Struct aws_sdk_kms::operation::create_key::builders::CreateKeyInputBuilder
source · #[non_exhaustive]pub struct CreateKeyInputBuilder { /* private fields */ }
Expand description
A builder for CreateKeyInput
.
Implementations§
source§impl CreateKeyInputBuilder
impl CreateKeyInputBuilder
sourcepub fn policy(self, input: impl Into<String>) -> Self
pub fn policy(self, input: impl Into<String>) -> Self
The key policy to attach to the KMS key.
If you provide a key policy, it must meet the following criteria:
-
The key policy must allow the calling principal to make a subsequent
PutKeyPolicy
request on the KMS key. This reduces the risk that the KMS key becomes unmanageable. For more information, see Default key policy in the Key Management Service Developer Guide. (To omit this condition, setBypassPolicyLockoutSafetyCheck
to true.) -
Each statement in the key policy must contain one or more principals. The principals in the key policy must exist and be visible to KMS. When you create a new Amazon Web Services principal, you might need to enforce a delay before including the new principal in a key policy because the new principal might not be immediately visible to KMS. For more information, see Changes that I make are not always immediately visible in the Amazon Web Services Identity and Access Management User Guide.
If you do not provide a key policy, KMS attaches a default key policy to the KMS key. For more information, see Default key policy in the Key Management Service Developer Guide.
The key policy size quota is 32 kilobytes (32768 bytes).
For help writing and formatting a JSON policy document, see the IAM JSON Policy Reference in the Identity and Access Management User Guide .
sourcepub fn set_policy(self, input: Option<String>) -> Self
pub fn set_policy(self, input: Option<String>) -> Self
The key policy to attach to the KMS key.
If you provide a key policy, it must meet the following criteria:
-
The key policy must allow the calling principal to make a subsequent
PutKeyPolicy
request on the KMS key. This reduces the risk that the KMS key becomes unmanageable. For more information, see Default key policy in the Key Management Service Developer Guide. (To omit this condition, setBypassPolicyLockoutSafetyCheck
to true.) -
Each statement in the key policy must contain one or more principals. The principals in the key policy must exist and be visible to KMS. When you create a new Amazon Web Services principal, you might need to enforce a delay before including the new principal in a key policy because the new principal might not be immediately visible to KMS. For more information, see Changes that I make are not always immediately visible in the Amazon Web Services Identity and Access Management User Guide.
If you do not provide a key policy, KMS attaches a default key policy to the KMS key. For more information, see Default key policy in the Key Management Service Developer Guide.
The key policy size quota is 32 kilobytes (32768 bytes).
For help writing and formatting a JSON policy document, see the IAM JSON Policy Reference in the Identity and Access Management User Guide .
sourcepub fn get_policy(&self) -> &Option<String>
pub fn get_policy(&self) -> &Option<String>
The key policy to attach to the KMS key.
If you provide a key policy, it must meet the following criteria:
-
The key policy must allow the calling principal to make a subsequent
PutKeyPolicy
request on the KMS key. This reduces the risk that the KMS key becomes unmanageable. For more information, see Default key policy in the Key Management Service Developer Guide. (To omit this condition, setBypassPolicyLockoutSafetyCheck
to true.) -
Each statement in the key policy must contain one or more principals. The principals in the key policy must exist and be visible to KMS. When you create a new Amazon Web Services principal, you might need to enforce a delay before including the new principal in a key policy because the new principal might not be immediately visible to KMS. For more information, see Changes that I make are not always immediately visible in the Amazon Web Services Identity and Access Management User Guide.
If you do not provide a key policy, KMS attaches a default key policy to the KMS key. For more information, see Default key policy in the Key Management Service Developer Guide.
The key policy size quota is 32 kilobytes (32768 bytes).
For help writing and formatting a JSON policy document, see the IAM JSON Policy Reference in the Identity and Access Management User Guide .
sourcepub fn description(self, input: impl Into<String>) -> Self
pub fn description(self, input: impl Into<String>) -> Self
A description of the KMS key. Use a description that helps you decide whether the KMS key is appropriate for a task. The default value is an empty string (no description).
Do not include confidential or sensitive information in this field. This field may be displayed in plaintext in CloudTrail logs and other output.
