#[non_exhaustive]
pub struct GenerateDataKeyInputBuilder { /* private fields */ }
Expand description

A builder for GenerateDataKeyInput.

Implementations§

source§

impl GenerateDataKeyInputBuilder

source

pub fn key_id(self, input: impl Into<String>) -> Self

Specifies the symmetric encryption KMS key that encrypts the data key. You cannot specify an asymmetric KMS key or a KMS key in a custom key store. To get the type and origin of your KMS key, use the DescribeKey operation.

To specify a KMS key, use its key ID, key ARN, alias name, or alias ARN. When using an alias name, prefix it with "alias/". To specify a KMS key in a different Amazon Web Services account, you must use the key ARN or alias ARN.

For example:

  • Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab

  • Key ARN: arn:aws:kms:us-east-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

  • Alias name: alias/ExampleAlias

  • Alias ARN: arn:aws:kms:us-east-2:111122223333:alias/ExampleAlias

To get the key ID and key ARN for a KMS key, use ListKeys or DescribeKey. To get the alias name and alias ARN, use ListAliases.

This field is required.
source

pub fn set_key_id(self, input: Option<String>) -> Self

Specifies the symmetric encryption KMS key that encrypts the data key. You cannot specify an asymmetric KMS key or a KMS key in a custom key store. To get the type and origin of your KMS key, use the DescribeKey operation.

To specify a KMS key, use its key ID, key ARN, alias name, or alias ARN. When using an alias name, prefix it with "alias/". To specify a KMS key in a different Amazon Web Services account, you must use the key ARN or alias ARN.

For example:

  • Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab

  • Key ARN: arn:aws:kms:us-east-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

  • Alias name: alias/ExampleAlias

  • Alias ARN: arn:aws:kms:us-east-2:111122223333:alias/ExampleAlias

To get the key ID and key ARN for a KMS key, use ListKeys or DescribeKey. To get the alias name and alias ARN, use ListAliases.

source

pub fn get_key_id(&self) -> &Option<String>

Specifies the symmetric encryption KMS key that encrypts the data key. You cannot specify an asymmetric KMS key or a KMS key in a custom key store. To get the type and origin of your KMS key, use the DescribeKey operation.

To specify a KMS key, use its key ID, key ARN, alias name, or alias ARN. When using an alias name, prefix it with "alias/". To specify a KMS key in a different Amazon Web Services account, you must use the key ARN or alias ARN.

For example:

  • Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab

  • Key ARN: arn:aws:kms:us-east-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

  • Alias name: alias/ExampleAlias

  • Alias ARN: arn:aws:kms:us-east-2:111122223333:alias/ExampleAlias

To get the key ID and key ARN for a KMS key, use ListKeys or DescribeKey. To get the alias name and alias ARN, use ListAliases.

source

pub fn encryption_context( self, k: impl Into<String>, v: impl Into<String> ) -> Self

Adds a key-value pair to encryption_context.

To override the contents of this collection use set_encryption_context.

Specifies the encryption context that will be used when encrypting the data key.

Do not include confidential or sensitive information in this field. This field may be displayed in plaintext in CloudTrail logs and other output.

An encryption context is a collection of non-secret key-value pairs that represent additional authenticated data. When you use an encryption context to encrypt data, you must specify the same (an exact case-sensitive match) encryption context to decrypt the data. An encryption context is supported only on operations with symmetric encryption KMS keys. On operations with symmetric encryption KMS keys, an encryption context is optional, but it is strongly recommended.

For more information, see Encryption context in the Key Management Service Developer Guide.

source

pub fn set_encryption_context( self, input: Option<HashMap<String, String>> ) -> Self

Specifies the encryption context that will be used when encrypting the data key.

Do not include confidential or sensitive information in this field. This field may be displayed in plaintext in CloudTrail logs and other output.

An encryption context is a collection of non-secret key-value pairs that represent additional authenticated data. When you use an encryption context to encrypt data, you must specify the same (an exact case-sensitive match) encryption context to decrypt the data. An encryption context is supported only on operations with symmetric encryption KMS keys. On operations with symmetric encryption KMS keys, an encryption context is optional, but it is strongly recommended.

For more information, see Encryption context in the Key Management Service Developer Guide.

source

pub fn get_encryption_context(&self) -> &Option<HashMap<String, String>>

Specifies the encryption context that will be used when encrypting the data key.

