zerocopy/wrappers.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757
// Copyright 2023 The Fuchsia Authors
//
// Licensed under a BSD-style license <LICENSE-BSD>, Apache License, Version 2.0
// <LICENSE-APACHE or https://www.apache.org/licenses/LICENSE-2.0>, or the MIT
// license <LICENSE-MIT or https://opensource.org/licenses/MIT>, at your option.
// This file may not be copied, modified, or distributed except according to
// those terms.
use core::{fmt, hash::Hash};
use super::*;
/// A type with no alignment requirement.
///
/// An `Unalign` wraps a `T`, removing any alignment requirement. `Unalign<T>`
/// has the same size and bit validity as `T`, but not necessarily the same
/// alignment [or ABI]. This is useful if a type with an alignment requirement
/// needs to be read from a chunk of memory which provides no alignment
/// guarantees.
///
/// Since `Unalign` has no alignment requirement, the inner `T` may not be
/// properly aligned in memory. There are five ways to access the inner `T`:
/// - by value, using [`get`] or [`into_inner`]
/// - by reference inside of a callback, using [`update`]
/// - fallibly by reference, using [`try_deref`] or [`try_deref_mut`]; these can
/// fail if the `Unalign` does not satisfy `T`'s alignment requirement at
/// runtime
/// - unsafely by reference, using [`deref_unchecked`] or
/// [`deref_mut_unchecked`]; it is the caller's responsibility to ensure that
/// the `Unalign` satisfies `T`'s alignment requirement
/// - (where `T: Unaligned`) infallibly by reference, using [`Deref::deref`] or
/// [`DerefMut::deref_mut`]
///
/// [or ABI]: https://github.com/google/zerocopy/issues/164
/// [`get`]: Unalign::get
/// [`into_inner`]: Unalign::into_inner
/// [`update`]: Unalign::update
/// [`try_deref`]: Unalign::try_deref
/// [`try_deref_mut`]: Unalign::try_deref_mut
/// [`deref_unchecked`]: Unalign::deref_unchecked
/// [`deref_mut_unchecked`]: Unalign::deref_mut_unchecked
///
/// # Example
///
/// In this example, we need `EthernetFrame` to have no alignment requirement -
/// and thus implement [`Unaligned`]. `EtherType` is `#[repr(u16)]` and so
/// cannot implement `Unaligned`. We use `Unalign` to relax `EtherType`'s
/// alignment requirement so that `EthernetFrame` has no alignment requirement
/// and can implement `Unaligned`.
///
/// ```rust
/// use zerocopy::*;
/// # use zerocopy_derive::*;
/// # #[derive(FromBytes, KnownLayout, Immutable, Unaligned)] #[repr(C)] struct Mac([u8; 6]);
///
/// # #[derive(PartialEq, Copy, Clone, Debug)]
/// #[derive(TryFromBytes, KnownLayout, Immutable)]
/// #[repr(u16)]
/// enum EtherType {
/// Ipv4 = 0x0800u16.to_be(),
/// Arp = 0x0806u16.to_be(),
/// Ipv6 = 0x86DDu16.to_be(),
/// # /*
/// ...
/// # */
/// }
///
/// #[derive(TryFromBytes, KnownLayout, Immutable, Unaligned)]
/// #[repr(C)]
/// struct EthernetFrame {
/// src: Mac,
/// dst: Mac,
/// ethertype: Unalign<EtherType>,
/// payload: [u8],
/// }
///
/// let bytes = &[
/// # 0, 1, 2, 3, 4, 5,
/// # 6, 7, 8, 9, 10, 11,
/// # /*
/// ...
/// # */
/// 0x86, 0xDD, // EtherType
/// 0xDE, 0xAD, 0xBE, 0xEF // Payload
/// ][..];
///
/// // PANICS: Guaranteed not to panic because `bytes` is of the right
/// // length, has the right contents, and `EthernetFrame` has no
/// // alignment requirement.