To set or change the description after the key is created, use UpdateKeyDescription
.
sourcepub fn set_description(self, input: Option<String>) -> Self
pub fn set_description(self, input: Option<String>) -> Self
A description of the KMS key. Use a description that helps you decide whether the KMS key is appropriate for a task. The default value is an empty string (no description).
Do not include confidential or sensitive information in this field. This field may be displayed in plaintext in CloudTrail logs and other output.
To set or change the description after the key is created, use UpdateKeyDescription
.
sourcepub fn get_description(&self) -> &Option<String>
pub fn get_description(&self) -> &Option<String>
A description of the KMS key. Use a description that helps you decide whether the KMS key is appropriate for a task. The default value is an empty string (no description).
Do not include confidential or sensitive information in this field. This field may be displayed in plaintext in CloudTrail logs and other output.
To set or change the description after the key is created, use UpdateKeyDescription
.
sourcepub fn key_usage(self, input: KeyUsageType) -> Self
pub fn key_usage(self, input: KeyUsageType) -> Self
Determines the cryptographic operations for which you can use the KMS key. The default value is ENCRYPT_DECRYPT
. This parameter is optional when you are creating a symmetric encryption KMS key; otherwise, it is required. You can't change the KeyUsage
value after the KMS key is created.
Select only one valid value.
-
For symmetric encryption KMS keys, omit the parameter or specify
ENCRYPT_DECRYPT
. -
For HMAC KMS keys (symmetric), specify
GENERATE_VERIFY_MAC
. -
For asymmetric KMS keys with RSA key material, specify
ENCRYPT_DECRYPT
orSIGN_VERIFY
. -
For asymmetric KMS keys with ECC key material, specify
SIGN_VERIFY
. -
For asymmetric KMS keys with SM2 key material (China Regions only), specify
ENCRYPT_DECRYPT
orSIGN_VERIFY
.
sourcepub fn set_key_usage(self, input: Option<KeyUsageType>) -> Self
pub fn set_key_usage(self, input: Option<KeyUsageType>) -> Self
Determines the cryptographic operations for which you can use the KMS key. The default value is ENCRYPT_DECRYPT
. This parameter is optional when you are creating a symmetric encryption KMS key; otherwise, it is required. You can't change the KeyUsage
value after the KMS key is created.
Select only one valid value.
-
For symmetric encryption KMS keys, omit the parameter or specify
ENCRYPT_DECRYPT
. -
For HMAC KMS keys (symmetric), specify
GENERATE_VERIFY_MAC
. -
For asymmetric KMS keys with RSA key material, specify
ENCRYPT_DECRYPT
orSIGN_VERIFY
. -
For asymmetric KMS keys with ECC key material, specify
SIGN_VERIFY
. -
For asymmetric KMS keys with SM2 key material (China Regions only), specify
ENCRYPT_DECRYPT
orSIGN_VERIFY
.
sourcepub fn get_key_usage(&self) -> &Option<KeyUsageType>
pub fn get_key_usage(&self) -> &Option<KeyUsageType>
Determines the cryptographic operations for which you can use the KMS key. The default value is ENCRYPT_DECRYPT
. This parameter is optional when you are creating a symmetric encryption KMS key; otherwise, it is required. You can't change the KeyUsage
value after the KMS key is created.
Select only one valid value.
-
For symmetric encryption KMS keys, omit the parameter or specify
ENCRYPT_DECRYPT
. -
For HMAC KMS keys (symmetric), specify
GENERATE_VERIFY_MAC
. -
For asymmetric KMS keys with RSA key material, specify
ENCRYPT_DECRYPT
orSIGN_VERIFY
. -
For asymmetric KMS keys with ECC key material, specify
SIGN_VERIFY
. -
For asymmetric KMS keys with SM2 key material (China Regions only), specify
ENCRYPT_DECRYPT
orSIGN_VERIFY
.
sourcepub fn customer_master_key_spec(self, input: CustomerMasterKeySpec) -> Self
👎Deprecated: This parameter has been deprecated. Instead, use the KeySpec parameter.
pub fn customer_master_key_spec(self, input: CustomerMasterKeySpec) -> Self
Instead, use the KeySpec
parameter.
