pub struct Angle { /* private fields */ }
Expand description
An angle represented by it’s sine and cosine as UnitNegRanges
.
Implementations§
source§impl Angle
impl Angle
sourcepub const fn new(sin: UnitNegRange, cos: UnitNegRange) -> Self
pub const fn new(sin: UnitNegRange, cos: UnitNegRange) -> Self
Construct an Angle from sin and cos values.
sourcepub fn from_y_x(y: f64, x: f64) -> Self
pub fn from_y_x(y: f64, x: f64) -> Self
Construct an Angle from y and x values.
Normalizes the values.
sourcepub const fn sin(self) -> UnitNegRange
pub const fn sin(self) -> UnitNegRange
The sine of the Angle.
sourcepub const fn cos(self) -> UnitNegRange
pub const fn cos(self) -> UnitNegRange
The cosine of the Angle.
sourcepub fn tan(self) -> Option<f64>
pub fn tan(self) -> Option<f64>
The tangent of the Angle.
returns the tangent or None
if self.cos < SQ_EPSILON
sourcepub fn csc(self) -> Option<f64>
pub fn csc(self) -> Option<f64>
The cosecant of the Angle.
returns the cosecant or None
if self.sin < SQ_EPSILON
sourcepub fn sec(self) -> Option<f64>
pub fn sec(self) -> Option<f64>
The secant of the Angle.
returns the secant or None
if self.cos < SQ_EPSILON
sourcepub fn cot(self) -> Option<f64>
pub fn cot(self) -> Option<f64>
The cotangent of the Angle.
returns the cotangent or None
if self.sin < SQ_EPSILON
sourcepub fn abs(self) -> Self
pub fn abs(self) -> Self
The absolute value of the angle, i.e. the angle with a positive sine.
§Examples
use angle_sc::{Angle, Degrees};
let angle_m45 = Angle::from(Degrees(-45.0));
let result_45 = angle_m45.abs();
assert_eq!(Degrees(45.0), Degrees::from(result_45));
sourcepub fn opposite(self) -> Self
pub fn opposite(self) -> Self
The opposite angle on the circle, i.e. +/- 180 degrees.
§Examples
use angle_sc::{Angle, Degrees};
let angle_m30 = Angle::from(Degrees(-30.0));
let result = angle_m30.opposite();
assert_eq!(Degrees(150.0), Degrees::from(result));
sourcepub fn quarter_turn_cw(self) -> Self
pub fn quarter_turn_cw(self) -> Self
A quarter turn clockwise around the circle, i.e. + 90°.
§Examples
use angle_sc::{Angle, Degrees};
let angle_m30 = Angle::from(Degrees(-30.0));
let result = angle_m30.quarter_turn_cw();
assert_eq!(Angle::from(Degrees(60.0)), result);
sourcepub fn quarter_turn_ccw(self) -> Self
pub fn quarter_turn_ccw(self) -> Self
A quarter turn counter-clockwise around the circle, i.e. - 90°.
§Examples
use angle_sc::{Angle, Degrees};
let angle_120 = Angle::from(Degrees(120.0));
let result = angle_120.quarter_turn_ccw();
assert_eq!(Angle::from(Degrees(30.0)), result);
sourcepub fn negate_cos(self) -> Self
pub fn negate_cos(self) -> Self
Negate the cosine of the Angle.
I.e. PI
- angle.radians()
for positive angles,
angle.radians()
+ PI
for negative angles
§Examples
use angle_sc::{Angle, Degrees};
let angle_45 = Angle::from(Degrees(45.0));
let result_45 = angle_45.negate_cos();
assert_eq!(Degrees(135.0), Degrees::from(result_45));
sourcepub fn double(self) -> Self
pub fn double(self) -> Self
Double the Angle. See: Double-angle formulae
§Examples
use angle_sc::{Angle, Degrees};
let angle_30 = Angle::from(Degrees(30.0));
let result_60 = angle_30.double();
// Note: multiplication is not precise...
// assert_eq!(Degrees(60.0), Degrees::from(result_60));
let delta_angle = libm::fabs(60.0 - Degrees::from(result_60).0);
assert!(delta_angle <= 32.0 * f64::EPSILON);
sourcepub fn half(self) -> Self
pub fn half(self) -> Self
Half of the Angle.
See: Half-angle formulae
§Examples
use angle_sc::{Angle, Degrees};
let angle_30 = Angle::from(Degrees(30.0));
let angle_60 = Angle::from(Degrees(60.0));
assert_eq!(angle_30, angle_60.half());
Trait Implementations§
source§impl Add for Angle
impl Add for Angle
source§fn add(self, other: Self) -> Self
fn add(self, other: Self) -> Self
Add two Angles, i.e. a + b
Uses trigonometric identity functions, see:
angle sum and difference identities.
