Crate zstd_sys

Source
Expand description

Low-level bindings to the zstd library.

Structs§

POOL_ctx_s
ZDICT_cover_params_t
ZDICT_cover_params_t: k and d are the only required parameters. For others, value 0 means default.
ZDICT_fastCover_params_t
ZDICT_legacy_params_t
ZDICT_params_t
ZSTD_CCtx_params_s
ZSTD_CCtx_s
ZSTD_CDict_s
ZSTD_DCtx_s
ZSTD_DDict_s
ZSTD_Sequence
ZSTD_bounds
ZSTD_compressionParameters
ZSTD_customMem
ZSTD_frameHeader
ZSTD_frameParameters
ZSTD_frameProgression
ZSTD_inBuffer_s
Streaming
ZSTD_outBuffer_s
ZSTD_parameters

Enums§

ZSTD_EndDirective
ZSTD_ErrorCode
ZSTD_ResetDirective
ZSTD_cParameter
ZSTD_dParameter
Advanced decompression API (Requires v1.4.0+)
ZSTD_dictAttachPref_e
ZSTD_dictContentType_e
ZSTD_dictLoadMethod_e
ZSTD_forceIgnoreChecksum_e
ZSTD_format_e
ZSTD_frameType_e
ZSTD_literalCompressionMode_e
ZSTD_nextInputType_e
ZSTD_paramSwitch_e
ZSTD_refMultipleDDicts_e
ZSTD_sequenceFormat_e
ZSTD_strategy
Advanced compression API (Requires v1.4.0+)

Constants§

ZDICT_CONTENTSIZE_MIN
ZDICT_DICTSIZE_MIN
ZSTD_BLOCKSIZELOG_MAX
ZSTD_BLOCKSIZE_MAX
ZSTD_BLOCKSIZE_MAX_MIN
ZSTD_CHAINLOG_MAX_32
ZSTD_CHAINLOG_MAX_64
ZSTD_CHAINLOG_MIN
ZSTD_CLEVEL_DEFAULT
ZSTD_CONTENTSIZE_ERROR
ZSTD_CONTENTSIZE_UNKNOWN
ZSTD_FRAMEHEADERSIZE_MAX
ZSTD_HASHLOG_MIN
ZSTD_LDM_BUCKETSIZELOG_MAX
ZSTD_LDM_BUCKETSIZELOG_MIN
ZSTD_LDM_HASHLOG_MIN
ZSTD_LDM_HASHRATELOG_MIN
ZSTD_LDM_MINMATCH_MAX
ZSTD_LDM_MINMATCH_MIN
ZSTD_MAGICNUMBER
ZSTD_MAGIC_DICTIONARY
ZSTD_MAGIC_SKIPPABLE_MASK
ZSTD_MAGIC_SKIPPABLE_START
ZSTD_MINMATCH_MAX
ZSTD_MINMATCH_MIN
ZSTD_OVERLAPLOG_MAX
ZSTD_OVERLAPLOG_MIN
ZSTD_SEARCHLOG_MIN
ZSTD_SKIPPABLEHEADERSIZE
ZSTD_SRCSIZEHINT_MIN
ZSTD_TARGETCBLOCKSIZE_MAX
ZSTD_TARGETCBLOCKSIZE_MIN
ZSTD_TARGETLENGTH_MAX
ZSTD_TARGETLENGTH_MIN
ZSTD_VERSION_MAJOR
ZSTD_VERSION_MINOR
ZSTD_VERSION_NUMBER
ZSTD_VERSION_RELEASE
ZSTD_WINDOWLOG_LIMIT_DEFAULT
ZSTD_WINDOWLOG_MAX_32
ZSTD_WINDOWLOG_MAX_64
ZSTD_WINDOWLOG_MIN

Statics§

ZSTD_defaultCMem
< this constant defers to stdlib’s functions

Functions§

ZDICT_addEntropyTablesFromBuffer
ZDICT_finalizeDictionary
ZDICT_finalizeDictionary(): Given a custom content as a basis for dictionary, and a set of samples, finalize dictionary by adding headers and statistics according to the zstd dictionary format.
ZDICT_getDictHeaderSize
ZDICT_getDictID
ZDICT_getErrorName
ZDICT_isError
ZDICT_optimizeTrainFromBuffer_cover
ZDICT_optimizeTrainFromBuffer_cover(): The same requirements as above hold for all the parameters except parameters. This function tries many parameter combinations and picks the best parameters. *parameters is filled with the best parameters found, dictionary constructed with those parameters is stored in dictBuffer.
ZDICT_optimizeTrainFromBuffer_fastCover
ZDICT_optimizeTrainFromBuffer_fastCover(): The same requirements as above hold for all the parameters except parameters. This function tries many parameter combinations (specifically, k and d combinations) and picks the best parameters. *parameters is filled with the best parameters found, dictionary constructed with those parameters is stored in dictBuffer. All of the parameters d, k, steps, f, and accel are optional. If d is non-zero then we don’t check multiple values of d, otherwise we check d = {6, 8}. if steps is zero it defaults to its default value. If k is non-zero then we don’t check multiple values of k, otherwise we check steps values in [50, 2000]. If f is zero, default value of 20 is used. If accel is zero, default value of 1 is used.
ZDICT_trainFromBuffer
ZDICT_trainFromBuffer(): Train a dictionary from an array of samples. Redirect towards ZDICT_optimizeTrainFromBuffer_fastCover() single-threaded, with d=8, steps=4, f=20, and accel=1. Samples must be stored concatenated in a single flat buffer samplesBuffer, supplied with an array of sizes samplesSizes, providing the size of each sample, in order. The resulting dictionary will be saved into dictBuffer. @return: size of dictionary stored into dictBuffer (<= dictBufferCapacity) or an error code, which can be tested with ZDICT_isError(). Note: Dictionary training will fail if there are not enough samples to construct a dictionary, or if most of the samples are too small (< 8 bytes being the lower limit). If dictionary training fails, you should use zstd without a dictionary, as the dictionary would’ve been ineffective anyways. If you believe your samples would benefit from a dictionary please open an issue with details, and we can look into it. Note: ZDICT_trainFromBuffer()’s memory usage is about 6 MB. Tips: In general, a reasonable dictionary has a size of ~ 100 KB. It’s possible to select smaller or larger size, just by specifying dictBufferCapacity. In general, it’s recommended to provide a few thousands samples, though this can vary a lot. It’s recommended that total size of all samples be about ~x100 times the target size of dictionary.
