zerocopy/
wrappers.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
// Copyright 2023 The Fuchsia Authors
//
// Licensed under a BSD-style license <LICENSE-BSD>, Apache License, Version 2.0
// <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT
// license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option.
// This file may not be copied, modified, or distributed except according to
// those terms.

use core::{fmt, hash::Hash};

use super::*;

/// A type with no alignment requirement.
///
/// An `Unalign` wraps a `T`, removing any alignment requirement. `Unalign<T>`
/// has the same size and bit validity as `T`, but not necessarily the same
/// alignment [or ABI]. This is useful if a type with an alignment requirement
/// needs to be read from a chunk of memory which provides no alignment
/// guarantees.
///
/// Since `Unalign` has no alignment requirement, the inner `T` may not be
/// properly aligned in memory. There are five ways to access the inner `T`:
/// - by value, using [`get`] or [`into_inner`]
/// - by reference inside of a callback, using [`update`]
/// - fallibly by reference, using [`try_deref`] or [`try_deref_mut`]; these can
///   fail if the `Unalign` does not satisfy `T`'s alignment requirement at
///   runtime
/// - unsafely by reference, using [`deref_unchecked`] or
///   [`deref_mut_unchecked`]; it is the caller's responsibility to ensure that
///   the `Unalign` satisfies `T`'s alignment requirement
/// - (where `T: Unaligned`) infallibly by reference, using [`Deref::deref`] or
///   [`DerefMut::deref_mut`]
///
/// [or ABI]: https://github.com/google/zerocopy/issues/164
/// [`get`]: Unalign::get
/// [`into_inner`]: Unalign::into_inner
/// [`update`]: Unalign::update
/// [`try_deref`]: Unalign::try_deref
/// [`try_deref_mut`]: Unalign::try_deref_mut
/// [`deref_unchecked`]: Unalign::deref_unchecked
/// [`deref_mut_unchecked`]: Unalign::deref_mut_unchecked
///
/// # Example
///
/// In this example, we need `EthernetFrame` to have no alignment requirement -
/// and thus implement [`Unaligned`]. `EtherType` is `#[repr(u16)]` and so
/// cannot implement `Unaligned`. We use `Unalign` to relax `EtherType`'s
/// alignment requirement so that `EthernetFrame` has no alignment requirement
/// and can implement `Unaligned`.
///
/// ```rust
/// use zerocopy::*;
/// # use zerocopy_derive::*;
/// # #[derive(FromBytes, KnownLayout, Immutable, Unaligned)] #[repr(C)] struct Mac([u8; 6]);
///
/// # #[derive(PartialEq, Copy, Clone, Debug)]
/// #[derive(TryFromBytes, KnownLayout, Immutable)]
/// #[repr(u16)]
/// enum EtherType {
///     Ipv4 = 0x0800u16.to_be(),
///     Arp = 0x0806u16.to_be(),
///     Ipv6 = 0x86DDu16.to_be(),
///     # /*
///     ...
///     # */
/// }
///
/// #[derive(TryFromBytes, KnownLayout, Immutable, Unaligned)]
/// #[repr(C)]
/// struct EthernetFrame {
///     src: Mac,
///     dst: Mac,
///     ethertype: Unalign<EtherType>,
///     payload: [u8],
/// }
///
/// let bytes = &[
///     # 0, 1, 2, 3, 4, 5,
///     # 6, 7, 8, 9, 10, 11,
///     # /*
///     ...
///     # */
///     0x86, 0xDD,            // EtherType
///     0xDE, 0xAD, 0xBE, 0xEF // Payload
/// ][..];
///
/// // PANICS: Guaranteed not to panic because `bytes` is of the right
/// // length, has the right contents, and `EthernetFrame` has no
/// // alignment requirement.
/// let packet = EthernetFrame::try_ref_from_bytes(&bytes).unwrap();
///
/// assert_eq!(packet.ethertype.get(), EtherType::Ipv6);
/// assert_eq!(packet.payload, [0xDE, 0xAD, 0xBE, 0xEF]);
/// ```
///
/// # Safety
///
/// `Unalign<T>` is guaranteed to have the same size and bit validity as `T`,
/// and to have [`UnsafeCell`]s covering the same byte ranges as `T`.
/// `Unalign<T>` is guaranteed to have alignment 1.
// NOTE: This type is sound to use with types that need to be dropped. The
// reason is that the compiler-generated drop code automatically moves all
// values to aligned memory slots before dropping them in-place. This is not
// well-documented, but it's hinted at in places like [1] and [2]. However, this
// also means that `T` must be `Sized`; unless something changes, we can never
// support unsized `T`. [3]
//
// [1] https://github.com/rust-lang/rust/issues/54148#issuecomment-420529646
// [2] https://github.com/google/zerocopy/pull/126#discussion_r1018512323
// [3] https://github.com/google/zerocopy/issues/209
#[allow(missing_debug_implementations)]
#[derive(Default, Copy)]
#[cfg_attr(any(feature = "derive", test), derive(Immutable, FromBytes, IntoBytes, Unaligned))]
#[repr(C, packed)]
pub struct Unalign<T>(T);

