1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
// Note: section 7.2.3 shows which pins support I2C Hs mode

use clock;
use hal::blocking::i2c::{Read, Write, WriteRead};
use sercom::pads::*;
use target_device::sercom0::I2CM;
use target_device::{PM, SERCOM0, SERCOM1, SERCOM2, SERCOM3};
#[cfg(feature = "samd21g18a")]
use target_device::{SERCOM4, SERCOM5};
use time::Hertz;

const BUS_STATE_IDLE: u8 = 1;
const BUS_STATE_OWNED: u8 = 2;

const MASTER_ACT_READ: u8 = 2;
const MASTER_ACT_STOP: u8 = 3;

macro_rules! i2c {
    ([
        $($Type:ident: ($pad0:ident, $pad1:ident, $SERCOM:ident, $powermask:ident, $clock:ident),)+
    ]) => {
        $(
/// Represents the Sercom instance configured to act as an I2C Master.
/// The embedded_hal blocking I2C traits are implemented by this instance.
pub struct $Type {
    sda: $pad0,
    scl: $pad1,
    sercom: $SERCOM,
}

impl $Type {
    /// Configures the sercom instance to work as an I2C Master.
    /// The clock is obtained via the `GenericClockGenerator` type.
    /// `freq` specifies the bus frequency to use for I2C communication.
    /// There are typically a handful of values that tend to be supported;
    /// standard mode is 100.khz(), full speed mode is 400.khz().
    /// The hardware in the atsamd device supports fast mode at 1.mhz()
    /// and fast mode, but there may be additional hardware configuration
    /// missing from the current software implementation that prevents that
    /// from working as-written today.
    ///
    /// ```no_run
    /// let mut i2c = I2CMaster3::new(
    ///     &clocks.sercom3_core(&gclk0).unwrap(),
    ///     400.khz(),
    ///     p.device.SERCOM3,
    ///     &mut p.device.PM,
    ///     // Metro M0 express has I2C on pins PA22, PA23
    ///     pins.pa22.into_pad(&mut pins.port),
    ///     pins.pa23.into_pad(&mut pins.port),
    /// );
    /// ```
    pub fn new<F: Into<Hertz>>(
        clock: &clock::$clock,
        freq: F,
        sercom: $SERCOM,
        pm: &mut PM,
        sda: $pad0,
        scl: $pad1,
    ) -> Self {
        // Power up the peripheral bus clock.
        // safe because we're exclusively owning SERCOM
        pm.apbcmask.modify(|_, w| w.$powermask().set_bit());

        unsafe {
            // reset the sercom instance
            sercom.i2cm.ctrla.modify(|_, w| w.swrst().set_bit());
            // wait for reset to complete
            while sercom.i2cm.syncbusy.read().swrst().bit_is_set()
                || sercom.i2cm.ctrla.read().swrst().bit_is_set()
            {}

            // Put the hardware into i2c master mode
            sercom.i2cm.ctrla.modify(|_, w| w.mode().i2c_master());
            // wait for configuration to take effect
            while sercom.i2cm.syncbusy.read().enable().bit_is_set() {}

            // set the baud rate
            let gclk = clock.freq();
            let baud = (gclk.0 / (2 * freq.into().0) - 1) as u8;
            sercom.i2cm.baud.modify(|_, w| w.baud().bits(baud));

            sercom.i2cm.ctrla.modify(|_, w| w.enable().set_bit());
            // wait for configuration to take effect
            while sercom.i2cm.syncbusy.read().enable().bit_is_set() {}

            // set the bus idle
            sercom
                .i2cm
                .status
                .modify(|_, w| w.busstate().bits(BUS_STATE_IDLE));
            // wait for it to take effect
            while sercom.i2cm.syncbusy.read().sysop().bit_is_set() {}
        }

        Self { sda, scl, sercom }
    }

    /// Breaks the sercom device up into its constituent pins and the SERCOM
    /// instance.  Does not make any changes to power management.
    pub fn free(self) -> ($pad0, $pad1, $SERCOM) {
        (self.sda, self.scl, self.sercom)
    }

    fn start_tx_write(&mut self, addr: u8) -> Result<(), I2CError> {
        loop {
            match self.i2cm().status.read().busstate().bits() {
                BUS_STATE_IDLE | BUS_STATE_OWNED => break,
                _ => continue,
            }
        }

        // Signal start and transmit encoded address.
        unsafe {
            self.i2cm()
                .addr
                .write(|w| w.addr().bits((addr as u16) << 1));
        }

        // wait for transmission to complete
        while !self.i2cm().intflag.read().mb().bit_is_set() {}

        self.status_to_err()
    }

    fn status_to_err(&mut self) -> Result<(), I2CError> {
        let status = self.i2cm().status.read();
        if status.arblost().bit_is_set() {
            return Err(I2CError::ArbitrationLost);
        }
        if status.buserr().bit_is_set() {
            return Err(I2CError::BusError);
        }
        if status.rxnack().bit_is_set() {
            return Err(I2CError::Nack);
        }
        if status.lowtout().bit_is_set() || status.sexttout().bit_is_set()
            || status.mexttout().bit_is_set()
        {
            return Err(I2CError::Timeout);
        }

        Ok(())
    }

    fn start_tx_read(&mut self, addr: u8) -> Result<(), I2CError> {
        loop {
            match self.i2cm().status.read().busstate().bits() {
                BUS_STATE_IDLE | BUS_STATE_OWNED => break,
                _ => continue,
            }
        }

        self.i2cm().intflag.modify(|_, w| w.error().clear_bit());