The KeySpec
and CustomerMasterKeySpec
parameters work the same way. Only the names differ. We recommend that you use KeySpec
parameter in your code. However, to avoid breaking changes, KMS supports both parameters.
sourcepub fn set_customer_master_key_spec(
self,
input: Option<CustomerMasterKeySpec>
) -> Self
👎Deprecated: This parameter has been deprecated. Instead, use the KeySpec parameter.
pub fn set_customer_master_key_spec( self, input: Option<CustomerMasterKeySpec> ) -> Self
Instead, use the KeySpec
parameter.
The KeySpec
and CustomerMasterKeySpec
parameters work the same way. Only the names differ. We recommend that you use KeySpec
parameter in your code. However, to avoid breaking changes, KMS supports both parameters.
sourcepub fn get_customer_master_key_spec(&self) -> &Option<CustomerMasterKeySpec>
👎Deprecated: This parameter has been deprecated. Instead, use the KeySpec parameter.
pub fn get_customer_master_key_spec(&self) -> &Option<CustomerMasterKeySpec>
Instead, use the KeySpec
parameter.
The KeySpec
and CustomerMasterKeySpec
parameters work the same way. Only the names differ. We recommend that you use KeySpec
parameter in your code. However, to avoid breaking changes, KMS supports both parameters.
sourcepub fn key_spec(self, input: KeySpec) -> Self
pub fn key_spec(self, input: KeySpec) -> Self
Specifies the type of KMS key to create. The default value, SYMMETRIC_DEFAULT
, creates a KMS key with a 256-bit AES-GCM key that is used for encryption and decryption, except in China Regions, where it creates a 128-bit symmetric key that uses SM4 encryption. For help choosing a key spec for your KMS key, see Choosing a KMS key type in the Key Management Service Developer Guide .
The KeySpec
determines whether the KMS key contains a symmetric key or an asymmetric key pair. It also determines the algorithms that the KMS key supports. You can't change the KeySpec
after the KMS key is created. To further restrict the algorithms that can be used with the KMS key, use a condition key in its key policy or IAM policy. For more information, see kms:EncryptionAlgorithm, kms:MacAlgorithm or kms:Signing Algorithm in the Key Management Service Developer Guide .
Amazon Web Services services that are integrated with KMS use symmetric encryption KMS keys to protect your data. These services do not support asymmetric KMS keys or HMAC KMS keys.
KMS supports the following key specs for KMS keys:
-
Symmetric encryption key (default)
-
SYMMETRIC_DEFAULT
-
-
HMAC keys (symmetric)
-
HMAC_224
-
HMAC_256
-
HMAC_384
-
HMAC_512
-
-
Asymmetric RSA key pairs
-
RSA_2048
-
RSA_3072
-
RSA_4096
-
-
Asymmetric NIST-recommended elliptic curve key pairs
-
ECC_NIST_P256
(secp256r1) -
ECC_NIST_P384
(secp384r1) -
ECC_NIST_P521
(secp521r1)
-
-
Other asymmetric elliptic curve key pairs
-
ECC_SECG_P256K1
(secp256k1), commonly used for cryptocurrencies.
-
-
SM2 key pairs (China Regions only)
-
SM2
-
sourcepub fn set_key_spec(self, input: Option<KeySpec>) -> Self
pub fn set_key_spec(self, input: Option<KeySpec>) -> Self
Specifies the type of KMS key to create. The default value, SYMMETRIC_DEFAULT
, creates a KMS key with a 256-bit AES-GCM key that is used for encryption and decryption, except in China Regions, where it creates a 128-bit symmetric key that uses SM4 encryption. For help choosing a key spec for your KMS key, see Choosing a KMS key type in the Key Management Service Developer Guide .
The KeySpec
determines whether the KMS key contains a symmetric key or an asymmetric key pair. It also determines the algorithms that the KMS key supports. You can't change the KeySpec
after the KMS key is created. To further restrict the algorithms that can be used with the KMS key, use a condition key in its key policy or IAM policy. For more information, see kms:EncryptionAlgorithm, kms:MacAlgorithm or kms:Signing Algorithm in the Key Management Service Developer Guide .
Amazon Web Services services that are integrated with KMS use symmetric encryption KMS keys to protect your data. These services do not support asymmetric KMS keys or HMAC KMS keys.