Do not include confidential or sensitive information in this field. This field may be displayed in plaintext in CloudTrail logs and other output.

An encryption context is a collection of non-secret key-value pairs that represent additional authenticated data. When you use an encryption context to encrypt data, you must specify the same (an exact case-sensitive match) encryption context to decrypt the data. An encryption context is supported only on operations with symmetric encryption KMS keys. On operations with symmetric encryption KMS keys, an encryption context is optional, but it is strongly recommended.

For more information, see Encryption context in the Key Management Service Developer Guide.

source

pub fn number_of_bytes(self, input: i32) -> Self

Specifies the length of the data key in bytes. For example, use the value 64 to generate a 512-bit data key (64 bytes is 512 bits). For 128-bit (16-byte) and 256-bit (32-byte) data keys, use the KeySpec parameter.

You must specify either the KeySpec or the NumberOfBytes parameter (but not both) in every GenerateDataKey request.

source

pub fn set_number_of_bytes(self, input: Option<i32>) -> Self

Specifies the length of the data key in bytes. For example, use the value 64 to generate a 512-bit data key (64 bytes is 512 bits). For 128-bit (16-byte) and 256-bit (32-byte) data keys, use the KeySpec parameter.

You must specify either the KeySpec or the NumberOfBytes parameter (but not both) in every GenerateDataKey request.

source

pub fn get_number_of_bytes(&self) -> &Option<i32>

Specifies the length of the data key in bytes. For example, use the value 64 to generate a 512-bit data key (64 bytes is 512 bits). For 128-bit (16-byte) and 256-bit (32-byte) data keys, use the KeySpec parameter.

You must specify either the KeySpec or the NumberOfBytes parameter (but not both) in every GenerateDataKey request.

source

pub fn key_spec(self, input: DataKeySpec) -> Self

Specifies the length of the data key. Use AES_128 to generate a 128-bit symmetric key, or AES_256 to generate a 256-bit symmetric key.

You must specify either the KeySpec or the NumberOfBytes parameter (but not both) in every GenerateDataKey request.

source

pub fn set_key_spec(self, input: Option<DataKeySpec>) -> Self

Specifies the length of the data key. Use AES_128 to generate a 128-bit symmetric key, or AES_256 to generate a 256-bit symmetric key.

You must specify either the KeySpec or the NumberOfBytes parameter (but not both) in every GenerateDataKey request.

source

pub fn get_key_spec(&self) -> &Option<DataKeySpec>

Specifies the length of the data key. Use AES_128 to generate a 128-bit symmetric key, or AES_256 to generate a 256-bit symmetric key.

You must specify either the KeySpec or the NumberOfBytes parameter (but not both) in every GenerateDataKey request.

source

pub fn grant_tokens(self, input: impl Into<String>) -> Self

Appends an item to grant_tokens.

To override the contents of this collection use set_grant_tokens.

A list of grant tokens.

Use a grant token when your permission to call this operation comes from a new grant that has not yet achieved eventual consistency. For more information, see Grant token and Using a grant token in the Key Management Service Developer Guide.

source

pub fn set_grant_tokens(self, input: Option<Vec<String>>) -> Self

A list of grant tokens.

Use a grant token when your permission to call this operation comes from a new grant that has not yet achieved eventual consistency. For more information, see Grant token and Using a grant token in the Key Management Service Developer Guide.

source

pub fn get_grant_tokens(&self) -> &Option<Vec<String>>

A list of grant tokens.

Use a grant token when your permission to call this operation comes from a new grant that has not yet achieved eventual consistency. For more information, see Grant token and Using a grant token in the Key Management Service Developer Guide.

source

pub fn recipient(self, input: RecipientInfo) -> Self

A signed attestation document from an Amazon Web Services Nitro enclave and the encryption algorithm to use with the enclave's public key. The only valid encryption algorithm is RSAES_OAEP_SHA_256.

This parameter only supports attestation documents for Amazon Web Services Nitro Enclaves. To include this parameter, use the Amazon Web Services Nitro Enclaves SDK or any Amazon Web Services SDK.

When you use this parameter, instead of returning the plaintext data key, KMS encrypts the plaintext data key under the public key in the attestation document, and returns the resulting ciphertext in the CiphertextForRecipient field in the response. This ciphertext can be decrypted only with the private key in the enclave. The CiphertextBlob field in the response contains a copy of the data key encrypted under the KMS key specified by the KeyId parameter. The Plaintext field in the response is null or empty.