ZDICT_trainFromBuffer_cover
ZDICT_trainFromBuffer_cover(): Train a dictionary from an array of samples using the COVER algorithm. Samples must be stored concatenated in a single flat buffer samplesBuffer, supplied with an array of sizes samplesSizes, providing the size of each sample, in order. The resulting dictionary will be saved into dictBuffer. @return: size of dictionary stored into dictBuffer (<= dictBufferCapacity) or an error code, which can be tested with ZDICT_isError(). See ZDICT_trainFromBuffer() for details on failure modes. Note: ZDICT_trainFromBuffer_cover() requires about 9 bytes of memory for each input byte. Tips: In general, a reasonable dictionary has a size of ~ 100 KB. It’s possible to select smaller or larger size, just by specifying dictBufferCapacity. In general, it’s recommended to provide a few thousands samples, though this can vary a lot. It’s recommended that total size of all samples be about ~x100 times the target size of dictionary.
ZDICT_trainFromBuffer_fastCover
ZDICT_trainFromBuffer_fastCover(): Train a dictionary from an array of samples using a modified version of COVER algorithm. Samples must be stored concatenated in a single flat buffer samplesBuffer, supplied with an array of sizes samplesSizes, providing the size of each sample, in order. d and k are required. All other parameters are optional, will use default values if not provided The resulting dictionary will be saved into dictBuffer. @return: size of dictionary stored into dictBuffer (<= dictBufferCapacity) or an error code, which can be tested with ZDICT_isError(). See ZDICT_trainFromBuffer() for details on failure modes. Note: ZDICT_trainFromBuffer_fastCover() requires 6 * 2^f bytes of memory. Tips: In general, a reasonable dictionary has a size of ~ 100 KB. It’s possible to select smaller or larger size, just by specifying dictBufferCapacity. In general, it’s recommended to provide a few thousands samples, though this can vary a lot. It’s recommended that total size of all samples be about ~x100 times the target size of dictionary.
ZDICT_trainFromBuffer_legacy
ZDICT_trainFromBuffer_legacy(): Train a dictionary from an array of samples. Samples must be stored concatenated in a single flat buffer samplesBuffer, supplied with an array of sizes samplesSizes, providing the size of each sample, in order. The resulting dictionary will be saved into dictBuffer. parameters is optional and can be provided with values set to 0 to mean “default”. @return: size of dictionary stored into dictBuffer (<= dictBufferCapacity) or an error code, which can be tested with ZDICT_isError(). See ZDICT_trainFromBuffer() for details on failure modes. Tips: In general, a reasonable dictionary has a size of ~ 100 KB. It’s possible to select smaller or larger size, just by specifying dictBufferCapacity. In general, it’s recommended to provide a few thousands samples, though this can vary a lot. It’s recommended that total size of all samples be about ~x100 times the target size of dictionary. Note: ZDICT_trainFromBuffer_legacy() will send notifications into stderr if instructed to, using notificationLevel>0.
ZSTD_CCtxParams_getParameter
ZSTD_CCtxParams_getParameter() : Similar to ZSTD_CCtx_getParameter. Get the requested value of one compression parameter, selected by enum ZSTD_cParameter. @result : 0, or an error code (which can be tested with ZSTD_isError()).
ZSTD_CCtxParams_init
ZSTD_CCtxParams_init() : Initializes the compression parameters of cctxParams according to compression level. All other parameters are reset to their default values.
ZSTD_CCtxParams_init_advanced
ZSTD_CCtxParams_init_advanced() : Initializes the compression and frame parameters of cctxParams according to params. All other parameters are reset to their default values.
ZSTD_CCtxParams_registerSequenceProducer
ZSTD_CCtxParams_registerSequenceProducer() : Same as ZSTD_registerSequenceProducer(), but operates on ZSTD_CCtx_params. This is used for accurate size estimation with ZSTD_estimateCCtxSize_usingCCtxParams(), which is needed when creating a ZSTD_CCtx with ZSTD_initStaticCCtx().
ZSTD_CCtxParams_reset
ZSTD_CCtxParams_reset() : Reset params to default values.
ZSTD_CCtxParams_setParameter
ZSTD_CCtxParams_setParameter() : Requires v1.4.0+ Similar to ZSTD_CCtx_setParameter. Set one compression parameter, selected by enum ZSTD_cParameter. Parameters must be applied to a ZSTD_CCtx using ZSTD_CCtx_setParametersUsingCCtxParams(). @result : a code representing success or failure (which can be tested with ZSTD_isError()).
ZSTD_CCtx_getParameter
ZSTD_CCtx_getParameter() : Get the requested compression parameter value, selected by enum ZSTD_cParameter, and store it into int* value. @return : 0, or an error code (which can be tested with ZSTD_isError()).
ZSTD_CCtx_loadDictionary
ZSTD_CCtx_loadDictionary() : Requires v1.4.0+ Create an internal CDict from dict buffer. Decompression will have to use same dictionary. @result : 0, or an error code (which can be tested with ZSTD_isError()). Special: Loading a NULL (or 0-size) dictionary invalidates previous dictionary, meaning “return to no-dictionary mode”. Note 1 : Dictionary is sticky, it will be used for all future compressed frames, until parameters are reset, a new dictionary is loaded, or the dictionary is explicitly invalidated by loading a NULL dictionary. Note 2 : Loading a dictionary involves building tables. It’s also a CPU consuming operation, with non-negligible impact on latency. Tables are dependent on compression parameters, and for this reason, compression parameters can no longer be changed after loading a dictionary. Note 3 :dict content will be copied internally. Use experimental ZSTD_CCtx_loadDictionary_byReference() to reference content instead. In such a case, dictionary buffer must outlive its users. Note 4 : Use ZSTD_CCtx_loadDictionary_advanced() to precisely select how dictionary content must be interpreted. Note 5 : This method does not benefit from LDM (long distance mode). If you want to employ LDM on some large dictionary content, prefer employing ZSTD_CCtx_refPrefix() described below.
