, !Unaligned);
        assert_impls!(NonZeroIsize: AsBytes, !FromBytes, !Unaligned);

        assert_impls!(Option<NonZeroU8>: FromBytes, AsBytes, Unaligned);
        assert_impls!(Option<NonZeroI8>: FromBytes, AsBytes, Unaligned);
        assert_impls!(Option<NonZeroU16>: FromBytes, AsBytes, !Unaligned);
        assert_impls!(Option<NonZeroI16>: FromBytes, AsBytes, !Unaligned);
        assert_impls!(Option<NonZeroU32>: FromBytes, AsBytes, !Unaligned);
        assert_impls!(Option<NonZeroI32>: FromBytes, AsBytes, !Unaligned);
        assert_impls!(Option<NonZeroU64>: FromBytes, AsBytes, !Unaligned);
        assert_impls!(Option<NonZeroI64>: FromBytes, AsBytes, !Unaligned);
        assert_impls!(Option<NonZeroU128>: FromBytes, AsBytes, !Unaligned);
        assert_impls!(Option<NonZeroI128>: FromBytes, AsBytes, !Unaligned);
        assert_impls!(Option<NonZeroUsize>: FromBytes, AsBytes, !Unaligned);
        assert_impls!(Option<NonZeroIsize>: FromBytes, AsBytes, !Unaligned);

        // Implements none of the ZC traits.
        struct NotZerocopy;

        assert_impls!(PhantomData<NotZerocopy>: FromBytes, AsBytes, Unaligned);
        assert_impls!(PhantomData<[u8]>: FromBytes, AsBytes, Unaligned);

        assert_impls!(ManuallyDrop<u8>: FromBytes, AsBytes, Unaligned);
        assert_impls!(ManuallyDrop<[u8]>: FromBytes, AsBytes, Unaligned);
        assert_impls!(ManuallyDrop<NotZerocopy>: !FromBytes, !AsBytes, !Unaligned);
        assert_impls!(ManuallyDrop<[NotZerocopy]>: !FromBytes, !AsBytes, !Unaligned);

        assert_impls!(MaybeUninit<u8>: FromBytes, Unaligned, !AsBytes);
        assert_impls!(MaybeUninit<NotZerocopy>: !FromBytes, !AsBytes, !Unaligned);

        assert_impls!(Wrapping<u8>: FromBytes, AsBytes, Unaligned);
        assert_impls!(Wrapping<NotZerocopy>: !FromBytes, !AsBytes, !Unaligned);

        assert_impls!(Unalign<u8>: FromBytes, AsBytes, Unaligned);
        assert_impls!(Unalign<NotZerocopy>: Unaligned, !FromBytes, !AsBytes);

        assert_impls!([u8]: FromBytes, AsBytes, Unaligned);
        assert_impls!([NotZerocopy]: !FromBytes, !AsBytes, !Unaligned);
        assert_impls!([u8; 0]: FromBytes, AsBytes, Unaligned);
        assert_impls!([NotZerocopy; 0]: !FromBytes, !AsBytes, !Unaligned);
        assert_impls!([u8; 1]: FromBytes, AsBytes, Unaligned);
        assert_impls!([NotZerocopy; 1]: !FromBytes, !AsBytes, !Unaligned);
    }
}