// We do not use `derive(KnownLayout)` on `Unalign`, because the derive is not
// smart enough to realize that `Unalign<T>` is always sized and thus emits a
// `KnownLayout` impl bounded on `T: KnownLayout.` This is overly restrictive.
impl_known_layout!(T => Unalign<T>);

safety_comment! {
    /// SAFETY:
    /// - `Unalign<T>` promises to have alignment 1, and so we don't require
    ///   that `T: Unaligned`.
    /// - `Unalign<T>` has the same bit validity as `T`, and so it is
    ///   `FromZeros`, `FromBytes`, or `IntoBytes` exactly when `T` is as well.
    /// - `Immutable`: `Unalign<T>` has the same fields as `T`, so it contains
    ///   `UnsafeCell`s exactly when `T` does.
    /// - `TryFromBytes`: `Unalign<T>` has the same the same bit validity as
    ///   `T`, so `T::is_bit_valid` is a sound implementation of `is_bit_valid`.
    ///   Furthermore:
    ///   - Since `T` and `Unalign<T>` have the same layout, they have the same
    ///     size (as required by `unsafe_impl!`).
    ///   - Since `T` and `Unalign<T>` have the same fields, they have
    ///     `UnsafeCell`s at the same byte ranges (as required by
    ///     `unsafe_impl!`).
    impl_or_verify!(T => Unaligned for Unalign<T>);
    impl_or_verify!(T: Immutable => Immutable for Unalign<T>);
    impl_or_verify!(
        T: TryFromBytes => TryFromBytes for Unalign<T>;
        |c: Maybe<T>| T::is_bit_valid(c)
    );
    impl_or_verify!(T: FromZeros => FromZeros for Unalign<T>);
    impl_or_verify!(T: FromBytes => FromBytes for Unalign<T>);
    impl_or_verify!(T: IntoBytes => IntoBytes for Unalign<T>);
}

// Note that `Unalign: Clone` only if `T: Copy`. Since the inner `T` may not be
// aligned, there's no way to safely call `T::clone`, and so a `T: Clone` bound
// is not sufficient to implement `Clone` for `Unalign`.
impl<T: Copy> Clone for Unalign<T> {
    #[inline(always)]
    fn clone(&self) -> Unalign<T> {
        *self
    }
}

impl<T> Unalign<T> {
    /// Constructs a new `Unalign`.
    #[inline(always)]
    pub const fn new(val: T) -> Unalign<T> {
        Unalign(val)
    }

    /// Consumes `self`, returning the inner `T`.
    #[inline(always)]
    pub const fn into_inner(self) -> T {
        // SAFETY: Since `Unalign` is `#[repr(C, packed)]`, it has the same size
        // and bit validity as `T`.
        //
        // We do this instead of just destructuring in order to prevent
        // `Unalign`'s `Drop::drop` from being run, since dropping is not
        // supported in `const fn`s.
        //
        // TODO(https://github.com/rust-lang/rust/issues/73255): Destructure
        // instead of using unsafe.
        unsafe { crate::util::transmute_unchecked(self) }
    }