ZSTD_CCtx_loadDictionary_advanced
ZSTD_CCtx_loadDictionary_advanced() : Same as ZSTD_CCtx_loadDictionary(), but gives finer control over how to load the dictionary (by copy ? by reference ?) and how to interpret it (automatic ? force raw mode ? full mode only ?)
ZSTD_CCtx_loadDictionary_byReference
ZSTD_CCtx_loadDictionary_byReference() : Same as ZSTD_CCtx_loadDictionary(), but dictionary content is referenced, instead of being copied into CCtx. It saves some memory, but also requires that dict outlives its usage within cctx
ZSTD_CCtx_refCDict
ZSTD_CCtx_refCDict() : Requires v1.4.0+ Reference a prepared dictionary, to be used for all future compressed frames. Note that compression parameters are enforced from within CDict, and supersede any compression parameter previously set within CCtx. The parameters ignored are labelled as “superseded-by-cdict” in the ZSTD_cParameter enum docs. The ignored parameters will be used again if the CCtx is returned to no-dictionary mode. The dictionary will remain valid for future compressed frames using same CCtx. @result : 0, or an error code (which can be tested with ZSTD_isError()). Special : Referencing a NULL CDict means “return to no-dictionary mode”. Note 1 : Currently, only one dictionary can be managed. Referencing a new dictionary effectively “discards” any previous one. Note 2 : CDict is just referenced, its lifetime must outlive its usage within CCtx.
ZSTD_CCtx_refPrefix
ZSTD_CCtx_refPrefix() : Requires v1.4.0+ Reference a prefix (single-usage dictionary) for next compressed frame. A prefix is only used once. Tables are discarded at end of frame (ZSTD_e_end). Decompression will need same prefix to properly regenerate data. Compressing with a prefix is similar in outcome as performing a diff and compressing it, but performs much faster, especially during decompression (compression speed is tunable with compression level). This method is compatible with LDM (long distance mode). @result : 0, or an error code (which can be tested with ZSTD_isError()). Special: Adding any prefix (including NULL) invalidates any previous prefix or dictionary Note 1 : Prefix buffer is referenced. It must outlive compression. Its content must remain unmodified during compression. Note 2 : If the intention is to diff some large src data blob with some prior version of itself, ensure that the window size is large enough to contain the entire source. See ZSTD_c_windowLog. Note 3 : Referencing a prefix involves building tables, which are dependent on compression parameters. It’s a CPU consuming operation, with non-negligible impact on latency. If there is a need to use the same prefix multiple times, consider loadDictionary instead. Note 4 : By default, the prefix is interpreted as raw content (ZSTD_dct_rawContent). Use experimental ZSTD_CCtx_refPrefix_advanced() to alter dictionary interpretation.
ZSTD_CCtx_refPrefix_advanced
ZSTD_CCtx_refPrefix_advanced() : Same as ZSTD_CCtx_refPrefix(), but gives finer control over how to interpret prefix content (automatic ? force raw mode (default) ? full mode only ?)
ZSTD_CCtx_refThreadPool
ZSTD_CCtx_reset
ZSTD_CCtx_reset() : There are 2 different things that can be reset, independently or jointly :
ZSTD_CCtx_setCParams
ZSTD_CCtx_setCParams() : Set all parameters provided within @p cparams into the working @p cctx. Note : if modifying parameters during compression (MT mode only), note that changes to the .windowLog parameter will be ignored. @return 0 on success, or an error code (can be checked with ZSTD_isError()). On failure, no parameters are updated.
ZSTD_CCtx_setFParams
ZSTD_CCtx_setFParams() : Set all parameters provided within @p fparams into the working @p cctx. @return 0 on success, or an error code (can be checked with ZSTD_isError()).
ZSTD_CCtx_setParameter
ZSTD_CCtx_setParameter() : Set one compression parameter, selected by enum ZSTD_cParameter. All parameters have valid bounds. Bounds can be queried using ZSTD_cParam_getBounds(). Providing a value beyond bound will either clamp it, or trigger an error (depending on parameter). Setting a parameter is generally only possible during frame initialization (before starting compression). Exception : when using multi-threading mode (nbWorkers >= 1), the following parameters can be updated during compression (within same frame): => compressionLevel, hashLog, chainLog, searchLog, minMatch, targetLength and strategy. new parameters will be active for next job only (after a flush()). @return : an error code (which can be tested using ZSTD_isError()).
ZSTD_CCtx_setParametersUsingCCtxParams
ZSTD_CCtx_setParametersUsingCCtxParams() : Apply a set of ZSTD_CCtx_params to the compression context. This can be done even after compression is started, if nbWorkers==0, this will have no impact until a new compression is started. if nbWorkers>=1, new parameters will be picked up at next job, with a few restrictions (windowLog, pledgedSrcSize, nbWorkers, jobSize, and overlapLog are not updated).
ZSTD_CCtx_setParams
ZSTD_CCtx_setParams() : Set all parameters provided within @p params into the working @p cctx. @return 0 on success, or an error code (can be checked with ZSTD_isError()).
ZSTD_CCtx_setPledgedSrcSize
ZSTD_CCtx_setPledgedSrcSize() : Total input data size to be compressed as a single frame. Value will be written in frame header, unless if explicitly forbidden using ZSTD_c_contentSizeFlag. This value will also be controlled at end of frame, and trigger an error if not respected. @result : 0, or an error code (which can be tested with ZSTD_isError()). Note 1 : pledgedSrcSize==0 actually means zero, aka an empty frame. In order to mean “unknown content size”, pass constant ZSTD_CONTENTSIZE_UNKNOWN. ZSTD_CONTENTSIZE_UNKNOWN is default value for any new frame. Note 2 : pledgedSrcSize is only valid once, for the next frame. It’s discarded at the end of the frame, and replaced by ZSTD_CONTENTSIZE_UNKNOWN. Note 3 : Whenever all input data is provided and consumed in a single round, for example with ZSTD_compress2(), or invoking immediately ZSTD_compressStream2(,,,ZSTD_e_end), this value is automatically overridden by srcSize instead.