KMS supports the following key specs for KMS keys:
-
Symmetric encryption key (default)
-
SYMMETRIC_DEFAULT
-
-
HMAC keys (symmetric)
-
HMAC_224
-
HMAC_256
-
HMAC_384
-
HMAC_512
-
-
Asymmetric RSA key pairs
-
RSA_2048
-
RSA_3072
-
RSA_4096
-
-
Asymmetric NIST-recommended elliptic curve key pairs
-
ECC_NIST_P256
(secp256r1) -
ECC_NIST_P384
(secp384r1) -
ECC_NIST_P521
(secp521r1)
-
-
Other asymmetric elliptic curve key pairs
-
ECC_SECG_P256K1
(secp256k1), commonly used for cryptocurrencies.
-
-
SM2 key pairs (China Regions only)
-
SM2
-
sourcepub fn get_key_spec(&self) -> &Option<KeySpec>
pub fn get_key_spec(&self) -> &Option<KeySpec>
Specifies the type of KMS key to create. The default value, SYMMETRIC_DEFAULT
, creates a KMS key with a 256-bit AES-GCM key that is used for encryption and decryption, except in China Regions, where it creates a 128-bit symmetric key that uses SM4 encryption. For help choosing a key spec for your KMS key, see Choosing a KMS key type in the Key Management Service Developer Guide .
The KeySpec
determines whether the KMS key contains a symmetric key or an asymmetric key pair. It also determines the algorithms that the KMS key supports. You can't change the KeySpec
after the KMS key is created. To further restrict the algorithms that can be used with the KMS key, use a condition key in its key policy or IAM policy. For more information, see kms:EncryptionAlgorithm, kms:MacAlgorithm or kms:Signing Algorithm in the Key Management Service Developer Guide .
Amazon Web Services services that are integrated with KMS use symmetric encryption KMS keys to protect your data. These services do not support asymmetric KMS keys or HMAC KMS keys.
KMS supports the following key specs for KMS keys:
-
Symmetric encryption key (default)
-
SYMMETRIC_DEFAULT
-
-
HMAC keys (symmetric)
-
HMAC_224
-
HMAC_256
-
HMAC_384
-
HMAC_512
-
-
Asymmetric RSA key pairs
-
RSA_2048
-
RSA_3072
-
RSA_4096
-
-
Asymmetric NIST-recommended elliptic curve key pairs
-
ECC_NIST_P256
(secp256r1) -
ECC_NIST_P384
(secp384r1) -
ECC_NIST_P521
(secp521r1)
-
-
Other asymmetric elliptic curve key pairs
-
ECC_SECG_P256K1
(secp256k1), commonly used for cryptocurrencies.
-
-
SM2 key pairs (China Regions only)
-
SM2
-
sourcepub fn origin(self, input: OriginType) -> Self
pub fn origin(self, input: OriginType) -> Self
The source of the key material for the KMS key. You cannot change the origin after you create the KMS key. The default is AWS_KMS
, which means that KMS creates the key material.
To create a KMS key with no key material (for imported key material), set this value to EXTERNAL
. For more information about importing key material into KMS, see Importing Key Material in the Key Management Service Developer Guide. The EXTERNAL
origin value is valid only for symmetric KMS keys.
To create a KMS key in an CloudHSM key store and create its key material in the associated CloudHSM cluster, set this value to AWS_CLOUDHSM
. You must also use the CustomKeyStoreId
parameter to identify the CloudHSM key store. The KeySpec
value must be SYMMETRIC_DEFAULT
.
To create a KMS key in an external key store, set this value to EXTERNAL_KEY_STORE
. You must also use the CustomKeyStoreId
parameter to identify the external key store and the XksKeyId
parameter to identify the associated external key. The KeySpec
value must be SYMMETRIC_DEFAULT
.
sourcepub fn set_origin(self, input: Option<OriginType>) -> Self
pub fn set_origin(self, input: Option<OriginType>) -> Self
The source of the key material for the KMS key. You cannot change the origin after you create the KMS key. The default is AWS_KMS
, which means that KMS creates the key material.
