Struct async_std::path::PathBuf [−][src]
pub struct PathBuf { /* fields omitted */ }
Expand description
This struct is an async version of std::path::PathBuf
.
Implementations
Extends self
with path
.
If path
is absolute, it replaces the current path.
On Windows:
- if
path
has a root but no prefix (e.g.,\windows
), it replaces everything except for the prefix (if any) ofself
. - if
path
has a prefix but no root, it replacesself
.
Examples
Pushing a relative path extends the existing path:
use async_std::path::PathBuf;
let mut path = PathBuf::from("/tmp");
path.push("file.bk");
assert_eq!(path, PathBuf::from("/tmp/file.bk"));
Pushing an absolute path replaces the existing path:
use async_std::path::PathBuf;
let mut path = PathBuf::from("/tmp");
path.push("/etc");
assert_eq!(path, PathBuf::from("/etc"));
Truncates self
to self.parent
.
Returns false
and does nothing if self.parent
is None
.
Otherwise, returns true
.
Examples
use async_std::path::{Path, PathBuf};
let mut p = PathBuf::from("/test/test.rs");
p.pop();
assert_eq!(Path::new("/test"), p);
p.pop();
assert_eq!(Path::new("/"), p);
Updates self.file_name
to file_name
.
If self.file_name
was None
, this is equivalent to pushing
file_name
.
Otherwise it is equivalent to calling pop
and then pushing
file_name
. The new path will be a sibling of the original path.
(That is, it will have the same parent.)
Examples
use async_std::path::PathBuf;
let mut buf = PathBuf::from("/");
assert!(buf.file_name() == None);
buf.set_file_name("bar");
assert!(buf == PathBuf::from("/bar"));
assert!(buf.file_name().is_some());
buf.set_file_name("baz.txt");
assert!(buf == PathBuf::from("/baz.txt"));
Updates self.extension
to extension
.
Returns false
and does nothing if self.file_name
is None
,
returns true
and updates the extension otherwise.
If self.extension
is None
, the extension is added; otherwise
it is replaced.
Examples
use async_std::path::{Path, PathBuf};
let mut p = PathBuf::from("/feel/the");
p.set_extension("force");
assert_eq!(Path::new("/feel/the.force"), p.as_path());
p.set_extension("dark_side");
assert_eq!(Path::new("/feel/the.dark_side"), p.as_path());
Methods from Deref<Target = Path>
Returns a &str
slice if the Path
is valid unicode.
This conversion may entail doing a check for UTF-8 validity. Note that validation is performed because non-UTF-8 strings are perfectly valid for some OS.
Examples
use async_std::path::Path;
let path = Path::new("foo.txt");
assert_eq!(path.to_str(), Some("foo.txt"));
Converts a Path
to a Cow<str>
.
Any non-Unicode sequences are replaced with
U+FFFD REPLACEMENT CHARACTER
.
Examples
Calling to_string_lossy
on a Path
with valid unicode:
use async_std::path::Path;
let path = Path::new("foo.txt");
assert_eq!(path.to_string_lossy(), "foo.txt");
Had path
contained invalid unicode, the to_string_lossy
call might
have returned "fo�.txt"
.
Returns true
if the Path
is absolute, i.e. if it is independent of
the current directory.
-
On Unix, a path is absolute if it starts with the root, so
is_absolute
andhas_root
are equivalent. -
On Windows, a path is absolute if it has a prefix and starts with the root:
c:\windows
is absolute, whilec:temp
and\temp
are not.
Examples
use async_std::path::Path;
assert!(!Path::new("foo.txt").is_absolute());
Returns true
if the Path
is relative, i.e. not absolute.
See is_absolute
’s documentation for more details.
Examples
use async_std::path::Path;
assert!(Path::new("foo.txt").is_relative());
Returns true
if the Path
has a root.
-
On Unix, a path has a root if it begins with
/
. -
On Windows, a path has a root if it:
- has no prefix and begins with a separator, e.g.
\windows
- has a prefix followed by a separator, e.g.
c:\windows
but notc:windows
- has any non-disk prefix, e.g.
\\server\share
- has no prefix and begins with a separator, e.g.