    /// Attempts to return a reference to the wrapped `T`, failing if `self` is
    /// not properly aligned.
    ///
    /// If `self` does not satisfy `align_of::<T>()`, then `try_deref` returns
    /// `Err`.
    ///
    /// If `T: Unaligned`, then `Unalign<T>` implements [`Deref`], and callers
    /// may prefer [`Deref::deref`], which is infallible.
    #[inline(always)]
    pub fn try_deref(&self) -> Result<&T, AlignmentError<&Self, T>> {
        let inner = Ptr::from_ref(self).transparent_wrapper_into_inner();
        match inner.bikeshed_try_into_aligned() {
            Ok(aligned) => Ok(aligned.as_ref()),
            Err(err) => Err(err.map_src(|src| src.into_unalign().as_ref())),
        }
    }

    /// Attempts to return a mutable reference to the wrapped `T`, failing if
    /// `self` is not properly aligned.
    ///
    /// If `self` does not satisfy `align_of::<T>()`, then `try_deref` returns
    /// `Err`.
    ///
    /// If `T: Unaligned`, then `Unalign<T>` implements [`DerefMut`], and
    /// callers may prefer [`DerefMut::deref_mut`], which is infallible.
    #[inline(always)]
    pub fn try_deref_mut(&mut self) -> Result<&mut T, AlignmentError<&mut Self, T>> {
        let inner = Ptr::from_mut(self).transparent_wrapper_into_inner();
        match inner.bikeshed_try_into_aligned() {
            Ok(aligned) => Ok(aligned.as_mut()),
            Err(err) => Err(err.map_src(|src| src.into_unalign().as_mut())),
        }
    }

    /// Returns a reference to the wrapped `T` without checking alignment.
    ///
    /// If `T: Unaligned`, then `Unalign<T>` implements[ `Deref`], and callers
    /// may prefer [`Deref::deref`], which is safe.
    ///
    /// # Safety
    ///
    /// The caller must guarantee that `self` satisfies `align_of::<T>()`.
    #[inline(always)]
    pub const unsafe fn deref_unchecked(&self) -> &T {
        // SAFETY: `Unalign<T>` is `repr(transparent)`, so there is a valid `T`
        // at the same memory location as `self`. It has no alignment guarantee,
        // but the caller has promised that `self` is properly aligned, so we
        // know that it is sound to create a reference to `T` at this memory
        // location.
        //
        // We use `mem::transmute` instead of `&*self.get_ptr()` because
        // dereferencing pointers is not stable in `const` on our current MSRV
        // (1.56 as of this writing).
        unsafe { mem::transmute(self) }
    }

    /// Returns a mutable reference to the wrapped `T` without checking
    /// alignment.
    ///
    /// If `T: Unaligned`, then `Unalign<T>` implements[ `DerefMut`], and
    /// callers may prefer [`DerefMut::deref_mut`], which is safe.
    ///
    /// # Safety
    ///
    /// The caller must guarantee that `self` satisfies `align_of::<T>()`.
    #[inline(always)]
    pub unsafe fn deref_mut_unchecked(&mut self) -> &mut T {
        // SAFETY: `self.get_mut_ptr()` returns a raw pointer to a valid `T` at
        // the same memory location as `self`. It has no alignment guarantee,
        // but the caller has promised that `self` is properly aligned, so we
        // know that the pointer itself is aligned, and thus that it is sound to
        // create a reference to a `T` at this memory location.
        unsafe { &mut *self.get_mut_ptr() }
    }