For information about the interaction between KMS and Amazon Web Services Nitro Enclaves, see How Amazon Web Services Nitro Enclaves uses KMS in the Key Management Service Developer Guide.

source

pub fn set_recipient(self, input: Option<RecipientInfo>) -> Self

A signed attestation document from an Amazon Web Services Nitro enclave and the encryption algorithm to use with the enclave's public key. The only valid encryption algorithm is RSAES_OAEP_SHA_256.

This parameter only supports attestation documents for Amazon Web Services Nitro Enclaves. To include this parameter, use the Amazon Web Services Nitro Enclaves SDK or any Amazon Web Services SDK.

When you use this parameter, instead of returning the plaintext data key, KMS encrypts the plaintext data key under the public key in the attestation document, and returns the resulting ciphertext in the CiphertextForRecipient field in the response. This ciphertext can be decrypted only with the private key in the enclave. The CiphertextBlob field in the response contains a copy of the data key encrypted under the KMS key specified by the KeyId parameter. The Plaintext field in the response is null or empty.

For information about the interaction between KMS and Amazon Web Services Nitro Enclaves, see How Amazon Web Services Nitro Enclaves uses KMS in the Key Management Service Developer Guide.

source

pub fn get_recipient(&self) -> &Option<RecipientInfo>

A signed attestation document from an Amazon Web Services Nitro enclave and the encryption algorithm to use with the enclave's public key. The only valid encryption algorithm is RSAES_OAEP_SHA_256.

This parameter only supports attestation documents for Amazon Web Services Nitro Enclaves. To include this parameter, use the Amazon Web Services Nitro Enclaves SDK or any Amazon Web Services SDK.

When you use this parameter, instead of returning the plaintext data key, KMS encrypts the plaintext data key under the public key in the attestation document, and returns the resulting ciphertext in the CiphertextForRecipient field in the response. This ciphertext can be decrypted only with the private key in the enclave. The CiphertextBlob field in the response contains a copy of the data key encrypted under the KMS key specified by the KeyId parameter. The Plaintext field in the response is null or empty.

For information about the interaction between KMS and Amazon Web Services Nitro Enclaves, see How Amazon Web Services Nitro Enclaves uses KMS in the Key Management Service Developer Guide.

source

pub fn dry_run(self, input: bool) -> Self

Checks if your request will succeed. DryRun is an optional parameter.

To learn more about how to use this parameter, see Testing your KMS API calls in the Key Management Service Developer Guide.

source

pub fn set_dry_run(self, input: Option<bool>) -> Self

Checks if your request will succeed. DryRun is an optional parameter.

To learn more about how to use this parameter, see Testing your KMS API calls in the Key Management Service Developer Guide.

source

pub fn get_dry_run(&self) -> &Option<bool>

Checks if your request will succeed. DryRun is an optional parameter.

To learn more about how to use this parameter, see Testing your KMS API calls in the Key Management Service Developer Guide.

source

pub fn build(self) -> Result<GenerateDataKeyInput, BuildError>

Consumes the builder and constructs a GenerateDataKeyInput.

source§

impl GenerateDataKeyInputBuilder

source

pub async fn send_with( self, client: &Client ) -> Result<GenerateDataKeyOutput, SdkError<GenerateDataKeyError, HttpResponse>>

Sends a request with this input using the given client.

Trait Implementations§

source§

impl Clone for GenerateDataKeyInputBuilder

source§

fn clone(&self) -> GenerateDataKeyInputBuilder

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl Debug for GenerateDataKeyInputBuilder

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl Default for GenerateDataKeyInputBuilder

source§

fn default() -> GenerateDataKeyInputBuilder

Returns the “default value” for a type. Read more
source§

impl PartialEq for GenerateDataKeyInputBuilder

source§

fn eq(&self, other: &GenerateDataKeyInputBuilder) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl StructuralPartialEq for GenerateDataKeyInputBuilder

Auto Trait Implementations§

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T> Instrument for T

source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<Unshared, Shared> IntoShared<Shared> for Unshared
where Shared: FromUnshared<Unshared>,

source§

fn into_shared(self) -> Shared

Creates a shared type from an unshared type.
source§

impl<T> Same for T

§

type Output = T

Should always be Self
source§

impl<T> ToOwned for T
where T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
source§

impl<T> WithSubscriber for T

source§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
source§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more