Examples
use async_std::path::Path;
assert!(Path::new("/etc/passwd").has_root());
Returns the Path
without its final component, if there is one.
Returns None
if the path terminates in a root or prefix.
Examples
use async_std::path::Path;
let path = Path::new("/foo/bar");
let parent = path.parent().unwrap();
assert_eq!(parent, Path::new("/foo"));
let grand_parent = parent.parent().unwrap();
assert_eq!(grand_parent, Path::new("/"));
assert_eq!(grand_parent.parent(), None);
Produces an iterator over Path
and its ancestors.
The iterator will yield the Path
that is returned if the parent
method is used zero
or more times. That means, the iterator will yield &self
, &self.parent().unwrap()
,
&self.parent().unwrap().parent().unwrap()
and so on. If the parent
method returns
None
, the iterator will do likewise. The iterator will always yield at least one value,
namely &self
.
Examples
use async_std::path::Path;
let mut ancestors = Path::new("/foo/bar").ancestors();
assert_eq!(ancestors.next(), Some(Path::new("/foo/bar").into()));
assert_eq!(ancestors.next(), Some(Path::new("/foo").into()));
assert_eq!(ancestors.next(), Some(Path::new("/").into()));
assert_eq!(ancestors.next(), None);
Returns the final component of the Path
, if there is one.
If the path is a normal file, this is the file name. If it’s the path of a directory, this is the directory name.
Returns None
if the path terminates in ..
.
Examples
use std::ffi::OsStr;
use async_std::path::Path;
assert_eq!(Some(OsStr::new("bin")), Path::new("/usr/bin/").file_name());
assert_eq!(Some(OsStr::new("foo.txt")), Path::new("tmp/foo.txt").file_name());
assert_eq!(Some(OsStr::new("foo.txt")), Path::new("foo.txt/.").file_name());
assert_eq!(Some(OsStr::new("foo.txt")), Path::new("foo.txt/.//").file_name());
assert_eq!(None, Path::new("foo.txt/..").file_name());
assert_eq!(None, Path::new("/").file_name());
pub fn strip_prefix<P>(&self, base: P) -> Result<&Path, StripPrefixError> where
P: AsRef<Path>,
pub fn strip_prefix<P>(&self, base: P) -> Result<&Path, StripPrefixError> where
P: AsRef<Path>,
Returns a path that becomes self
when joined onto base
.
Errors
If base
is not a prefix of self
(i.e., starts_with
returns false
), returns Err
.
Examples
use async_std::path::{Path, PathBuf};
let path = Path::new("/test/haha/foo.txt");
assert_eq!(path.strip_prefix("/"), Ok(Path::new("test/haha/foo.txt")));
assert_eq!(path.strip_prefix("/test"), Ok(Path::new("haha/foo.txt")));
assert_eq!(path.strip_prefix("/test/"), Ok(Path::new("haha/foo.txt")));
assert_eq!(path.strip_prefix("/test/haha/foo.txt"), Ok(Path::new("")));
assert_eq!(path.strip_prefix("/test/haha/foo.txt/"), Ok(Path::new("")));
assert_eq!(path.strip_prefix("test").is_ok(), false);
assert_eq!(path.strip_prefix("/haha").is_ok(), false);
let prefix = PathBuf::from("/test/");
assert_eq!(path.strip_prefix(prefix), Ok(Path::new("haha/foo.txt")));
Determines whether base
is a prefix of self
.
Only considers whole path components to match.
Examples
use async_std::path::Path;
let path = Path::new("/etc/passwd");
assert!(path.starts_with("/etc"));
assert!(path.starts_with("/etc/"));
assert!(path.starts_with("/etc/passwd"));
assert!(path.starts_with("/etc/passwd/"));
assert!(!path.starts_with("/e"));
Determines whether child
is a suffix of self
.
Only considers whole path components to match.
Examples
use async_std::path::Path;
let path = Path::new("/etc/passwd");
assert!(path.ends_with("passwd"));
Extracts the stem (non-extension) portion of file_name
.
The stem is:
None
, if there is no file name- The entire file name if there is no embedded
.
- The entire file name if the file name begins with
.
and has no other.
s within - Otherwise, the portion of the file name before the final
.