    /// Gets an unaligned raw pointer to the inner `T`.
    ///
    /// # Safety
    ///
    /// The returned raw pointer is not necessarily aligned to
    /// `align_of::<T>()`. Most functions which operate on raw pointers require
    /// those pointers to be aligned, so calling those functions with the result
    /// of `get_ptr` will result in undefined behavior if alignment is not
    /// guaranteed using some out-of-band mechanism. In general, the only
    /// functions which are safe to call with this pointer are those which are
    /// explicitly documented as being sound to use with an unaligned pointer,
    /// such as [`read_unaligned`].
    ///
    /// Even if the caller is permitted to mutate `self` (e.g. they have
    /// ownership or a mutable borrow), it is not guaranteed to be sound to
    /// write through the returned pointer. If writing is required, prefer
    /// [`get_mut_ptr`] instead.
    ///
    /// [`read_unaligned`]: core::ptr::read_unaligned
    /// [`get_mut_ptr`]: Unalign::get_mut_ptr
    #[inline(always)]
    pub const fn get_ptr(&self) -> *const T {
        ptr::addr_of!(self.0)
    }

    /// Gets an unaligned mutable raw pointer to the inner `T`.
    ///
    /// # Safety
    ///
    /// The returned raw pointer is not necessarily aligned to
    /// `align_of::<T>()`. Most functions which operate on raw pointers require
    /// those pointers to be aligned, so calling those functions with the result
    /// of `get_ptr` will result in undefined behavior if alignment is not
    /// guaranteed using some out-of-band mechanism. In general, the only
    /// functions which are safe to call with this pointer are those which are
    /// explicitly documented as being sound to use with an unaligned pointer,
    /// such as [`read_unaligned`].
    ///
    /// [`read_unaligned`]: core::ptr::read_unaligned
    // TODO(https://github.com/rust-lang/rust/issues/57349): Make this `const`.
    #[inline(always)]
    pub fn get_mut_ptr(&mut self) -> *mut T {
        ptr::addr_of_mut!(self.0)
    }

    /// Sets the inner `T`, dropping the previous value.
    // TODO(https://github.com/rust-lang/rust/issues/57349): Make this `const`.
    #[inline(always)]
    pub fn set(&mut self, t: T) {
        *self = Unalign::new(t);
    }

    /// Updates the inner `T` by calling a function on it.
    ///
    /// If [`T: Unaligned`], then `Unalign<T>` implements [`DerefMut`], and that
    /// impl should be preferred over this method when performing updates, as it
    /// will usually be faster and more ergonomic.
    ///
    /// For large types, this method may be expensive, as it requires copying
    /// `2 * size_of::<T>()` bytes. \[1\]
    ///
    /// \[1\] Since the inner `T` may not be aligned, it would not be sound to
    /// invoke `f` on it directly. Instead, `update` moves it into a
    /// properly-aligned location in the local stack frame, calls `f` on it, and
    /// then moves it back to its original location in `self`.
    ///
    /// [`T: Unaligned`]: Unaligned
    #[inline]
    pub fn update<O, F: FnOnce(&mut T) -> O>(&mut self, f: F) -> O {
        if mem::align_of::<T>() == 1 {
            // While we advise callers to use `DerefMut` when `T: Unaligned`,
            // not all callers will be able to guarantee `T: Unaligned` in all
            // cases. In particular, callers who are themselves providing an API
            // which is generic over `T` may sometimes be called by *their*
            // callers with `T` such that `align_of::<T>() == 1`, but cannot
            // guarantee this in the general case. Thus, this optimization may
            // sometimes be helpful.

            // SAFETY: Since `T`'s alignment is 1, `self` satisfies its
            // alignment by definition.
            let t = unsafe { self.deref_mut_unchecked() };
            return f(t);
        }

        // On drop, this moves `copy` out of itself and uses `ptr::write` to
        // overwrite `slf`.
        struct WriteBackOnDrop<T> {
            copy: ManuallyDrop<T>,
            slf: *mut Unalign<T>,
        }

        impl<T> Drop for WriteBackOnDrop<T> {
            fn drop(&mut self) {
                // SAFETY: We never use `copy` again as required by
                // `ManuallyDrop::take`.
                let copy = unsafe { ManuallyDrop::take(&mut self.copy) };
                // SAFETY: `slf` is the raw pointer value of `self`. We know it
                // is valid for writes and properly aligned because `self` is a
                // mutable reference, which guarantees both of these properties.
                unsafe { ptr::write(self.slf, Unalign::new(copy)) };
            }
        }