§Examples
use angle_sc::{Angle, Degrees};
let angle_30 = Angle::from(Degrees(30.0));
let angle_60 = Angle::from(Degrees(60.0));
let result_90 = angle_30 + angle_60;
assert_eq!(Degrees(90.0), Degrees::from(result_90));
source§impl<'de> Deserialize<'de> for Angle
impl<'de> Deserialize<'de> for Angle
source§fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>where
D: Deserializer<'de>,
fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>where
D: Deserializer<'de>,
Deserialize an value in Degrees to an Angle.
source§impl From<(Degrees, Degrees)> for Angle
impl From<(Degrees, Degrees)> for Angle
source§fn from(params: (Degrees, Degrees)) -> Self
fn from(params: (Degrees, Degrees)) -> Self
Construct an Angle
from the difference of a pair angles in Degrees:
a - b
Examples:
use angle_sc::{Angle, Degrees, trig};
// Difference of Degrees(-155.0) - Degrees(175.0)
let angle = Angle::from((Degrees(-155.0), Degrees(175.0)));
assert_eq!(0.5, angle.sin().0);
assert_eq!(trig::COS_30_DEGREES, angle.cos().0);
assert_eq!(30.0, Degrees::from(angle).0);
source§impl From<(Radians, Radians)> for Angle
impl From<(Radians, Radians)> for Angle
source§fn from(params: (Radians, Radians)) -> Self
fn from(params: (Radians, Radians)) -> Self
Construct an Angle from the difference of a pair angles in Radians: a - b
Examples:
use angle_sc::{Angle, Radians, trig};
// 6*π - π/3 radians round trip
let angle = Angle::from((
Radians(3.0 * core::f64::consts::TAU),
Radians(core::f64::consts::FRAC_PI_3),
));
assert_eq!(-core::f64::consts::FRAC_PI_3, Radians::from(angle).0);
source§impl From<Degrees> for Angle
impl From<Degrees> for Angle
source§fn from(a: Degrees) -> Self
fn from(a: Degrees) -> Self
Construct an Angle
from an angle in Degrees.
Examples:
use angle_sc::{Angle, Degrees, is_within_tolerance, trig};
let angle = Angle::from(Degrees(60.0));
assert_eq!(trig::COS_30_DEGREES, angle.sin().0);
assert_eq!(0.5, angle.cos().0);
assert_eq!(60.0, Degrees::from(angle).0);
source§impl From<Radians> for Angle
impl From<Radians> for Angle
source§fn from(a: Radians) -> Self
fn from(a: Radians) -> Self
Construct an Angle
from an angle in Radians.
Examples:
use angle_sc::{Angle, Radians, trig};
let angle = Angle::from(Radians(-core::f64::consts::FRAC_PI_6));
assert_eq!(-0.5, angle.sin().0);
assert_eq!(trig::COS_30_DEGREES, angle.cos().0);
assert_eq!(-core::f64::consts::FRAC_PI_6, Radians::from(angle).0);
source§impl Neg for Angle
impl Neg for Angle
source§fn neg(self) -> Self
fn neg(self) -> Self
An implementation of Neg for Angle, i.e. -angle.
Negates the sine of the Angle, does not affect the cosine.
§Examples
use angle_sc::{Angle, Degrees};
let angle_45 = Angle::from(Degrees(45.0));
let result_m45 = -angle_45;
assert_eq!(Degrees(-45.0), Degrees::from(result_m45));
source§impl PartialOrd for Angle
impl PartialOrd for Angle
source§fn partial_cmp(&self, other: &Self) -> Option<Ordering>
fn partial_cmp(&self, other: &Self) -> Option<Ordering>
Compare two Angles, i.e. a < b.
It compares whether an Angle
is clockwise of the other Angle
on the
unit circle.
§Examples
use angle_sc::{Angle, Degrees};
let degrees_120 = Angle::from(Degrees(120.0));
let degrees_m120 = -degrees_120;
assert!(degrees_120 < degrees_m120);
source§impl Sub for Angle
impl Sub for Angle
source§fn sub(self, other: Self) -> Self
fn sub(self, other: Self) -> Self
Subtract two Angles, i.e. a - b
Uses trigonometric identity functions, see:
angle sum and difference identities.
§Examples
use angle_sc::{Angle, Degrees, is_within_tolerance};
let angle_30 = Angle::from(Degrees(30.0));
let angle_60 = Angle::from(Degrees(60.0));
let result_30 = angle_60 - angle_30;
assert!(is_within_tolerance(Degrees(30.0).0, Degrees::from(result_30).0, 32.0 * f64::EPSILON));
impl Copy for Angle
impl StructuralPartialEq for Angle
Auto Trait Implementations§
impl Freeze for Angle
impl RefUnwindSafe for Angle
impl Send for Angle
impl Sync for Angle
impl Unpin for Angle
impl UnwindSafe for Angle
Blanket Implementations§
source§impl<T> BorrowMut<T> for Twhere
T: ?Sized,
impl<T> BorrowMut<T> for Twhere
T: ?Sized,
source§fn borrow_mut(&mut self) -> &mut T
fn borrow_mut(&mut self) -> &mut T
source§impl<T> CloneToUninit for Twhere
T: Clone,
impl<T> CloneToUninit for Twhere
T: Clone,
source§unsafe fn clone_to_uninit(&self, dst: *mut T)
unsafe fn clone_to_uninit(&self, dst: *mut T)
clone_to_uninit
)