Examples
use async_std::path::Path;
let path = Path::new("foo.rs");
assert_eq!("foo", path.file_stem().unwrap());
Extracts the extension of file_name
, if possible.
The extension is:
None
, if there is no file nameNone
, if there is no embedded.
None
, if the file name begins with.
and has no other.
s within- Otherwise, the portion of the file name after the final
.
Examples
use async_std::path::Path;
let path = Path::new("foo.rs");
assert_eq!("rs", path.extension().unwrap());
Creates an owned PathBuf
with path
adjoined to self
.
See PathBuf::push
for more details on what it means to adjoin a path.
Examples
use async_std::path::{Path, PathBuf};
assert_eq!(Path::new("/etc").join("passwd"), PathBuf::from("/etc/passwd"));
Creates an owned PathBuf
like self
but with the given file name.
See PathBuf::set_file_name
for more details.
Examples
use async_std::path::{Path, PathBuf};
let path = Path::new("/tmp/foo.txt");
assert_eq!(path.with_file_name("bar.txt"), PathBuf::from("/tmp/bar.txt"));
let path = Path::new("/tmp");
assert_eq!(path.with_file_name("var"), PathBuf::from("/var"));
Creates an owned PathBuf
like self
but with the given extension.
See PathBuf::set_extension
for more details.
Examples
use async_std::path::{Path, PathBuf};
let path = Path::new("foo.rs");
assert_eq!(path.with_extension("txt"), PathBuf::from("foo.txt"));
pub fn components(&self) -> Components<'_>ⓘNotable traits for Components<'a>impl<'a> Iterator for Components<'a> type Item = Component<'a>;
pub fn components(&self) -> Components<'_>ⓘNotable traits for Components<'a>impl<'a> Iterator for Components<'a> type Item = Component<'a>;
impl<'a> Iterator for Components<'a> type Item = Component<'a>;
Produces an iterator over the Component
s of the path.
When parsing the path, there is a small amount of normalization:
-
Repeated separators are ignored, so
a/b
anda//b
both havea
andb
as components. -
Occurrences of
.
are normalized away, except if they are at the beginning of the path. For example,a/./b
,a/b/
,a/b/.
anda/b
all havea
andb
as components, but./a/b
starts with an additionalCurDir
component. -
A trailing slash is normalized away,
/a/b
and/a/b/
are equivalent.
Note that no other normalization takes place; in particular, a/c
and a/b/../c
are distinct, to account for the possibility that b
is a symbolic link (so its parent isn’t a
).
Examples
use std::ffi::OsStr;
use async_std::path::{Path, Component};
let mut components = Path::new("/tmp/foo.txt").components();
assert_eq!(components.next(), Some(Component::RootDir));
assert_eq!(components.next(), Some(Component::Normal(OsStr::new("tmp"))));
assert_eq!(components.next(), Some(Component::Normal(OsStr::new("foo.txt"))));
assert_eq!(components.next(), None);
Produces an iterator over the path’s components viewed as OsStr
slices.
For more information about the particulars of how the path is separated
into components, see components
.
Examples
use std::ffi::OsStr;
use async_std::path::{self, Path};
let mut it = Path::new("/tmp/foo.txt").iter();
assert_eq!(it.next(), Some(OsStr::new(&path::MAIN_SEPARATOR.to_string())));
assert_eq!(it.next(), Some(OsStr::new("tmp")));
assert_eq!(it.next(), Some(OsStr::new("foo.txt")));
assert_eq!(it.next(), None)
Reads the metadata of a file or directory.
This function will traverse symbolic links to query information about the destination file.
This is an alias to fs::metadata
.
Examples
use async_std::path::Path;
let path = Path::new("/Minas/tirith");
let metadata = path.metadata().await?;
println!("{:?}", metadata.file_type());
Reads the metadata of a file or directory without following symbolic links.
This is an alias to fs::symlink_metadata
.
Examples
use async_std::path::Path;
let path = Path::new("/Minas/tirith");
let metadata = path.symlink_metadata().await?;
println!("{:?}", metadata.file_type());
Returns the canonical form of a path.