        // SAFETY: We know that `self` is valid for reads, properly aligned, and
        // points to an initialized `Unalign<T>` because it is a mutable
        // reference, which guarantees all of these properties.
        //
        // Since `T: !Copy`, it would be unsound in the general case to allow
        // both the original `Unalign<T>` and the copy to be used by safe code.
        // We guarantee that the copy is used to overwrite the original in the
        // `Drop::drop` impl of `WriteBackOnDrop`. So long as this `drop` is
        // called before any other safe code executes, soundness is upheld.
        // While this method can terminate in two ways (by returning normally or
        // by unwinding due to a panic in `f`), in both cases, `write_back` is
        // dropped - and its `drop` called - before any other safe code can
        // execute.
        let copy = unsafe { ptr::read(self) }.into_inner();
        let mut write_back = WriteBackOnDrop { copy: ManuallyDrop::new(copy), slf: self };

        let ret = f(&mut write_back.copy);

        drop(write_back);
        ret
    }
}

impl<T: Copy> Unalign<T> {
    /// Gets a copy of the inner `T`.
    // TODO(https://github.com/rust-lang/rust/issues/57349): Make this `const`.
    #[inline(always)]
    pub fn get(&self) -> T {
        let Unalign(val) = *self;
        val
    }
}

impl<T: Unaligned> Deref for Unalign<T> {
    type Target = T;

    #[inline(always)]
    fn deref(&self) -> &T {
        Ptr::from_ref(self).transparent_wrapper_into_inner().bikeshed_recall_aligned().as_ref()
    }
}

impl<T: Unaligned> DerefMut for Unalign<T> {
    #[inline(always)]
    fn deref_mut(&mut self) -> &mut T {
        Ptr::from_mut(self).transparent_wrapper_into_inner().bikeshed_recall_aligned().as_mut()
    }
}

impl<T: Unaligned + PartialOrd> PartialOrd<Unalign<T>> for Unalign<T> {
    #[inline(always)]
    fn partial_cmp(&self, other: &Unalign<T>) -> Option<Ordering> {
        PartialOrd::partial_cmp(self.deref(), other.deref())
    }
}

impl<T: Unaligned + Ord> Ord for Unalign<T> {
    #[inline(always)]
    fn cmp(&self, other: &Unalign<T>) -> Ordering {
        Ord::cmp(self.deref(), other.deref())
    }
}

impl<T: Unaligned + PartialEq> PartialEq<Unalign<T>> for Unalign<T> {
    #[inline(always)]
    fn eq(&self, other: &Unalign<T>) -> bool {
        PartialEq::eq(self.deref(), other.deref())
    }
}

impl<T: Unaligned + Eq> Eq for Unalign<T> {}

impl<T: Unaligned + Hash> Hash for Unalign<T> {
    #[inline(always)]
    fn hash<H>(&self, state: &mut H)
    where
        H: Hasher,
    {
        self.deref().hash(state);
    }
}

impl<T: Unaligned + Debug> Debug for Unalign<T> {
    #[inline(always)]
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
        Debug::fmt(self.deref(), f)
    }
}

impl<T: Unaligned + Display> Display for Unalign<T> {
    #[inline(always)]
    fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
        Display::fmt(self.deref(), f)
    }
}