/// let packet = EthernetFrame::try_ref_from_bytes(&bytes).unwrap();
///
/// assert_eq!(packet.ethertype.get(), EtherType::Ipv6);
/// assert_eq!(packet.payload, [0xDE, 0xAD, 0xBE, 0xEF]);
/// ```
///
/// # Safety
///
/// `Unalign<T>` is guaranteed to have the same size and bit validity as `T`,
/// and to have [`UnsafeCell`]s covering the same byte ranges as `T`.
/// `Unalign<T>` is guaranteed to have alignment 1.
// NOTE: This type is sound to use with types that need to be dropped. The
// reason is that the compiler-generated drop code automatically moves all
// values to aligned memory slots before dropping them in-place. This is not
// well-documented, but it's hinted at in places like [1] and [2]. However, this
// also means that `T` must be `Sized`; unless something changes, we can never
// support unsized `T`. [3]
//
// [1] https://github.com/rust-lang/rust/issues/54148#issuecomment-420529646
// [2] https://github.com/google/zerocopy/pull/126#discussion_r1018512323
// [3] https://github.com/google/zerocopy/issues/209
#[allow(missing_debug_implementations)]
#[derive(Default, Copy)]
#[cfg_attr(any(feature = "derive", test), derive(Immutable, FromBytes, IntoBytes, Unaligned))]
#[repr(C, packed)]
pub struct Unalign<T>(T);
// We do not use `derive(KnownLayout)` on `Unalign`, because the derive is not
// smart enough to realize that `Unalign<T>` is always sized and thus emits a
// `KnownLayout` impl bounded on `T: KnownLayout.` This is overly restrictive.
impl_known_layout!(T => Unalign<T>);
safety_comment! {
/// SAFETY:
/// - `Unalign<T>` promises to have alignment 1, and so we don't require
/// that `T: Unaligned`.
/// - `Unalign<T>` has the same bit validity as `T`, and so it is
/// `FromZeros`, `FromBytes`, or `IntoBytes` exactly when `T` is as well.
/// - `Immutable`: `Unalign<T>` has the same fields as `T`, so it contains
/// `UnsafeCell`s exactly when `T` does.
/// - `TryFromBytes`: `Unalign<T>` has the same the same bit validity as
/// `T`, so `T::is_bit_valid` is a sound implementation of `is_bit_valid`.
/// Furthermore:
/// - Since `T` and `Unalign<T>` have the same layout, they have the same
/// size (as required by `unsafe_impl!`).
/// - Since `T` and `Unalign<T>` have the same fields, they have
/// `UnsafeCell`s at the same byte ranges (as required by
/// `unsafe_impl!`).
impl_or_verify!(T => Unaligned for Unalign<T>);
impl_or_verify!(T: Immutable => Immutable for Unalign<T>);
impl_or_verify!(
T: TryFromBytes => TryFromBytes for Unalign<T>;
|c: Maybe<T>| T::is_bit_valid(c)
);
impl_or_verify!(T: FromZeros => FromZeros for Unalign<T>);
impl_or_verify!(T: FromBytes => FromBytes for Unalign<T>);
impl_or_verify!(T: IntoBytes => IntoBytes for Unalign<T>);
}
// Note that `Unalign: Clone` only if `T: Copy`. Since the inner `T` may not be
// aligned, there's no way to safely call `T::clone`, and so a `T: Clone` bound
// is not sufficient to implement `Clone` for `Unalign`.
impl<T: Copy> Clone for Unalign<T> {
#[inline(always)]
fn clone(&self) -> Unalign<T> {
*self
}
}
impl<T> Unalign<T> {
/// Constructs a new `Unalign`.
#[inline(always)]
pub const fn new(val: T) -> Unalign<T> {
Unalign(val)
}
/// Consumes `self`, returning the inner `T`.