ZSTD_CStreamInSize
ZSTD_CStreamOutSize
ZSTD_DCtx_getParameter
ZSTD_DCtx_getParameter() : Get the requested decompression parameter value, selected by enum ZSTD_dParameter, and store it into int* value. @return : 0, or an error code (which can be tested with ZSTD_isError()).
ZSTD_DCtx_loadDictionary
ZSTD_DCtx_loadDictionary() : Requires v1.4.0+ Create an internal DDict from dict buffer, to be used to decompress all future frames. The dictionary remains valid for all future frames, until explicitly invalidated, or a new dictionary is loaded. @result : 0, or an error code (which can be tested with ZSTD_isError()). Special : Adding a NULL (or 0-size) dictionary invalidates any previous dictionary, meaning “return to no-dictionary mode”. Note 1 : Loading a dictionary involves building tables, which has a non-negligible impact on CPU usage and latency. It’s recommended to “load once, use many times”, to amortize the cost Note 2 :dict content will be copied internally, so dict can be released after loading. Use ZSTD_DCtx_loadDictionary_byReference() to reference dictionary content instead. Note 3 : Use ZSTD_DCtx_loadDictionary_advanced() to take control of how dictionary content is loaded and interpreted.
ZSTD_DCtx_loadDictionary_advanced
ZSTD_DCtx_loadDictionary_advanced() : Same as ZSTD_DCtx_loadDictionary(), but gives direct control over how to load the dictionary (by copy ? by reference ?) and how to interpret it (automatic ? force raw mode ? full mode only ?).
ZSTD_DCtx_loadDictionary_byReference
ZSTD_DCtx_loadDictionary_byReference() : Same as ZSTD_DCtx_loadDictionary(), but references dict content instead of copying it into dctx. This saves memory if dict remains around., However, it’s imperative that dict remains accessible (and unmodified) while being used, so it must outlive decompression.
ZSTD_DCtx_refDDict
ZSTD_DCtx_refDDict() : Requires v1.4.0+ Reference a prepared dictionary, to be used to decompress next frames. The dictionary remains active for decompression of future frames using same DCtx.
ZSTD_DCtx_refPrefix
ZSTD_DCtx_refPrefix() : Requires v1.4.0+ Reference a prefix (single-usage dictionary) to decompress next frame. This is the reverse operation of ZSTD_CCtx_refPrefix(), and must use the same prefix as the one used during compression. Prefix is only used once. Reference is discarded at end of frame. End of frame is reached when ZSTD_decompressStream() returns 0. @result : 0, or an error code (which can be tested with ZSTD_isError()). Note 1 : Adding any prefix (including NULL) invalidates any previously set prefix or dictionary Note 2 : Prefix buffer is referenced. It must outlive decompression. Prefix buffer must remain unmodified up to the end of frame, reached when ZSTD_decompressStream() returns 0. Note 3 : By default, the prefix is treated as raw content (ZSTD_dct_rawContent). Use ZSTD_CCtx_refPrefix_advanced() to alter dictMode (Experimental section) Note 4 : Referencing a raw content prefix has almost no cpu nor memory cost. A full dictionary is more costly, as it requires building tables.
ZSTD_DCtx_refPrefix_advanced
ZSTD_DCtx_refPrefix_advanced() : Same as ZSTD_DCtx_refPrefix(), but gives finer control over how to interpret prefix content (automatic ? force raw mode (default) ? full mode only ?)
ZSTD_DCtx_reset
ZSTD_DCtx_reset() : Return a DCtx to clean state. Session and parameters can be reset jointly or separately. Parameters can only be reset when no active frame is being decompressed. @return : 0, or an error code, which can be tested with ZSTD_isError()
ZSTD_DCtx_setFormat
ZSTD_DCtx_setFormat() : This function is REDUNDANT. Prefer ZSTD_DCtx_setParameter(). Instruct the decoder context about what kind of data to decode next. This instruction is mandatory to decode data without a fully-formed header, such ZSTD_f_zstd1_magicless for example. @return : 0, or an error code (which can be tested using ZSTD_isError()).
ZSTD_DCtx_setMaxWindowSize
ZSTD_DCtx_setMaxWindowSize() : Refuses allocating internal buffers for frames requiring a window size larger than provided limit. This protects a decoder context from reserving too much memory for itself (potential attack scenario). This parameter is only useful in streaming mode, since no internal buffer is allocated in single-pass mode. By default, a decompression context accepts all window sizes <= (1 << ZSTD_WINDOWLOG_LIMIT_DEFAULT) @return : 0, or an error code (which can be tested using ZSTD_isError()).
ZSTD_DCtx_setParameter
ZSTD_DCtx_setParameter() : Set one compression parameter, selected by enum ZSTD_dParameter. All parameters have valid bounds. Bounds can be queried using ZSTD_dParam_getBounds(). Providing a value beyond bound will either clamp it, or trigger an error (depending on parameter). Setting a parameter is only possible during frame initialization (before starting decompression). @return : 0, or an error code (which can be tested using ZSTD_isError()).