/// A wrapper type to construct uninitialized instances of `T`.
///
/// `MaybeUninit` is identical to the [standard library
/// `MaybeUninit`][core-maybe-uninit] type except that it supports unsized
/// types.
///
/// # Layout
///
/// The same layout guarantees and caveats apply to `MaybeUninit<T>` as apply to
/// the [standard library `MaybeUninit`][core-maybe-uninit] with one exception:
/// for `T: !Sized`, there is no single value for `T`'s size. Instead, for such
/// types, the following are guaranteed:
/// - Every [valid size][valid-size] for `T` is a valid size for
///   `MaybeUninit<T>` and vice versa
/// - Given `t: *const T` and `m: *const MaybeUninit<T>` with identical fat
///   pointer metadata, `t` and `m` address the same number of bytes (and
///   likewise for `*mut`)
///
/// [core-maybe-uninit]: core::mem::MaybeUninit
/// [valid-size]: crate::KnownLayout#what-is-a-valid-size
#[repr(transparent)]
#[doc(hidden)]
pub struct MaybeUninit<T: ?Sized + KnownLayout>(
    // SAFETY: `MaybeUninit<T>` has the same size as `T`, because (by invariant
    // on `T::MaybeUninit`) `T::MaybeUninit` has `T::LAYOUT` identical to `T`,
    // and because (invariant on `T::LAYOUT`) we can trust that `LAYOUT`
    // accurately reflects the layout of `T`. By invariant on `T::MaybeUninit`,
    // it admits uninitialized bytes in all positions. Because `MabyeUninit` is
    // marked `repr(transparent)`, these properties additionally hold true for
    // `Self`.
    T::MaybeUninit,
);

#[doc(hidden)]
impl<T: ?Sized + KnownLayout> MaybeUninit<T> {
    /// Constructs a `MaybeUninit<T>` initialized with the given value.
    #[inline(always)]
    pub fn new(val: T) -> Self
    where
        T: Sized,
        Self: Sized,
    {
        // SAFETY: It is valid to transmute `val` to `MaybeUninit<T>` because it
        // is both valid to transmute `val` to `T::MaybeUninit`, and it is valid
        // to transmute from `T::MaybeUninit` to `MaybeUninit<T>`.
        //
        // First, it is valid to transmute `val` to `T::MaybeUninit` because, by
        // invariant on `T::MaybeUninit`:
        // - For `T: Sized`, `T` and `T::MaybeUninit` have the same size.
        // - All byte sequences of the correct size are valid values of
        //   `T::MaybeUninit`.
        //
        // Second, it is additionally valid to transmute from `T::MaybeUninit`
        // to `MaybeUninit<T>`, because `MaybeUninit<T>` is a
        // `repr(transparent)` wrapper around `T::MaybeUninit`.
        //
        // These two transmutes are collapsed into one so we don't need to add a
        // `T::MaybeUninit: Sized` bound to this function's `where` clause.
        unsafe { crate::util::transmute_unchecked(val) }
    }

    /// Constructs an uninitialized `MaybeUninit<T>`.
    #[must_use]
    #[inline(always)]
    pub fn uninit() -> Self
    where
        T: Sized,
        Self: Sized,
    {
        let uninit = CoreMaybeUninit::<T>::uninit();
        // SAFETY: It is valid to transmute from `CoreMaybeUninit<T>` to
        // `MaybeUninit<T>` since they both admit uninitialized bytes in all
        // positions, and they have the same size (i.e., that of `T`).
        //
        // `MaybeUninit<T>` has the same size as `T`, because (by invariant on
        // `T::MaybeUninit`) `T::MaybeUninit` has `T::LAYOUT` identical to `T`,
        // and because (invariant on `T::LAYOUT`) we can trust that `LAYOUT`
        // accurately reflects the layout of `T`.
        //
        // `CoreMaybeUninit<T>` has the same size as `T` [1] and admits
        // uninitialized bytes in all positions.
        //
        // [1] Per https://doc.rust-lang.org/1.81.0/std/mem/union.MaybeUninit.html#layout-1:
        //
        //   `MaybeUninit<T>` is guaranteed to have the same size, alignment,
        //   and ABI as `T`
        unsafe { crate::util::transmute_unchecked(uninit) }
    }