#[inline(always)]
pub const fn into_inner(self) -> T {
// SAFETY: Since `Unalign` is `#[repr(C, packed)]`, it has the same size
// and bit validity as `T`.
//
// We do this instead of just destructuring in order to prevent
// `Unalign`'s `Drop::drop` from being run, since dropping is not
// supported in `const fn`s.
//
// TODO(https://github.com/rust-lang/rust/issues/73255): Destructure
// instead of using unsafe.
unsafe { crate::util::transmute_unchecked(self) }
}
/// Attempts to return a reference to the wrapped `T`, failing if `self` is
/// not properly aligned.
///
/// If `self` does not satisfy `align_of::<T>()`, then `try_deref` returns
/// `Err`.
///
/// If `T: Unaligned`, then `Unalign<T>` implements [`Deref`], and callers
/// may prefer [`Deref::deref`], which is infallible.
#[inline(always)]
pub fn try_deref(&self) -> Result<&T, AlignmentError<&Self, T>> {
let inner = Ptr::from_ref(self).transparent_wrapper_into_inner();
match inner.bikeshed_try_into_aligned() {
Ok(aligned) => Ok(aligned.as_ref()),
Err(err) => Err(err.map_src(|src| src.into_unalign().as_ref())),
}
}
/// Attempts to return a mutable reference to the wrapped `T`, failing if
/// `self` is not properly aligned.
///
/// If `self` does not satisfy `align_of::<T>()`, then `try_deref` returns
/// `Err`.
///
/// If `T: Unaligned`, then `Unalign<T>` implements [`DerefMut`], and
/// callers may prefer [`DerefMut::deref_mut`], which is infallible.
#[inline(always)]
pub fn try_deref_mut(&mut self) -> Result<&mut T, AlignmentError<&mut Self, T>> {
let inner = Ptr::from_mut(self).transparent_wrapper_into_inner();
match inner.bikeshed_try_into_aligned() {
Ok(aligned) => Ok(aligned.as_mut()),
Err(err) => Err(err.map_src(|src| src.into_unalign().as_mut())),
}
}
/// Returns a reference to the wrapped `T` without checking alignment.
///
/// If `T: Unaligned`, then `Unalign<T>` implements[ `Deref`], and callers
/// may prefer [`Deref::deref`], which is safe.
///
/// # Safety
///
/// The caller must guarantee that `self` satisfies `align_of::<T>()`.
#[inline(always)]
pub const unsafe fn deref_unchecked(&self) -> &T {
// SAFETY: `Unalign<T>` is `repr(transparent)`, so there is a valid `T`
// at the same memory location as `self`. It has no alignment guarantee,
// but the caller has promised that `self` is properly aligned, so we
// know that it is sound to create a reference to `T` at this memory
// location.
//
// We use `mem::transmute` instead of `&*self.get_ptr()` because
// dereferencing pointers is not stable in `const` on our current MSRV
// (1.56 as of this writing).
unsafe { mem::transmute(self) }
}
/// Returns a mutable reference to the wrapped `T` without checking
/// alignment.
///
/// If `T: Unaligned`, then `Unalign<T>` implements[ `DerefMut`], and
/// callers may prefer [`DerefMut::deref_mut`], which is safe.
///
/// # Safety
///
/// The caller must guarantee that `self` satisfies `align_of::<T>()`.
#[inline(always)]
pub unsafe fn deref_mut_unchecked(&mut self) -> &mut T {
// SAFETY: `self.get_mut_ptr()` returns a raw pointer to a valid `T` at
// the same memory location as `self`. It has no alignment guarantee,
// but the caller has promised that `self` is properly aligned, so we
// know that the pointer itself is aligned, and thus that it is sound to
// create a reference to a `T` at this memory location.
unsafe { &mut *self.get_mut_ptr() }
}
/// Gets an unaligned raw pointer to the inner `T`.