ZSTD_DStreamInSize
ZSTD_DStreamOutSize
ZSTD_adjustCParams
ZSTD_adjustCParams() : optimize params for a given srcSize and dictSize. srcSize can be unknown, in which case use ZSTD_CONTENTSIZE_UNKNOWN. dictSize must be 0 when there is no dictionary. cPar can be invalid : all parameters will be clamped within valid range in the @return struct. This function never fails (wide contract)
ZSTD_cParam_getBounds
ZSTD_cParam_getBounds() : All parameters must belong to an interval with lower and upper bounds, otherwise they will either trigger an error or be automatically clamped. @return : a structure, ZSTD_bounds, which contains - an error status field, which must be tested using ZSTD_isError() - lower and upper bounds, both inclusive
ZSTD_checkCParams
ZSTD_checkCParams() : Ensure param values remain within authorized range. @return 0 on success, or an error code (can be checked with ZSTD_isError())
ZSTD_compress
Simple API / /*! ZSTD_compress() : Compresses src content as a single zstd compressed frame into already allocated dst. NOTE: Providing dstCapacity >= ZSTD_compressBound(srcSize) guarantees that zstd will have enough space to successfully compress the data. @return : compressed size written into dst (<= `dstCapacity), or an error code if it fails (which can be tested using ZSTD_isError()).
ZSTD_compress2
ZSTD_compress2() : Behave the same as ZSTD_compressCCtx(), but compression parameters are set using the advanced API. (note that this entry point doesn’t even expose a compression level parameter). ZSTD_compress2() always starts a new frame. Should cctx hold data from a previously unfinished frame, everything about it is forgotten.
ZSTD_compressBegin
Buffer-less streaming compression (synchronous mode)
ZSTD_compressBegin_advanced
ZSTD_compressBegin_usingCDict
ZSTD_compressBegin_usingCDict_advanced
ZSTD_compressBegin_usingDict
ZSTD_compressBlock
ZSTD_compressBound
ZSTD_compressCCtx
ZSTD_compressCCtx() : Same as ZSTD_compress(), using an explicit ZSTD_CCtx. Important : in order to mirror ZSTD_compress() behavior, this function compresses at the requested compression level, ignoring any other advanced parameter . If any advanced parameter was set using the advanced API, they will all be reset. Only compressionLevel remains.
ZSTD_compressContinue
ZSTD_compressEnd
ZSTD_compressSequences
ZSTD_compressSequences() : Compress an array of ZSTD_Sequence, associated with @src buffer, into dst. @src contains the entire input (not just the literals). If @srcSize > sum(sequence.length), the remaining bytes are considered all literals If a dictionary is included, then the cctx should reference the dict. (see: ZSTD_CCtx_refCDict(), ZSTD_CCtx_loadDictionary(), etc.) The entire source is compressed into a single frame.
ZSTD_compressStream
Alternative for ZSTD_compressStream2(zcs, output, input, ZSTD_e_continue). NOTE: The return value is different. ZSTD_compressStream() returns a hint for the next read size (if non-zero and not an error). ZSTD_compressStream2() returns the minimum nb of bytes left to flush (if non-zero and not an error).
ZSTD_compressStream2
ZSTD_compressStream2() : Requires v1.4.0+ Behaves about the same as ZSTD_compressStream, with additional control on end directive.
ZSTD_compressStream2_simpleArgs
ZSTD_compressStream2_simpleArgs() : Same as ZSTD_compressStream2(), but using only integral types as arguments. This variant might be helpful for binders from dynamic languages which have troubles handling structures containing memory pointers.
ZSTD_compress_advanced
ZSTD_compress_advanced() : Note : this function is now DEPRECATED. It can be replaced by ZSTD_compress2(), in combination with ZSTD_CCtx_setParameter() and other parameter setters. This prototype will generate compilation warnings.
ZSTD_compress_usingCDict
ZSTD_compress_usingCDict() : Compression using a digested Dictionary. Recommended when same dictionary is used multiple times. Note : compression level is decided at dictionary creation time, and frame parameters are hardcoded (dictID=yes, contentSize=yes, checksum=no)
ZSTD_compress_usingCDict_advanced
ZSTD_compress_usingCDict_advanced() : Note : this function is now DEPRECATED. It can be replaced by ZSTD_compress2(), in combination with ZSTD_CCtx_loadDictionary() and other parameter setters. This prototype will generate compilation warnings.
ZSTD_compress_usingDict
Simple dictionary API / /*! ZSTD_compress_usingDict() : Compression at an explicit compression level using a Dictionary. A dictionary can be any arbitrary data segment (also called a prefix), or a buffer with specified information (see zdict.h). Note : This function loads the dictionary, resulting in significant startup delay. It’s intended for a dictionary used only once. Note 2 : When dict == NULL || dictSize < 8 no dictionary is used.
ZSTD_copyCCtx
ZSTD_copyDCtx
ZSTD_createCCtx
ZSTD_createCCtxParams
ZSTD_CCtx_params : Quick howto :
ZSTD_createCCtx_advanced
ZSTD_createCDict
ZSTD_createCDict() : When compressing multiple messages or blocks using the same dictionary, it’s recommended to digest the dictionary only once, since it’s a costly operation. ZSTD_createCDict() will create a state from digesting a dictionary. The resulting state can be used for future compression operations with very limited startup cost. ZSTD_CDict can be created once and shared by multiple threads concurrently, since its usage is read-only. @dictBuffer can be released after ZSTD_CDict creation, because its content is copied within CDict. Note 1 : Consider experimental function ZSTD_createCDict_byReference() if you prefer to not duplicate @dictBuffer content. Note 2 : A ZSTD_CDict can be created from an empty @dictBuffer, in which case the only thing that it transports is the @compressionLevel. This can be useful in a pipeline featuring ZSTD_compress_usingCDict() exclusively, expecting a ZSTD_CDict parameter with any data, including those without a known dictionary.
ZSTD_createCDict_advanced
ZSTD_createCDict_advanced2
ZSTD_createCDict_byReference
ZSTD_createCDict_byReference() : Create a digested dictionary for compression Dictionary content is just referenced, not duplicated. As a consequence, dictBuffer must outlive CDict, and its content must remain unmodified throughout the lifetime of CDict. note: equivalent to ZSTD_createCDict_advanced(), with dictLoadMethod==ZSTD_dlm_byRef
ZSTD_createCStream
ZSTD_createCStream_advanced
ZSTD_createDCtx
ZSTD_createDCtx_advanced
ZSTD_createDDict
ZSTD_createDDict() : Create a digested dictionary, ready to start decompression operation without startup delay. dictBuffer can be released after DDict creation, as its content is copied inside DDict.