    /// Creates a `Box<MaybeUninit<T>>`.
    ///
    /// This function is useful for allocating large, uninit values on the heap
    /// without ever creating a temporary instance of `Self` on the stack.
    ///
    /// # Errors
    ///
    /// Returns an error on allocation failure. Allocation failure is guaranteed
    /// never to cause a panic or an abort.
    #[cfg(feature = "alloc")]
    #[inline]
    pub fn new_boxed_uninit(meta: T::PointerMetadata) -> Result<Box<Self>, AllocError> {
        // SAFETY: `alloc::alloc::alloc_zeroed` is a valid argument of
        // `new_box`. The referent of the pointer returned by `alloc` (and,
        // consequently, the `Box` derived from it) is a valid instance of
        // `Self`, because `Self` is `MaybeUninit` and thus admits arbitrary
        // (un)initialized bytes.
        unsafe { crate::util::new_box(meta, alloc::alloc::alloc) }
    }

    /// Extracts the value from the `MaybeUninit<T>` container.
    ///
    /// # Safety
    ///
    /// The caller must ensure that `self` is in an bit-valid state. Depending
    /// on subsequent use, it may also need to be in a library-valid state.
    #[inline(always)]
    pub unsafe fn assume_init(self) -> T
    where
        T: Sized,
        Self: Sized,
    {
        // SAFETY: The caller guarantees that `self` is in an bit-valid state.
        unsafe { crate::util::transmute_unchecked(self) }
    }
}

impl<T: ?Sized + KnownLayout> fmt::Debug for MaybeUninit<T> {
    #[inline]
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        f.pad(core::any::type_name::<Self>())
    }
}

#[cfg(test)]
mod tests {
    use core::panic::AssertUnwindSafe;

    use super::*;
    use crate::util::testutil::*;

    #[test]
    fn test_unalign() {
        // Test methods that don't depend on alignment.
        let mut u = Unalign::new(AU64(123));
        assert_eq!(u.get(), AU64(123));
        assert_eq!(u.into_inner(), AU64(123));
        assert_eq!(u.get_ptr(), <*const _>::cast::<AU64>(&u));
        assert_eq!(u.get_mut_ptr(), <*mut _>::cast::<AU64>(&mut u));
        u.set(AU64(321));
        assert_eq!(u.get(), AU64(321));

        // Test methods that depend on alignment (when alignment is satisfied).
        let mut u: Align<_, AU64> = Align::new(Unalign::new(AU64(123)));
        assert_eq!(u.t.try_deref().unwrap(), &AU64(123));
        assert_eq!(u.t.try_deref_mut().unwrap(), &mut AU64(123));
        // SAFETY: The `Align<_, AU64>` guarantees proper alignment.
        assert_eq!(unsafe { u.t.deref_unchecked() }, &AU64(123));
        // SAFETY: The `Align<_, AU64>` guarantees proper alignment.
        assert_eq!(unsafe { u.t.deref_mut_unchecked() }, &mut AU64(123));
        *u.t.try_deref_mut().unwrap() = AU64(321);
        assert_eq!(u.t.get(), AU64(321));

        // Test methods that depend on alignment (when alignment is not
        // satisfied).
        let mut u: ForceUnalign<_, AU64> = ForceUnalign::new(Unalign::new(AU64(123)));
        assert!(matches!(u.t.try_deref(), Err(AlignmentError { .. })));
        assert!(matches!(u.t.try_deref_mut(), Err(AlignmentError { .. })));

        // Test methods that depend on `T: Unaligned`.
        let mut u = Unalign::new(123u8);
        assert_eq!(u.try_deref(), Ok(&123));
        assert_eq!(u.try_deref_mut(), Ok(&mut 123));
        assert_eq!(u.deref(), &123);
        assert_eq!(u.deref_mut(), &mut 123);
        *u = 21;
        assert_eq!(u.get(), 21);

        // Test that some `Unalign` functions and methods are `const`.
        const _UNALIGN: Unalign<u64> = Unalign::new(0);
        const _UNALIGN_PTR: *const u64 = _UNALIGN.get_ptr();
        const _U64: u64 = _UNALIGN.into_inner();
        // Make sure all code is considered "used".
        //
        // TODO(https://github.com/rust-lang/rust/issues/104084): Remove this
        // attribute.
        #[allow(dead_code)]
        const _: () = {
            let x: Align<_, AU64> = Align::new(Unalign::new(AU64(123)));
            // Make sure that `deref_unchecked` is `const`.
            //
            // SAFETY: The `Align<_, AU64>` guarantees proper alignment.
            let au64 = unsafe { x.t.deref_unchecked() };
            match au64 {
                AU64(123) => {}
                _ => const_unreachable!(),
            }
        };
    }