///
/// # Safety
///
/// The returned raw pointer is not necessarily aligned to
/// `align_of::<T>()`. Most functions which operate on raw pointers require
/// those pointers to be aligned, so calling those functions with the result
/// of `get_ptr` will result in undefined behavior if alignment is not
/// guaranteed using some out-of-band mechanism. In general, the only
/// functions which are safe to call with this pointer are those which are
/// explicitly documented as being sound to use with an unaligned pointer,
/// such as [`read_unaligned`].
///
/// Even if the caller is permitted to mutate `self` (e.g. they have
/// ownership or a mutable borrow), it is not guaranteed to be sound to
/// write through the returned pointer. If writing is required, prefer
/// [`get_mut_ptr`] instead.
///
/// [`read_unaligned`]: core::ptr::read_unaligned
/// [`get_mut_ptr`]: Unalign::get_mut_ptr
#[inline(always)]
pub const fn get_ptr(&self) -> *const T {
ptr::addr_of!(self.0)
}
/// Gets an unaligned mutable raw pointer to the inner `T`.
///
/// # Safety
///
/// The returned raw pointer is not necessarily aligned to
/// `align_of::<T>()`. Most functions which operate on raw pointers require
/// those pointers to be aligned, so calling those functions with the result
/// of `get_ptr` will result in undefined behavior if alignment is not
/// guaranteed using some out-of-band mechanism. In general, the only
/// functions which are safe to call with this pointer are those which are
/// explicitly documented as being sound to use with an unaligned pointer,
/// such as [`read_unaligned`].
///
/// [`read_unaligned`]: core::ptr::read_unaligned
// TODO(https://github.com/rust-lang/rust/issues/57349): Make this `const`.
#[inline(always)]
pub fn get_mut_ptr(&mut self) -> *mut T {
ptr::addr_of_mut!(self.0)
}
/// Sets the inner `T`, dropping the previous value.
// TODO(https://github.com/rust-lang/rust/issues/57349): Make this `const`.
#[inline(always)]
pub fn set(&mut self, t: T) {
*self = Unalign::new(t);
}
/// Updates the inner `T` by calling a function on it.
///
/// If [`T: Unaligned`], then `Unalign<T>` implements [`DerefMut`], and that
/// impl should be preferred over this method when performing updates, as it
/// will usually be faster and more ergonomic.
///
/// For large types, this method may be expensive, as it requires copying
/// `2 * size_of::<T>()` bytes. \[1\]
///
/// \[1\] Since the inner `T` may not be aligned, it would not be sound to
/// invoke `f` on it directly. Instead, `update` moves it into a
/// properly-aligned location in the local stack frame, calls `f` on it, and
/// then moves it back to its original location in `self`.
///
/// [`T: Unaligned`]: Unaligned
#[inline]
pub fn update<O, F: FnOnce(&mut T) -> O>(&mut self, f: F) -> O {
if mem::align_of::<T>() == 1 {
// While we advise callers to use `DerefMut` when `T: Unaligned`,
// not all callers will be able to guarantee `T: Unaligned` in all
// cases. In particular, callers who are themselves providing an API
// which is generic over `T` may sometimes be called by *their*
// callers with `T` such that `align_of::<T>() == 1`, but cannot
// guarantee this in the general case. Thus, this optimization may
// sometimes be helpful.
// SAFETY: Since `T`'s alignment is 1, `self` satisfies its
// alignment by definition.
let t = unsafe { self.deref_mut_unchecked() };
return f(t);
}
// On drop, this moves `copy` out of itself and uses `ptr::write` to
// overwrite `slf`.
struct WriteBackOnDrop<T> {
copy: ManuallyDrop<T>,
slf: *mut Unalign<T>,
}
impl<T> Drop for WriteBackOnDrop<T> {
fn drop(&mut self) {
// SAFETY: We never use `copy` again as required by
// `ManuallyDrop::take`.
let copy = unsafe { ManuallyDrop::take(&mut self.copy) };
// SAFETY: `slf` is the raw pointer value of `self`. We know it
// is valid for writes and properly aligned because `self` is a
// mutable reference, which guarantees both of these properties.
unsafe { ptr::write(self.slf, Unalign::new(copy)) };
}
}
// SAFETY: We know that `self` is valid for reads, properly aligned, and
// points to an initialized `Unalign<T>` because it is a mutable
// reference, which guarantees all of these properties.