ZSTD_createDDict_advanced
ZSTD_createDDict_byReference
ZSTD_createDDict_byReference() : Create a digested dictionary, ready to start decompression operation without startup delay. Dictionary content is referenced, and therefore stays in dictBuffer. It is important that dictBuffer outlives DDict, it must remain read accessible throughout the lifetime of DDict
ZSTD_createDStream
ZSTD_createDStream_advanced
ZSTD_createThreadPool
ZSTD_dParam_getBounds
ZSTD_dParam_getBounds() : All parameters must belong to an interval with lower and upper bounds, otherwise they will either trigger an error or be automatically clamped. @return : a structure, ZSTD_bounds, which contains - an error status field, which must be tested using ZSTD_isError() - both lower and upper bounds, inclusive
ZSTD_decodingBufferSize_min
Buffer-less streaming decompression (synchronous mode)
ZSTD_decompress
ZSTD_decompress() : compressedSize : must be the exact size of some number of compressed and/or skippable frames. dstCapacity is an upper bound of originalSize to regenerate. If user cannot imply a maximum upper bound, it’s better to use streaming mode to decompress data. @return : the number of bytes decompressed into dst (<= dstCapacity), or an errorCode if it fails (which can be tested using ZSTD_isError()).
ZSTD_decompressBegin
ZSTD_decompressBegin_usingDDict
ZSTD_decompressBegin_usingDict
ZSTD_decompressBlock
ZSTD_decompressBound
ZSTD_decompressBound() : src should point to the start of a series of ZSTD encoded and/or skippable frames srcSize must be the exact size of this series (i.e. there should be a frame boundary at src + srcSize) @return : - upper-bound for the decompressed size of all data in all successive frames - if an error occurred: ZSTD_CONTENTSIZE_ERROR
ZSTD_decompressContinue
ZSTD_decompressDCtx
ZSTD_decompressDCtx() : Same as ZSTD_decompress(), requires an allocated ZSTD_DCtx. Compatible with sticky parameters (see below).
ZSTD_decompressStream
ZSTD_decompressStream() : Streaming decompression function. Call repetitively to consume full input updating it as necessary. Function will update both input and output pos fields exposing current state via these fields:
ZSTD_decompressStream_simpleArgs
ZSTD_decompressStream_simpleArgs() : Same as ZSTD_decompressStream(), but using only integral types as arguments. This can be helpful for binders from dynamic languages which have troubles handling structures containing memory pointers.
ZSTD_decompress_usingDDict
ZSTD_decompress_usingDDict() : Decompression using a digested Dictionary. Recommended when same dictionary is used multiple times.
ZSTD_decompress_usingDict
ZSTD_decompress_usingDict() : Decompression using a known Dictionary. Dictionary must be identical to the one used during compression. Note : This function loads the dictionary, resulting in significant startup delay. It’s intended for a dictionary used only once. Note : When dict == NULL || dictSize < 8 no dictionary is used.
ZSTD_decompressionMargin
ZSTD_decompressionMargin() : Zstd supports in-place decompression, where the input and output buffers overlap. In this case, the output buffer must be at least (Margin + Output_Size) bytes large, and the input buffer must be at the end of the output buffer.
ZSTD_defaultCLevel
ZSTD_endStream
Equivalent to ZSTD_compressStream2(zcs, output, &emptyInput, ZSTD_e_end).
ZSTD_estimateCCtxSize
ZSTD_estimate*() : These functions make it possible to estimate memory usage of a future {D,C}Ctx, before its creation. This is useful in combination with ZSTD_initStatic(), which makes it possible to employ a static buffer for ZSTD_CCtx* state.
ZSTD_estimateCCtxSize_usingCCtxParams
ZSTD_estimateCCtxSize_usingCParams
ZSTD_estimateCDictSize
ZSTD_estimate?DictSize() : ZSTD_estimateCDictSize() will bet that src size is relatively “small”, and content is copied, like ZSTD_createCDict(). ZSTD_estimateCDictSize_advanced() makes it possible to control compression parameters precisely, like ZSTD_createCDict_advanced(). Note : dictionaries created by reference (ZSTD_dlm_byRef) are logically smaller.
ZSTD_estimateCDictSize_advanced
ZSTD_estimateCStreamSize
ZSTD_estimateCStreamSize() : ZSTD_estimateCStreamSize() will provide a memory budget large enough for streaming compression using any compression level up to the max specified one. It will also consider src size to be arbitrarily “large”, which is a worst case scenario. If srcSize is known to always be small, ZSTD_estimateCStreamSize_usingCParams() can provide a tighter estimation. ZSTD_estimateCStreamSize_usingCParams() can be used in tandem with ZSTD_getCParams() to create cParams from compressionLevel. ZSTD_estimateCStreamSize_usingCCtxParams() can be used in tandem with ZSTD_CCtxParams_setParameter(). Only single-threaded compression is supported. This function will return an error code if ZSTD_c_nbWorkers is >= 1. Note : CStream size estimation is only correct for single-threaded compression. ZSTD_estimateCStreamSize_usingCCtxParams() will return an error code if ZSTD_c_nbWorkers is >= 1. Note 2 : ZSTD_estimateCStreamSize* functions are not compatible with the Block-Level Sequence Producer API at this time. Size estimates assume that no external sequence producer is registered.
ZSTD_estimateCStreamSize_usingCCtxParams
ZSTD_estimateCStreamSize_usingCParams
ZSTD_estimateDCtxSize
ZSTD_estimateDDictSize
ZSTD_estimateDStreamSize
ZSTD_estimateDStreamSize_fromFrame
ZSTD_findDecompressedSize
ZSTD_findDecompressedSize() : src should point to the start of a series of ZSTD encoded and/or skippable frames srcSize must be the exact size of this series (i.e. there should be a frame boundary at src + srcSize) @return : - decompressed size of all data in all successive frames - if the decompressed size cannot be determined: ZSTD_CONTENTSIZE_UNKNOWN - if an error occurred: ZSTD_CONTENTSIZE_ERROR
ZSTD_findFrameCompressedSize
ZSTD_findFrameCompressedSize() : Requires v1.4.0+ src should point to the start of a ZSTD frame or skippable frame. srcSize must be >= first frame size @return : the compressed size of the first frame starting at src, suitable to pass as srcSize to ZSTD_decompress or similar, or an error code if input is invalid
ZSTD_flushStream
Equivalent to ZSTD_compressStream2(zcs, output, &emptyInput, ZSTD_e_flush).