The returned path is in absolute form with all intermediate components normalized and symbolic links resolved.
This is an alias to fs::canonicalize
.
Examples
use async_std::path::{Path, PathBuf};
let path = Path::new("/foo/test/../test/bar.rs");
assert_eq!(path.canonicalize().await?, PathBuf::from("/foo/test/bar.rs"));
Reads a symbolic link, returning the file that the link points to.
This is an alias to fs::read_link
.
Examples
use async_std::path::Path;
let path = Path::new("/laputa/sky_castle.rs");
let path_link = path.read_link().await?;
Returns a stream over the entries within a directory.
The stream will yield instances of io::Result
<
DirEntry
>
. New
errors may be encountered after an iterator is initially constructed.
This is an alias to fs::read_dir
.
Examples
use async_std::fs;
use async_std::path::Path;
use async_std::prelude::*;
let path = Path::new("/laputa");
let mut dir = fs::read_dir(&path).await?;
while let Some(res) = dir.next().await {
let entry = res?;
println!("{}", entry.file_name().to_string_lossy());
}
Returns true
if the path points at an existing entity.
This function will traverse symbolic links to query information about the
destination file. In case of broken symbolic links this will return false
.
If you cannot access the directory containing the file, e.g., because of a
permission error, this will return false
.
Examples
use async_std::path::Path;
assert_eq!(Path::new("does_not_exist.txt").exists().await, false);
See Also
This is a convenience function that coerces errors to false. If you want to check errors, call fs::metadata.
Returns true
if the path exists on disk and is pointing at a regular file.
This function will traverse symbolic links to query information about the
destination file. In case of broken symbolic links this will return false
.
If you cannot access the directory containing the file, e.g., because of a
permission error, this will return false
.
Examples
use async_std::path::Path;
assert_eq!(Path::new("./is_a_directory/").is_file().await, false);
assert_eq!(Path::new("a_file.txt").is_file().await, true);
See Also
This is a convenience function that coerces errors to false. If you want to check errors, call fs::metadata and handle its Result. Then call fs::Metadata::is_file if it was Ok.
Returns true
if the path exists on disk and is pointing at a directory.
This function will traverse symbolic links to query information about the
destination file. In case of broken symbolic links this will return false
.
If you cannot access the directory containing the file, e.g., because of a
permission error, this will return false
.
Examples
use async_std::path::Path;
assert_eq!(Path::new("./is_a_directory/").is_dir().await, true);
assert_eq!(Path::new("a_file.txt").is_dir().await, false);
See Also
This is a convenience function that coerces errors to false. If you want to check errors, call fs::metadata and handle its Result. Then call fs::Metadata::is_dir if it was Ok.
Trait Implementations
fn extend<'a, S: IntoStream<Item = P> + 'a>(
&'a mut self,
stream: S
) -> Pin<Box<dyn Future<Output = ()> + Send + 'a>>ⓘ where
<S as IntoStream>::IntoStream: Send,
fn extend<'a, S: IntoStream<Item = P> + 'a>(
&'a mut self,
stream: S
) -> Pin<Box<dyn Future<Output = ()> + Send + 'a>>ⓘ where
<S as IntoStream>::IntoStream: Send,
unstable
only.Extends a collection with the contents of a stream.
Extends a collection with the contents of an iterator. Read more
extend_one
)Extends a collection with exactly one element.
extend_one
)Reserves capacity in a collection for the given number of additional elements. Read more
Creates a value from an iterator. Read more
fn from_stream<'a, S: IntoStream<Item = P> + 'a>(
stream: S
) -> Pin<Box<dyn Future<Output = Self> + Send + 'a>>ⓘ where
<S as IntoStream>::IntoStream: Send,
fn from_stream<'a, S: IntoStream<Item = P> + 'a>(
stream: S
) -> Pin<Box<dyn Future<Output = Self> + Send + 'a>>ⓘ where
<S as IntoStream>::IntoStream: Send,
unstable
only.Creates a value from a stream. Read more
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
Auto Trait Implementations
impl RefUnwindSafe for PathBuf
impl UnwindSafe for PathBuf
Blanket Implementations
Mutably borrows from an owned value. Read more