//
// Since `T: !Copy`, it would be unsound in the general case to allow
// both the original `Unalign<T>` and the copy to be used by safe code.
// We guarantee that the copy is used to overwrite the original in the
// `Drop::drop` impl of `WriteBackOnDrop`. So long as this `drop` is
// called before any other safe code executes, soundness is upheld.
// While this method can terminate in two ways (by returning normally or
// by unwinding due to a panic in `f`), in both cases, `write_back` is
// dropped - and its `drop` called - before any other safe code can
// execute.
let copy = unsafe { ptr::read(self) }.into_inner();
let mut write_back = WriteBackOnDrop { copy: ManuallyDrop::new(copy), slf: self };
let ret = f(&mut write_back.copy);
drop(write_back);
ret
}
}
impl<T: Copy> Unalign<T> {
/// Gets a copy of the inner `T`.
// TODO(https://github.com/rust-lang/rust/issues/57349): Make this `const`.
#[inline(always)]
pub fn get(&self) -> T {
let Unalign(val) = *self;
val
}
}
impl<T: Unaligned> Deref for Unalign<T> {
type Target = T;
#[inline(always)]
fn deref(&self) -> &T {
Ptr::from_ref(self).transparent_wrapper_into_inner().bikeshed_recall_aligned().as_ref()
}
}
impl<T: Unaligned> DerefMut for Unalign<T> {
#[inline(always)]
fn deref_mut(&mut self) -> &mut T {
Ptr::from_mut(self).transparent_wrapper_into_inner().bikeshed_recall_aligned().as_mut()
}
}
impl<T: Unaligned + PartialOrd> PartialOrd<Unalign<T>> for Unalign<T> {
#[inline(always)]
fn partial_cmp(&self, other: &Unalign<T>) -> Option<Ordering> {
PartialOrd::partial_cmp(self.deref(), other.deref())
}
}
impl<T: Unaligned + Ord> Ord for Unalign<T> {
#[inline(always)]
fn cmp(&self, other: &Unalign<T>) -> Ordering {
Ord::cmp(self.deref(), other.deref())
}
}
impl<T: Unaligned + PartialEq> PartialEq<Unalign<T>> for Unalign<T> {
#[inline(always)]
fn eq(&self, other: &Unalign<T>) -> bool {
PartialEq::eq(self.deref(), other.deref())
}
}
impl<T: Unaligned + Eq> Eq for Unalign<T> {}
impl<T: Unaligned + Hash> Hash for Unalign<T> {
#[inline(always)]
fn hash<H>(&self, state: &mut H)
where
H: Hasher,
{
self.deref().hash(state);
}
}
impl<T: Unaligned + Debug> Debug for Unalign<T> {
#[inline(always)]
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
Debug::fmt(self.deref(), f)
}
}
impl<T: Unaligned + Display> Display for Unalign<T> {
#[inline(always)]
fn fmt(&self, f: &mut Formatter<'_>) -> fmt::Result {
Display::fmt(self.deref(), f)
}
}
/// A wrapper type to construct uninitialized instances of `T`.
///
/// `MaybeUninit` is identical to the [standard library
/// `MaybeUninit`][core-maybe-uninit] type except that it supports unsized
/// types.