To create a KMS key with no key material (for imported key material), set this value to EXTERNAL
. For more information about importing key material into KMS, see Importing Key Material in the Key Management Service Developer Guide. The EXTERNAL
origin value is valid only for symmetric KMS keys.
To create a KMS key in an CloudHSM key store and create its key material in the associated CloudHSM cluster, set this value to AWS_CLOUDHSM
. You must also use the CustomKeyStoreId
parameter to identify the CloudHSM key store. The KeySpec
value must be SYMMETRIC_DEFAULT
.
To create a KMS key in an external key store, set this value to EXTERNAL_KEY_STORE
. You must also use the CustomKeyStoreId
parameter to identify the external key store and the XksKeyId
parameter to identify the associated external key. The KeySpec
value must be SYMMETRIC_DEFAULT
.
sourcepub fn get_origin(&self) -> &Option<OriginType>
pub fn get_origin(&self) -> &Option<OriginType>
The source of the key material for the KMS key. You cannot change the origin after you create the KMS key. The default is AWS_KMS
, which means that KMS creates the key material.
To create a KMS key with no key material (for imported key material), set this value to EXTERNAL
. For more information about importing key material into KMS, see Importing Key Material in the Key Management Service Developer Guide. The EXTERNAL
origin value is valid only for symmetric KMS keys.
To create a KMS key in an CloudHSM key store and create its key material in the associated CloudHSM cluster, set this value to AWS_CLOUDHSM
. You must also use the CustomKeyStoreId
parameter to identify the CloudHSM key store. The KeySpec
value must be SYMMETRIC_DEFAULT
.
To create a KMS key in an external key store, set this value to EXTERNAL_KEY_STORE
. You must also use the CustomKeyStoreId
parameter to identify the external key store and the XksKeyId
parameter to identify the associated external key. The KeySpec
value must be SYMMETRIC_DEFAULT
.
sourcepub fn custom_key_store_id(self, input: impl Into<String>) -> Self
pub fn custom_key_store_id(self, input: impl Into<String>) -> Self
Creates the KMS key in the specified custom key store. The ConnectionState
of the custom key store must be CONNECTED
. To find the CustomKeyStoreID and ConnectionState use the DescribeCustomKeyStores
operation.
This parameter is valid only for symmetric encryption KMS keys in a single Region. You cannot create any other type of KMS key in a custom key store.
When you create a KMS key in an CloudHSM key store, KMS generates a non-exportable 256-bit symmetric key in its associated CloudHSM cluster and associates it with the KMS key. When you create a KMS key in an external key store, you must use the XksKeyId
parameter to specify an external key that serves as key material for the KMS key.
sourcepub fn set_custom_key_store_id(self, input: Option<String>) -> Self
pub fn set_custom_key_store_id(self, input: Option<String>) -> Self
Creates the KMS key in the specified custom key store. The ConnectionState
of the custom key store must be CONNECTED
. To find the CustomKeyStoreID and ConnectionState use the DescribeCustomKeyStores
operation.
This parameter is valid only for symmetric encryption KMS keys in a single Region. You cannot create any other type of KMS key in a custom key store.
When you create a KMS key in an CloudHSM key store, KMS generates a non-exportable 256-bit symmetric key in its associated CloudHSM cluster and associates it with the KMS key. When you create a KMS key in an external key store, you must use the XksKeyId
parameter to specify an external key that serves as key material for the KMS key.
sourcepub fn get_custom_key_store_id(&self) -> &Option<String>
pub fn get_custom_key_store_id(&self) -> &Option<String>
Creates the KMS key in the specified custom key store. The ConnectionState
of the custom key store must be CONNECTED
. To find the CustomKeyStoreID and ConnectionState use the DescribeCustomKeyStores
operation.
This parameter is valid only for symmetric encryption KMS keys in a single Region. You cannot create any other type of KMS key in a custom key store.
When you create a KMS key in an CloudHSM key store, KMS generates a non-exportable 256-bit symmetric key in its associated CloudHSM cluster and associates it with the KMS key. When you create a KMS key in an external key store, you must use the XksKeyId
parameter to specify an external key that serves as key material for the KMS key.
sourcepub fn bypass_policy_lockout_safety_check(self, input: bool) -> Self
pub fn bypass_policy_lockout_safety_check(self, input: bool) -> Self
Skips ("bypasses") the key policy lockout safety check. The default value is false.