        // Signal start (or rep start if appropriate)
        // and transmit encoded address.
        unsafe {
            self.i2cm()
                .addr
                .write(|w| w.addr().bits(((addr as u16) << 1) | 1));
        }

        // wait for transmission to complete
        loop {
            let intflag = self.i2cm().intflag.read();
            // If arbitration was lost, it will be signalled via the mb bit
            if intflag.mb().bit_is_set() {
                return Err(I2CError::ArbitrationLost);
            }
            if intflag.sb().bit_is_set() || intflag.error().bit_is_set() {
                break;
            }
        }

        self.status_to_err()
    }

    fn wait_sync(&mut self) {
        while self.i2cm().syncbusy.read().sysop().bit_is_set() {}
    }

    fn cmd(&mut self, cmd: u8) {
        unsafe {
            self.i2cm().ctrlb.modify(|_, w| w.cmd().bits(cmd));
        }
        self.wait_sync();
    }

    fn cmd_stop(&mut self) {
        self.cmd(MASTER_ACT_STOP)
    }

    fn cmd_read(&mut self) {
        unsafe {
            self.i2cm().ctrlb.modify(|_, w| {
                // clear bit means send ack
                w.ackact().clear_bit();
                w.cmd().bits(MASTER_ACT_READ)
            });
        }
        self.wait_sync();
    }

    fn i2cm(&mut self) -> &I2CM {
        unsafe { &self.sercom.i2cm }
    }

    fn send_bytes(&mut self, bytes: &[u8]) -> Result<(), I2CError> {
        for b in bytes {
            unsafe {
                self.i2cm().data.write(|w| w.bits(*b));
            }

            loop {
                let intflag = self.i2cm().intflag.read();
                if intflag.mb().bit_is_set() || intflag.error().bit_is_set() {
                    break;
                }
            }
            self.status_to_err()?;
        }
        Ok(())
    }

    fn read_one(&mut self) -> u8 {
        while !self.i2cm().intflag.read().sb().bit_is_set() {}
        self.i2cm().data.read().bits()
    }

    fn fill_buffer(&mut self, buffer: &mut [u8]) -> Result<(), I2CError> {
        // Some manual iterator gumph because we need to ack bytes after the first.
        let mut iter = buffer.iter_mut();
        *iter.next().expect("buffer len is at least 1") = self.read_one();

        loop {
            match iter.next() {
                None => break,
                Some(dest) => {
                    // Ack the last byte so that we can receive another one
                    self.cmd_read();
                    *dest = self.read_one();
                }
            }
        }

        // arrange to send nack on next command to
        // stop slave from transmitting more data
        self.i2cm().ctrlb.modify(|_, w| w.ackact().set_bit());

        Ok(())
    }

    fn do_write(&mut self, addr: u8, bytes: &[u8]) -> Result<(), I2CError> {
        self.start_tx_write(addr)?;
        self.send_bytes(bytes)
    }

    fn do_read(&mut self, addr: u8, buffer: &mut [u8]) -> Result<(), I2CError> {
        self.start_tx_read(addr)?;
        self.fill_buffer(buffer)
    }

    fn do_write_read(&mut self, addr: u8, bytes: &[u8], buffer: &mut [u8]) -> Result<(), I2CError> {
        self.start_tx_write(addr)?;
        self.send_bytes(bytes)?;
        self.start_tx_read(addr)?;
        self.fill_buffer(buffer)
    }
}
impl Write for $Type {
    type Error = I2CError;

    /// Sends bytes to slave with address `addr`
    fn write(&mut self, addr: u8, bytes: &[u8]) -> Result<(), Self::Error> {
        let res = self.do_write(addr, bytes);
        self.cmd_stop();
        res
    }
}

impl Read for $Type {
    type Error = I2CError;

    fn read(&mut self, addr: u8, buffer: &mut [u8]) -> Result<(), Self::Error> {
        let res = self.do_read(addr, buffer);
        self.cmd_stop();
        res
    }
}

impl WriteRead for $Type {
    type Error = I2CError;

    fn write_read(&mut self, addr: u8, bytes: &[u8], buffer: &mut [u8]) -> Result<(), Self::Error> {
        let res = self.do_write_read(addr, bytes, buffer);
        self.cmd_stop();
        res
    }
}
        )+
    };
}

i2c!([
    I2CMaster0:
        (
            Sercom0Pad0,
            Sercom0Pad1,
            SERCOM0,
            sercom0_,
            Sercom0CoreClock
        ),
    I2CMaster1:
        (
            Sercom1Pad0,
            Sercom1Pad1,
            SERCOM1,
            sercom1_,
            Sercom1CoreClock
        ),
    I2CMaster2:
        (
            Sercom2Pad0,
            Sercom2Pad1,
            SERCOM2,
            sercom2_,
            Sercom2CoreClock
        ),
    I2CMaster3:
        (
            Sercom3Pad0,
            Sercom3Pad1,
            SERCOM3,
            sercom3_,
            Sercom3CoreClock
        ),
]);

#[cfg(feature = "samd21g18a")]
i2c!([
    I2CMaster4:
        (
            Sercom4Pad0,
            Sercom4Pad1,
            SERCOM4,
            sercom4_,
            Sercom4CoreClock
        ),
    I2CMaster5:
        (
            Sercom5Pad0,
            Sercom5Pad1,
            SERCOM5,
            sercom5_,
            Sercom5CoreClock
        ),
]);

#[derive(Debug)]
pub enum I2CError {
    ArbitrationLost,
    AddressError,
    BusError,
    Timeout,
    Nack,
}