///
/// # Layout
///
/// The same layout guarantees and caveats apply to `MaybeUninit<T>` as apply to
/// the [standard library `MaybeUninit`][core-maybe-uninit] with one exception:
/// for `T: !Sized`, there is no single value for `T`'s size. Instead, for such
/// types, the following are guaranteed:
/// - Every [valid size][valid-size] for `T` is a valid size for
/// `MaybeUninit<T>` and vice versa
/// - Given `t: *const T` and `m: *const MaybeUninit<T>` with identical fat
/// pointer metadata, `t` and `m` address the same number of bytes (and
/// likewise for `*mut`)
///
/// [core-maybe-uninit]: core::mem::MaybeUninit
/// [valid-size]: crate::KnownLayout#what-is-a-valid-size
#[repr(transparent)]
#[doc(hidden)]
pub struct MaybeUninit<T: ?Sized + KnownLayout>(
// SAFETY: `MaybeUninit<T>` has the same size as `T`, because (by invariant
// on `T::MaybeUninit`) `T::MaybeUninit` has `T::LAYOUT` identical to `T`,
// and because (invariant on `T::LAYOUT`) we can trust that `LAYOUT`
// accurately reflects the layout of `T`. By invariant on `T::MaybeUninit`,
// it admits uninitialized bytes in all positions. Because `MabyeUninit` is
// marked `repr(transparent)`, these properties additionally hold true for
// `Self`.
T::MaybeUninit,
);
#[doc(hidden)]
impl<T: ?Sized + KnownLayout> MaybeUninit<T> {
/// Constructs a `MaybeUninit<T>` initialized with the given value.
#[inline(always)]
pub fn new(val: T) -> Self
where
T: Sized,
Self: Sized,
{
// SAFETY: It is valid to transmute `val` to `MaybeUninit<T>` because it
// is both valid to transmute `val` to `T::MaybeUninit`, and it is valid
// to transmute from `T::MaybeUninit` to `MaybeUninit<T>`.
//
// First, it is valid to transmute `val` to `T::MaybeUninit` because, by
// invariant on `T::MaybeUninit`:
// - For `T: Sized`, `T` and `T::MaybeUninit` have the same size.
// - All byte sequences of the correct size are valid values of
// `T::MaybeUninit`.
//
// Second, it is additionally valid to transmute from `T::MaybeUninit`
// to `MaybeUninit<T>`, because `MaybeUninit<T>` is a
// `repr(transparent)` wrapper around `T::MaybeUninit`.
//
// These two transmutes are collapsed into one so we don't need to add a
// `T::MaybeUninit: Sized` bound to this function's `where` clause.
unsafe { crate::util::transmute_unchecked(val) }
}
/// Constructs an uninitialized `MaybeUninit<T>`.
#[must_use]
#[inline(always)]
pub fn uninit() -> Self
where
T: Sized,
Self: Sized,
{
let uninit = CoreMaybeUninit::<T>::uninit();
// SAFETY: It is valid to transmute from `CoreMaybeUninit<T>` to
// `MaybeUninit<T>` since they both admit uninitialized bytes in all
// positions, and they have the same size (i.e., that of `T`).
//
// `MaybeUninit<T>` has the same size as `T`, because (by invariant on
// `T::MaybeUninit`) `T::MaybeUninit` has `T::LAYOUT` identical to `T`,
// and because (invariant on `T::LAYOUT`) we can trust that `LAYOUT`
// accurately reflects the layout of `T`.
//
// `CoreMaybeUninit<T>` has the same size as `T` [1] and admits
// uninitialized bytes in all positions.
//
// [1] Per https://doc.rust-lang.org/1.81.0/std/mem/union.MaybeUninit.html#layout-1:
//
// `MaybeUninit<T>` is guaranteed to have the same size, alignment,
// and ABI as `T`
unsafe { crate::util::transmute_unchecked(uninit) }
}
/// Creates a `Box<MaybeUninit<T>>`.
///
/// This function is useful for allocating large, uninit values on the heap
/// without ever creating a temporary instance of `Self` on the stack.
///
/// # Errors
///
/// Returns an error on allocation failure. Allocation failure is guaranteed
/// never to cause a panic or an abort.