Setting this value to true increases the risk that the KMS key becomes unmanageable. Do not set this value to true indiscriminately.
For more information, see Default key policy in the Key Management Service Developer Guide.
Use this parameter only when you intend to prevent the principal that is making the request from making a subsequent PutKeyPolicy request on the KMS key.
sourcepub fn set_bypass_policy_lockout_safety_check(self, input: Option<bool>) -> Self
pub fn set_bypass_policy_lockout_safety_check(self, input: Option<bool>) -> Self
Skips ("bypasses") the key policy lockout safety check. The default value is false.
Setting this value to true increases the risk that the KMS key becomes unmanageable. Do not set this value to true indiscriminately.
For more information, see Default key policy in the Key Management Service Developer Guide.
Use this parameter only when you intend to prevent the principal that is making the request from making a subsequent PutKeyPolicy request on the KMS key.
sourcepub fn get_bypass_policy_lockout_safety_check(&self) -> &Option<bool>
pub fn get_bypass_policy_lockout_safety_check(&self) -> &Option<bool>
Skips ("bypasses") the key policy lockout safety check. The default value is false.
Setting this value to true increases the risk that the KMS key becomes unmanageable. Do not set this value to true indiscriminately.
For more information, see Default key policy in the Key Management Service Developer Guide.
Use this parameter only when you intend to prevent the principal that is making the request from making a subsequent PutKeyPolicy request on the KMS key.
Appends an item to tags
.
To override the contents of this collection use set_tags
.
Assigns one or more tags to the KMS key. Use this parameter to tag the KMS key when it is created. To tag an existing KMS key, use the TagResource
operation.
Do not include confidential or sensitive information in this field. This field may be displayed in plaintext in CloudTrail logs and other output.
Tagging or untagging a KMS key can allow or deny permission to the KMS key. For details, see ABAC for KMS in the Key Management Service Developer Guide.
To use this parameter, you must have kms:TagResource permission in an IAM policy.
Each tag consists of a tag key and a tag value. Both the tag key and the tag value are required, but the tag value can be an empty (null) string. You cannot have more than one tag on a KMS key with the same tag key. If you specify an existing tag key with a different tag value, KMS replaces the current tag value with the specified one.
When you add tags to an Amazon Web Services resource, Amazon Web Services generates a cost allocation report with usage and costs aggregated by tags. Tags can also be used to control access to a KMS key. For details, see Tagging Keys.
Assigns one or more tags to the KMS key. Use this parameter to tag the KMS key when it is created. To tag an existing KMS key, use the TagResource
operation.
Do not include confidential or sensitive information in this field. This field may be displayed in plaintext in CloudTrail logs and other output.
Tagging or untagging a KMS key can allow or deny permission to the KMS key. For details, see ABAC for KMS in the Key Management Service Developer Guide.
To use this parameter, you must have kms:TagResource permission in an IAM policy.
Each tag consists of a tag key and a tag value. Both the tag key and the tag value are required, but the tag value can be an empty (null) string. You cannot have more than one tag on a KMS key with the same tag key. If you specify an existing tag key with a different tag value, KMS replaces the current tag value with the specified one.
When you add tags to an Amazon Web Services resource, Amazon Web Services generates a cost allocation report with usage and costs aggregated by tags. Tags can also be used to control access to a KMS key. For details, see Tagging Keys.
Assigns one or more tags to the KMS key. Use this parameter to tag the KMS key when it is created. To tag an existing KMS key, use the TagResource
operation.
Do not include confidential or sensitive information in this field. This field may be displayed in plaintext in CloudTrail logs and other output.
Tagging or untagging a KMS key can allow or deny permission to the KMS key. For details, see ABAC for KMS in the Key Management Service Developer Guide.
To use this parameter, you must have kms:TagResource permission in an IAM policy.
Each tag consists of a tag key and a tag value. Both the tag key and the tag value are required, but the tag value can be an empty (null) string. You cannot have more than one tag on a KMS key with the same tag key. If you specify an existing tag key with a different tag value, KMS replaces the current tag value with the specified one.