ZSTD_frameHeaderSize
ZSTD_frameHeaderSize() : srcSize must be >= ZSTD_FRAMEHEADERSIZE_PREFIX. @return : size of the Frame Header, or an error code (if srcSize is too small)
ZSTD_freeCCtx
ZSTD_freeCCtxParams
ZSTD_freeCDict
ZSTD_freeCDict() : Function frees memory allocated by ZSTD_createCDict(). If a NULL pointer is passed, no operation is performed.
ZSTD_freeCStream
ZSTD_freeDCtx
ZSTD_freeDDict
ZSTD_freeDDict() : Function frees memory allocated with ZSTD_createDDict() If a NULL pointer is passed, no operation is performed.
ZSTD_freeDStream
ZSTD_freeThreadPool
ZSTD_generateSequences
ZSTD_generateSequences() : WARNING: This function is meant for debugging and informational purposes ONLY! Its implementation is flawed, and it will be deleted in a future version. It is not guaranteed to succeed, as there are several cases where it will give up and fail. You should NOT use this function in production code.
ZSTD_getBlockSize
This API is deprecated in favor of the regular compression API. You can get the frame header down to 2 bytes by setting:
ZSTD_getCParams
ZSTD_getCParams() : @return ZSTD_compressionParameters structure for a selected compression level and estimated srcSize. estimatedSrcSize value is optional, select 0 if not known
ZSTD_getDecompressedSize
ZSTD_getDecompressedSize() : NOTE: This function is now obsolete, in favor of ZSTD_getFrameContentSize(). Both functions work the same way, but ZSTD_getDecompressedSize() blends “empty”, “unknown” and “error” results to the same return value (0), while ZSTD_getFrameContentSize() gives them separate return values. @return : decompressed size of src frame content if known and not empty, 0 otherwise.
ZSTD_getDictID_fromCDict
ZSTD_getDictID_fromCDict() : Requires v1.5.0+ Provides the dictID of the dictionary loaded into cdict. If @return == 0, the dictionary is not conformant to Zstandard specification, or empty. Non-conformant dictionaries can still be loaded, but as content-only dictionaries.
ZSTD_getDictID_fromDDict
ZSTD_getDictID_fromDDict() : Requires v1.4.0+ Provides the dictID of the dictionary loaded into ddict. If @return == 0, the dictionary is not conformant to Zstandard specification, or empty. Non-conformant dictionaries can still be loaded, but as content-only dictionaries.
ZSTD_getDictID_fromDict
ZSTD_getDictID_fromDict() : Requires v1.4.0+ Provides the dictID stored within dictionary. if @return == 0, the dictionary is not conformant with Zstandard specification. It can still be loaded, but as a content-only dictionary.
ZSTD_getDictID_fromFrame
ZSTD_getDictID_fromFrame() : Requires v1.4.0+ Provides the dictID required to decompressed the frame stored within src. If @return == 0, the dictID could not be decoded. This could for one of the following reasons :
ZSTD_getErrorCode
ZSTD_getErrorCode() : convert a size_t function result into a ZSTD_ErrorCode enum type, which can be used to compare with enum list published above
ZSTD_getErrorName
ZSTD_getErrorString
ZSTD_getFrameContentSize
ZSTD_getFrameHeader
ZSTD_getFrameHeader() : decode Frame Header, or requires larger srcSize. @return : 0, zfhPtr is correctly filled, >0, srcSize is too small, value is wanted srcSize amount, or an error code, which can be tested using ZSTD_isError()
ZSTD_getFrameHeader_advanced
ZSTD_getFrameHeader_advanced() : same as ZSTD_getFrameHeader(), with added capability to select a format (like ZSTD_f_zstd1_magicless)
ZSTD_getFrameProgression
ZSTD_getParams
ZSTD_getParams() : same as ZSTD_getCParams(), but @return a full ZSTD_parameters object instead of sub-component ZSTD_compressionParameters. All fields of ZSTD_frameParameters are set to default : contentSize=1, checksum=0, noDictID=0
ZSTD_initCStream
Equivalent to:
ZSTD_initCStream_advanced
ZSTD_initCStream_advanced() : This function is DEPRECATED, and is equivalent to: ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only); ZSTD_CCtx_setParams(zcs, params); ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize); ZSTD_CCtx_loadDictionary(zcs, dict, dictSize);
ZSTD_initCStream_srcSize
ZSTD_initCStream_srcSize() : This function is DEPRECATED, and equivalent to: ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only); ZSTD_CCtx_refCDict(zcs, NULL); // clear the dictionary (if any) ZSTD_CCtx_setParameter(zcs, ZSTD_c_compressionLevel, compressionLevel); ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize);
ZSTD_initCStream_usingCDict
ZSTD_initCStream_usingCDict() : This function is DEPRECATED, and equivalent to: ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only); ZSTD_CCtx_refCDict(zcs, cdict);
ZSTD_initCStream_usingCDict_advanced
ZSTD_initCStream_usingCDict_advanced() : This function is DEPRECATED, and is equivalent to: ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only); ZSTD_CCtx_setFParams(zcs, fParams); ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize); ZSTD_CCtx_refCDict(zcs, cdict);
ZSTD_initCStream_usingDict
ZSTD_initCStream_usingDict() : This function is DEPRECATED, and is equivalent to: ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only); ZSTD_CCtx_setParameter(zcs, ZSTD_c_compressionLevel, compressionLevel); ZSTD_CCtx_loadDictionary(zcs, dict, dictSize);
ZSTD_initDStream
ZSTD_initDStream() : Initialize/reset DStream state for new decompression operation. Call before new decompression operation using same DStream.