#[cfg(feature = "alloc")]
#[inline]
pub fn new_boxed_uninit(meta: T::PointerMetadata) -> Result<Box<Self>, AllocError> {
// SAFETY: `alloc::alloc::alloc_zeroed` is a valid argument of
// `new_box`. The referent of the pointer returned by `alloc` (and,
// consequently, the `Box` derived from it) is a valid instance of
// `Self`, because `Self` is `MaybeUninit` and thus admits arbitrary
// (un)initialized bytes.
unsafe { crate::util::new_box(meta, alloc::alloc::alloc) }
}
/// Extracts the value from the `MaybeUninit<T>` container.
///
/// # Safety
///
/// The caller must ensure that `self` is in an bit-valid state. Depending
/// on subsequent use, it may also need to be in a library-valid state.
#[inline(always)]
pub unsafe fn assume_init(self) -> T
where
T: Sized,
Self: Sized,
{
// SAFETY: The caller guarantees that `self` is in an bit-valid state.
unsafe { crate::util::transmute_unchecked(self) }
}
}
impl<T: ?Sized + KnownLayout> fmt::Debug for MaybeUninit<T> {
#[inline]
fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
f.pad(core::any::type_name::<Self>())
}
}
#[cfg(test)]
mod tests {
use core::panic::AssertUnwindSafe;
use super::*;
use crate::util::testutil::*;
#[test]
fn test_unalign() {
// Test methods that don't depend on alignment.
let mut u = Unalign::new(AU64(123));
assert_eq!(u.get(), AU64(123));
assert_eq!(u.into_inner(), AU64(123));
assert_eq!(u.get_ptr(), <*const _>::cast::<AU64>(&u));
assert_eq!(u.get_mut_ptr(), <*mut _>::cast::<AU64>(&mut u));
u.set(AU64(321));
assert_eq!(u.get(), AU64(321));
// Test methods that depend on alignment (when alignment is satisfied).
let mut u: Align<_, AU64> = Align::new(Unalign::new(AU64(123)));
assert_eq!(u.t.try_deref().unwrap(), &AU64(123));
assert_eq!(u.t.try_deref_mut().unwrap(), &mut AU64(123));
// SAFETY: The `Align<_, AU64>` guarantees proper alignment.
assert_eq!(unsafe { u.t.deref_unchecked() }, &AU64(123));
// SAFETY: The `Align<_, AU64>` guarantees proper alignment.
assert_eq!(unsafe { u.t.deref_mut_unchecked() }, &mut AU64(123));
*u.t.try_deref_mut().unwrap() = AU64(321);
assert_eq!(u.t.get(), AU64(321));
// Test methods that depend on alignment (when alignment is not
// satisfied).
let mut u: ForceUnalign<_, AU64> = ForceUnalign::new(Unalign::new(AU64(123)));
assert!(matches!(u.t.try_deref(), Err(AlignmentError { .. })));
assert!(matches!(u.t.try_deref_mut(), Err(AlignmentError { .. })));
// Test methods that depend on `T: Unaligned`.
let mut u = Unalign::new(123u8);
assert_eq!(u.try_deref(), Ok(&123));
assert_eq!(u.try_deref_mut(), Ok(&mut 123));
assert_eq!(u.deref(), &123);
assert_eq!(u.deref_mut(), &mut 123);
*u = 21;
assert_eq!(u.get(), 21);
// Test that some `Unalign` functions and methods are `const`.
const _UNALIGN: Unalign<u64> = Unalign::new(0);
const _UNALIGN_PTR: *const u64 = _UNALIGN.get_ptr();
const _U64: u64 = _UNALIGN.into_inner();
// Make sure all code is considered "used".
//
// TODO(https://github.com/rust-lang/rust/issues/104084): Remove this
// attribute.