When you add tags to an Amazon Web Services resource, Amazon Web Services generates a cost allocation report with usage and costs aggregated by tags. Tags can also be used to control access to a KMS key. For details, see Tagging Keys.
sourcepub fn multi_region(self, input: bool) -> Self
pub fn multi_region(self, input: bool) -> Self
Creates a multi-Region primary key that you can replicate into other Amazon Web Services Regions. You cannot change this value after you create the KMS key.
For a multi-Region key, set this parameter to True
. For a single-Region KMS key, omit this parameter or set it to False
. The default value is False
.
This operation supports multi-Region keys, an KMS feature that lets you create multiple interoperable KMS keys in different Amazon Web Services Regions. Because these KMS keys have the same key ID, key material, and other metadata, you can use them interchangeably to encrypt data in one Amazon Web Services Region and decrypt it in a different Amazon Web Services Region without re-encrypting the data or making a cross-Region call. For more information about multi-Region keys, see Multi-Region keys in KMS in the Key Management Service Developer Guide.
This value creates a primary key, not a replica. To create a replica key, use the ReplicateKey
operation.
You can create a symmetric or asymmetric multi-Region key, and you can create a multi-Region key with imported key material. However, you cannot create a multi-Region key in a custom key store.
sourcepub fn set_multi_region(self, input: Option<bool>) -> Self
pub fn set_multi_region(self, input: Option<bool>) -> Self
Creates a multi-Region primary key that you can replicate into other Amazon Web Services Regions. You cannot change this value after you create the KMS key.
For a multi-Region key, set this parameter to True
. For a single-Region KMS key, omit this parameter or set it to False
. The default value is False
.
This operation supports multi-Region keys, an KMS feature that lets you create multiple interoperable KMS keys in different Amazon Web Services Regions. Because these KMS keys have the same key ID, key material, and other metadata, you can use them interchangeably to encrypt data in one Amazon Web Services Region and decrypt it in a different Amazon Web Services Region without re-encrypting the data or making a cross-Region call. For more information about multi-Region keys, see Multi-Region keys in KMS in the Key Management Service Developer Guide.
This value creates a primary key, not a replica. To create a replica key, use the ReplicateKey
operation.
You can create a symmetric or asymmetric multi-Region key, and you can create a multi-Region key with imported key material. However, you cannot create a multi-Region key in a custom key store.
sourcepub fn get_multi_region(&self) -> &Option<bool>
pub fn get_multi_region(&self) -> &Option<bool>
Creates a multi-Region primary key that you can replicate into other Amazon Web Services Regions. You cannot change this value after you create the KMS key.
For a multi-Region key, set this parameter to True
. For a single-Region KMS key, omit this parameter or set it to False
. The default value is False
.
This operation supports multi-Region keys, an KMS feature that lets you create multiple interoperable KMS keys in different Amazon Web Services Regions. Because these KMS keys have the same key ID, key material, and other metadata, you can use them interchangeably to encrypt data in one Amazon Web Services Region and decrypt it in a different Amazon Web Services Region without re-encrypting the data or making a cross-Region call. For more information about multi-Region keys, see Multi-Region keys in KMS in the Key Management Service Developer Guide.
This value creates a primary key, not a replica. To create a replica key, use the ReplicateKey
operation.
You can create a symmetric or asymmetric multi-Region key, and you can create a multi-Region key with imported key material. However, you cannot create a multi-Region key in a custom key store.
sourcepub fn xks_key_id(self, input: impl Into<String>) -> Self
pub fn xks_key_id(self, input: impl Into<String>) -> Self
Identifies the external key that serves as key material for the KMS key in an external key store. Specify the ID that the external key store proxy uses to refer to the external key. For help, see the documentation for your external key store proxy.
This parameter is required for a KMS key with an Origin
value of EXTERNAL_KEY_STORE
. It is not valid for KMS keys with any other Origin
value.
The external key must be an existing 256-bit AES symmetric encryption key hosted outside of Amazon Web Services in an external key manager associated with the external key store specified by the CustomKeyStoreId
parameter. This key must be enabled and configured to perform encryption and decryption. Each KMS key in an external key store must use a different external key. For details, see Requirements for a KMS key in an external key store in the Key Management Service Developer Guide.