    #[test]
    fn test_unalign_update() {
        let mut u = Unalign::new(AU64(123));
        u.update(|a| a.0 += 1);
        assert_eq!(u.get(), AU64(124));

        // Test that, even if the callback panics, the original is still
        // correctly overwritten. Use a `Box` so that Miri is more likely to
        // catch any unsoundness (which would likely result in two `Box`es for
        // the same heap object, which is the sort of thing that Miri would
        // probably catch).
        let mut u = Unalign::new(Box::new(AU64(123)));
        let res = std::panic::catch_unwind(AssertUnwindSafe(|| {
            u.update(|a| {
                a.0 += 1;
                panic!();
            })
        }));
        assert!(res.is_err());
        assert_eq!(u.into_inner(), Box::new(AU64(124)));

        // Test the align_of::<T>() == 1 optimization.
        let mut u = Unalign::new([0u8, 1]);
        u.update(|a| a[0] += 1);
        assert_eq!(u.get(), [1u8, 1]);
    }

    #[test]
    fn test_unalign_copy_clone() {
        // Test that `Copy` and `Clone` do not cause soundness issues. This test
        // is mainly meant to exercise UB that would be caught by Miri.

        // `u.t` is definitely not validly-aligned for `AU64`'s alignment of 8.
        let u = ForceUnalign::<_, AU64>::new(Unalign::new(AU64(123)));
        #[allow(clippy::clone_on_copy)]
        let v = u.t.clone();
        let w = u.t;
        assert_eq!(u.t.get(), v.get());
        assert_eq!(u.t.get(), w.get());
        assert_eq!(v.get(), w.get());
    }

    #[test]
    fn test_unalign_trait_impls() {
        let zero = Unalign::new(0u8);
        let one = Unalign::new(1u8);

        assert!(zero < one);
        assert_eq!(PartialOrd::partial_cmp(&zero, &one), Some(Ordering::Less));
        assert_eq!(Ord::cmp(&zero, &one), Ordering::Less);

        assert_ne!(zero, one);
        assert_eq!(zero, zero);
        assert!(!PartialEq::eq(&zero, &one));
        assert!(PartialEq::eq(&zero, &zero));

        fn hash<T: Hash>(t: &T) -> u64 {
            let mut h = std::collections::hash_map::DefaultHasher::new();
            t.hash(&mut h);
            h.finish()
        }

        assert_eq!(hash(&zero), hash(&0u8));
        assert_eq!(hash(&one), hash(&1u8));

        assert_eq!(format!("{:?}", zero), format!("{:?}", 0u8));
        assert_eq!(format!("{:?}", one), format!("{:?}", 1u8));
        assert_eq!(format!("{}", zero), format!("{}", 0u8));
        assert_eq!(format!("{}", one), format!("{}", 1u8));
    }

    #[test]
    #[allow(clippy::as_conversions)]
    fn test_maybe_uninit() {
        // int
        {
            let input = 42;
            let uninit = MaybeUninit::new(input);
            // SAFETY: `uninit` is in an initialized state
            let output = unsafe { uninit.assume_init() };
            assert_eq!(input, output);
        }

        // thin ref
        {
            let input = 42;
            let uninit = MaybeUninit::new(&input);
            // SAFETY: `uninit` is in an initialized state
            let output = unsafe { uninit.assume_init() };
            assert_eq!(&input as *const _, output as *const _);
            assert_eq!(input, *output);
        }

        // wide ref
        {
            let input = [1, 2, 3, 4];
            let uninit = MaybeUninit::new(&input[..]);
            // SAFETY: `uninit` is in an initialized state
            let output = unsafe { uninit.assume_init() };
            assert_eq!(&input[..] as *const _, output as *const _);
            assert_eq!(input, *output);
        }
    }
}