#[allow(dead_code)]
const _: () = {
let x: Align<_, AU64> = Align::new(Unalign::new(AU64(123)));
// Make sure that `deref_unchecked` is `const`.
//
// SAFETY: The `Align<_, AU64>` guarantees proper alignment.
let au64 = unsafe { x.t.deref_unchecked() };
match au64 {
AU64(123) => {}
_ => const_unreachable!(),
}
};
}
#[test]
fn test_unalign_update() {
let mut u = Unalign::new(AU64(123));
u.update(|a| a.0 += 1);
assert_eq!(u.get(), AU64(124));
// Test that, even if the callback panics, the original is still
// correctly overwritten. Use a `Box` so that Miri is more likely to
// catch any unsoundness (which would likely result in two `Box`es for
// the same heap object, which is the sort of thing that Miri would
// probably catch).
let mut u = Unalign::new(Box::new(AU64(123)));
let res = std::panic::catch_unwind(AssertUnwindSafe(|| {
u.update(|a| {
a.0 += 1;
panic!();
})
}));
assert!(res.is_err());
assert_eq!(u.into_inner(), Box::new(AU64(124)));
// Test the align_of::<T>() == 1 optimization.
let mut u = Unalign::new([0u8, 1]);
u.update(|a| a[0] += 1);
assert_eq!(u.get(), [1u8, 1]);
}
#[test]
fn test_unalign_copy_clone() {
// Test that `Copy` and `Clone` do not cause soundness issues. This test
// is mainly meant to exercise UB that would be caught by Miri.
// `u.t` is definitely not validly-aligned for `AU64`'s alignment of 8.
let u = ForceUnalign::<_, AU64>::new(Unalign::new(AU64(123)));
#[allow(clippy::clone_on_copy)]
let v = u.t.clone();
let w = u.t;
assert_eq!(u.t.get(), v.get());
assert_eq!(u.t.get(), w.get());
assert_eq!(v.get(), w.get());
}
#[test]
fn test_unalign_trait_impls() {
let zero = Unalign::new(0u8);
let one = Unalign::new(1u8);
assert!(zero < one);
assert_eq!(PartialOrd::partial_cmp(&zero, &one), Some(Ordering::Less));
assert_eq!(Ord::cmp(&zero, &one), Ordering::Less);
assert_ne!(zero, one);
assert_eq!(zero, zero);
assert!(!PartialEq::eq(&zero, &one));
assert!(PartialEq::eq(&zero, &zero));
fn hash<T: Hash>(t: &T) -> u64 {
let mut h = std::collections::hash_map::DefaultHasher::new();
t.hash(&mut h);
h.finish()
}
assert_eq!(hash(&zero), hash(&0u8));
assert_eq!(hash(&one), hash(&1u8));
assert_eq!(format!("{:?}", zero), format!("{:?}", 0u8));
assert_eq!(format!("{:?}", one), format!("{:?}", 1u8));
assert_eq!(format!("{}", zero), format!("{}", 0u8));
assert_eq!(format!("{}", one), format!("{}", 1u8));
}
#[test]
#[allow(clippy::as_conversions)]
fn test_maybe_uninit() {
// int
{
let input = 42;
let uninit = MaybeUninit::new(input);
// SAFETY: `uninit` is in an initialized state
let output = unsafe { uninit.assume_init() };
assert_eq!(input, output);
}
// thin ref
{
let input = 42;
let uninit = MaybeUninit::new(&input);
// SAFETY: `uninit` is in an initialized state
let output = unsafe { uninit.assume_init() };
assert_eq!(&input as *const _, output as *const _);
assert_eq!(input, *output);
}
// wide ref
{
let input = [1, 2, 3, 4];
let uninit = MaybeUninit::new(&input[..]);
// SAFETY: `uninit` is in an initialized state
let output = unsafe { uninit.assume_init() };
assert_eq!(&input[..] as *const _, output as *const _);
assert_eq!(input, *output);
}
}
}