Each KMS key in an external key store is associated two backing keys. One is key material that KMS generates. The other is the external key specified by this parameter. When you use the KMS key in an external key store to encrypt data, the encryption operation is performed first by KMS using the KMS key material, and then by the external key manager using the specified external key, a process known as double encryption. For details, see Double encryption in the Key Management Service Developer Guide.
sourcepub fn set_xks_key_id(self, input: Option<String>) -> Self
pub fn set_xks_key_id(self, input: Option<String>) -> Self
Identifies the external key that serves as key material for the KMS key in an external key store. Specify the ID that the external key store proxy uses to refer to the external key. For help, see the documentation for your external key store proxy.
This parameter is required for a KMS key with an Origin
value of EXTERNAL_KEY_STORE
. It is not valid for KMS keys with any other Origin
value.
The external key must be an existing 256-bit AES symmetric encryption key hosted outside of Amazon Web Services in an external key manager associated with the external key store specified by the CustomKeyStoreId
parameter. This key must be enabled and configured to perform encryption and decryption. Each KMS key in an external key store must use a different external key. For details, see Requirements for a KMS key in an external key store in the Key Management Service Developer Guide.
Each KMS key in an external key store is associated two backing keys. One is key material that KMS generates. The other is the external key specified by this parameter. When you use the KMS key in an external key store to encrypt data, the encryption operation is performed first by KMS using the KMS key material, and then by the external key manager using the specified external key, a process known as double encryption. For details, see Double encryption in the Key Management Service Developer Guide.
sourcepub fn get_xks_key_id(&self) -> &Option<String>
pub fn get_xks_key_id(&self) -> &Option<String>
Identifies the external key that serves as key material for the KMS key in an external key store. Specify the ID that the external key store proxy uses to refer to the external key. For help, see the documentation for your external key store proxy.
This parameter is required for a KMS key with an Origin
value of EXTERNAL_KEY_STORE
. It is not valid for KMS keys with any other Origin
value.
The external key must be an existing 256-bit AES symmetric encryption key hosted outside of Amazon Web Services in an external key manager associated with the external key store specified by the CustomKeyStoreId
parameter. This key must be enabled and configured to perform encryption and decryption. Each KMS key in an external key store must use a different external key. For details, see Requirements for a KMS key in an external key store in the Key Management Service Developer Guide.
Each KMS key in an external key store is associated two backing keys. One is key material that KMS generates. The other is the external key specified by this parameter. When you use the KMS key in an external key store to encrypt data, the encryption operation is performed first by KMS using the KMS key material, and then by the external key manager using the specified external key, a process known as double encryption. For details, see Double encryption in the Key Management Service Developer Guide.
sourcepub fn build(self) -> Result<CreateKeyInput, BuildError>
pub fn build(self) -> Result<CreateKeyInput, BuildError>
Consumes the builder and constructs a CreateKeyInput
.
source§impl CreateKeyInputBuilder
impl CreateKeyInputBuilder
sourcepub async fn send_with(
self,
client: &Client
) -> Result<CreateKeyOutput, SdkError<CreateKeyError, HttpResponse>>
pub async fn send_with( self, client: &Client ) -> Result<CreateKeyOutput, SdkError<CreateKeyError, HttpResponse>>
Sends a request with this input using the given client.
Trait Implementations§
source§impl Clone for CreateKeyInputBuilder
impl Clone for CreateKeyInputBuilder
source§fn clone(&self) -> CreateKeyInputBuilder
fn clone(&self) -> CreateKeyInputBuilder
1.0.0 · source§fn clone_from(&mut self, source: &Self)
fn clone_from(&mut self, source: &Self)
source
. Read moresource§impl Debug for CreateKeyInputBuilder
impl Debug for CreateKeyInputBuilder
source§impl Default for CreateKeyInputBuilder
impl Default for CreateKeyInputBuilder
source§fn default() -> CreateKeyInputBuilder
fn default() -> CreateKeyInputBuilder
source§impl PartialEq for CreateKeyInputBuilder
impl PartialEq for CreateKeyInputBuilder
source§fn eq(&self, other: &CreateKeyInputBuilder) -> bool
fn eq(&self, other: &CreateKeyInputBuilder) -> bool
self
and other
values to be equal, and is used
by ==
.