ZSTD_initDStream_usingDDict
This function is deprecated, and is equivalent to:
ZSTD_initDStream_usingDict
This function is deprecated, and is equivalent to:
ZSTD_initStaticCCtx
ZSTD_initStatic*() : Initialize an object using a pre-allocated fixed-size buffer. workspace: The memory area to emplace the object into. Provided pointer must be 8-bytes aligned. Buffer must outlive object. workspaceSize: Use ZSTD_estimate*Size() to determine how large workspace must be to support target scenario. @return : pointer to object (same address as workspace, just different type), or NULL if error (size too small, incorrect alignment, etc.) Note : zstd will never resize nor malloc() when using a static buffer. If the object requires more memory than available, zstd will just error out (typically ZSTD_error_memory_allocation). Note 2 : there is no corresponding “free” function. Since workspace is allocated externally, it must be freed externally too. Note 3 : cParams : use ZSTD_getCParams() to convert a compression level into its associated cParams. Limitation 1 : currently not compatible with internal dictionary creation, triggered by ZSTD_CCtx_loadDictionary(), ZSTD_initCStream_usingDict() or ZSTD_initDStream_usingDict(). Limitation 2 : static cctx currently not compatible with multi-threading. Limitation 3 : static dctx is incompatible with legacy support.
ZSTD_initStaticCDict
ZSTD_initStaticCStream
ZSTD_initStaticDCtx
ZSTD_initStaticDDict
ZSTD_initStaticDStream
ZSTD_insertBlock
ZSTD_isError
ZSTD_isFrame
ZSTD_isFrame() : Tells if the content of buffer starts with a valid Frame Identifier. Note : Frame Identifier is 4 bytes. If size < 4, @return will always be 0. Note 2 : Legacy Frame Identifiers are considered valid only if Legacy Support is enabled. Note 3 : Skippable Frame Identifiers are considered valid.
ZSTD_isSkippableFrame
ZSTD_isSkippableFrame() : Tells if the content of buffer starts with a valid Frame Identifier for a skippable frame.
ZSTD_maxCLevel
ZSTD_mergeBlockDelimiters
ZSTD_mergeBlockDelimiters() : Given an array of ZSTD_Sequence, remove all sequences that represent block delimiters/last literals by merging them into the literals of the next sequence.
ZSTD_minCLevel
ZSTD_nextInputType
ZSTD_nextSrcSizeToDecompress
ZSTD_readSkippableFrame
ZSTD_readSkippableFrame() : Retrieves a zstd skippable frame containing data given by src, and writes it to dst buffer.
ZSTD_registerSequenceProducer
ZSTD_registerSequenceProducer() : Instruct zstd to use a block-level external sequence producer function.
ZSTD_resetCStream
ZSTD_resetCStream() : This function is DEPRECATED, and is equivalent to: ZSTD_CCtx_reset(zcs, ZSTD_reset_session_only); ZSTD_CCtx_setPledgedSrcSize(zcs, pledgedSrcSize); Note: ZSTD_resetCStream() interprets pledgedSrcSize == 0 as ZSTD_CONTENTSIZE_UNKNOWN, but ZSTD_CCtx_setPledgedSrcSize() does not do the same, so ZSTD_CONTENTSIZE_UNKNOWN must be explicitly specified.
ZSTD_resetDStream
This function is deprecated, and is equivalent to:
ZSTD_sequenceBound
ZSTD_sequenceBound() : srcSize : size of the input buffer @return : upper-bound for the number of sequences that can be generated from a buffer of srcSize bytes
ZSTD_sizeof_CCtx
ZSTD_sizeof_*() : Requires v1.4.0+ These functions give the current memory usage of selected object. Note that object memory usage can evolve (increase or decrease) over time.
ZSTD_sizeof_CDict
ZSTD_sizeof_CStream
ZSTD_sizeof_DCtx
ZSTD_sizeof_DDict
ZSTD_sizeof_DStream
ZSTD_toFlushNow
ZSTD_toFlushNow() : Tell how many bytes are ready to be flushed immediately. Useful for multithreading scenarios (nbWorkers >= 1). Probe the oldest active job, defined as oldest job not yet entirely flushed, and check its output buffer. @return : amount of data stored in oldest job and ready to be flushed immediately. if @return == 0, it means either :
ZSTD_versionNumber
ZSTD_versionNumber() : Return runtime library version, the value is (MAJOR100100 + MINOR*100 + RELEASE).
ZSTD_versionString
ZSTD_versionString() : Return runtime library version, like “1.4.5”. Requires v1.3.0+.
ZSTD_writeSkippableFrame
ZSTD_writeSkippableFrame() : Generates a zstd skippable frame containing data given by src, and writes it to dst buffer.

Type Aliases§

ZSTD_CCtx
Explicit context
ZSTD_CCtx_params
ZSTD_CDict
Bulk processing dictionary API
ZSTD_CStream
ZSTD_DCtx
ZSTD_DDict
ZSTD_DStream
ZSTD_allocFunction
Custom memory allocation : These prototypes make it possible to pass your own allocation/free functions. ZSTD_customMem is provided at creation time, using ZSTD_create*_advanced() variants listed below. All allocation/free operations will be completed using these custom variants instead of regular <stdlib.h> ones.
ZSTD_freeFunction
ZSTD_inBuffer
Streaming
ZSTD_outBuffer
ZSTD_sequenceProducer_F
ZSTD_threadPool
Thread pool : These prototypes make it possible to share a thread pool among multiple compression contexts. This can limit resources for applications with multiple threads where each one uses a threaded compression mode (via ZSTD_c_nbWorkers parameter). ZSTD_createThreadPool creates a new thread pool with a given number of threads. Note that the lifetime of such pool must exist while being used. ZSTD_CCtx_refThreadPool assigns a thread pool to a context (use NULL argument value to use an internal thread pool). ZSTD_freeThreadPool frees a thread pool, accepts NULL pointer.