pub struct VerifyFluentBuilder { /* private fields */ }
Expand description

Fluent builder constructing a request to Verify.

Verifies a digital signature that was generated by the Sign operation.

Verification confirms that an authorized user signed the message with the specified KMS key and signing algorithm, and the message hasn't changed since it was signed. If the signature is verified, the value of the SignatureValid field in the response is True. If the signature verification fails, the Verify operation fails with an KMSInvalidSignatureException exception.

A digital signature is generated by using the private key in an asymmetric KMS key. The signature is verified by using the public key in the same asymmetric KMS key. For information about asymmetric KMS keys, see Asymmetric KMS keys in the Key Management Service Developer Guide.

To use the Verify operation, specify the same asymmetric KMS key, message, and signing algorithm that were used to produce the signature. The message type does not need to be the same as the one used for signing, but it must indicate whether the value of the Message parameter should be hashed as part of the verification process.

You can also verify the digital signature by using the public key of the KMS key outside of KMS. Use the GetPublicKey operation to download the public key in the asymmetric KMS key and then use the public key to verify the signature outside of KMS. The advantage of using the Verify operation is that it is performed within KMS. As a result, it's easy to call, the operation is performed within the FIPS boundary, it is logged in CloudTrail, and you can use key policy and IAM policy to determine who is authorized to use the KMS key to verify signatures.

To verify a signature outside of KMS with an SM2 public key (China Regions only), you must specify the distinguishing ID. By default, KMS uses 1234567812345678 as the distinguishing ID. For more information, see Offline verification with SM2 key pairs.

The KMS key that you use for this operation must be in a compatible key state. For details, see Key states of KMS keys in the Key Management Service Developer Guide.

Cross-account use: Yes. To perform this operation with a KMS key in a different Amazon Web Services account, specify the key ARN or alias ARN in the value of the KeyId parameter.

Required permissions: kms:Verify (key policy)

Related operations: Sign

Eventual consistency: The KMS API follows an eventual consistency model. For more information, see KMS eventual consistency.

Implementations§

source§

impl VerifyFluentBuilder

source

pub fn as_input(&self) -> &VerifyInputBuilder

Access the Verify as a reference.

source

pub async fn send( self ) -> Result<VerifyOutput, SdkError<VerifyError, HttpResponse>>

Sends the request and returns the response.

If an error occurs, an SdkError will be returned with additional details that can be matched against.

By default, any retryable failures will be retried twice. Retry behavior is configurable with the RetryConfig, which can be set when configuring the client.

source

pub fn customize(self) -> CustomizableOperation<VerifyOutput, VerifyError, Self>

Consumes this builder, creating a customizable operation that can be modified before being sent.

source

pub fn key_id(self, input: impl Into<String>) -> Self

Identifies the asymmetric KMS key that will be used to verify the signature. This must be the same KMS key that was used to generate the signature. If you specify a different KMS key, the signature verification fails.

To specify a KMS key, use its key ID, key ARN, alias name, or alias ARN. When using an alias name, prefix it with "alias/". To specify a KMS key in a different Amazon Web Services account, you must use the key ARN or alias ARN.

For example:

  • Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab

  • Key ARN: arn:aws:kms:us-east-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

  • Alias name: alias/ExampleAlias

  • Alias ARN: arn:aws:kms:us-east-2:111122223333:alias/ExampleAlias

To get the key ID and key ARN for a KMS key, use ListKeys or DescribeKey. To get the alias name and alias ARN, use ListAliases.

source

pub fn set_key_id(self, input: Option<String>) -> Self

Identifies the asymmetric KMS key that will be used to verify the signature. This must be the same KMS key that was used to generate the signature. If you specify a different KMS key, the signature verification fails.

To specify a KMS key, use its key ID, key ARN, alias name, or alias ARN. When using an alias name, prefix it with "alias/". To specify a KMS key in a different Amazon Web Services account, you must use the key ARN or alias ARN.

For example:

  • Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab

  • Key ARN: arn:aws:kms:us-east-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

  • Alias name: alias/ExampleAlias

  • Alias ARN: arn:aws:kms:us-east-2:111122223333:alias/ExampleAlias

To get the key ID and key ARN for a KMS key, use ListKeys or DescribeKey. To get the alias name and alias ARN, use ListAliases.

source

pub fn get_key_id(&self) -> &Option<String>

Identifies the asymmetric KMS key that will be used to verify the signature. This must be the same KMS key that was used to generate the signature. If you specify a different KMS key, the signature verification fails.

To specify a KMS key, use its key ID, key ARN, alias name, or alias ARN. When using an alias name, prefix it with "alias/". To specify a KMS key in a different Amazon Web Services account, you must use the key ARN or alias ARN.

For example:

  • Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab

  • Key ARN: arn:aws:kms:us-east-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

  • Alias name: alias/ExampleAlias

  • Alias ARN: arn:aws:kms:us-east-2:111122223333:alias/ExampleAlias

To get the key ID and key ARN for a KMS key, use ListKeys or DescribeKey. To get the alias name and alias ARN, use ListAliases.

source

pub fn message(self, input: Blob) -> Self

Specifies the message that was signed. You can submit a raw message of up to 4096 bytes, or a hash digest of the message. If you submit a digest, use the MessageType parameter with a value of DIGEST.

If the message specified here is different from the message that was signed, the signature verification fails. A message and its hash digest are considered to be the same message.

source

pub fn set_message(self, input: Option<Blob>) -> Self

Specifies the message that was signed. You can submit a raw message of up to 4096 bytes, or a hash digest of the message. If you submit a digest, use the MessageType parameter with a value of DIGEST.

If the message specified here is different from the message that was signed, the signature verification fails. A message and its hash digest are considered to be the same message.

source

pub fn get_message(&self) -> &Option<Blob>

Specifies the message that was signed. You can submit a raw message of up to 4096 bytes, or a hash digest of the message. If you submit a digest, use the MessageType parameter with a value of DIGEST.

If the message specified here is different from the message that was signed, the signature verification fails. A message and its hash digest are considered to be the same message.

source

pub fn message_type(self, input: MessageType) -> Self

Tells KMS whether the value of the Message parameter should be hashed as part of the signing algorithm. Use RAW for unhashed messages; use DIGEST for message digests, which are already hashed.

When the value of MessageType is RAW, KMS uses the standard signing algorithm, which begins with a hash function. When the value is DIGEST, KMS skips the hashing step in the signing algorithm.

Use the DIGEST value only when the value of the Message parameter is a message digest. If you use the DIGEST value with an unhashed message, the security of the verification operation can be compromised.

When the value of MessageTypeis DIGEST, the length of the Message value must match the length of hashed messages for the specified signing algorithm.

You can submit a message digest and omit the MessageType or specify RAW so the digest is hashed again while signing. However, if the signed message is hashed once while signing, but twice while verifying, verification fails, even when the message hasn't changed.

The hashing algorithm in that Verify uses is based on the SigningAlgorithm value.

  • Signing algorithms that end in SHA_256 use the SHA_256 hashing algorithm.

  • Signing algorithms that end in SHA_384 use the SHA_384 hashing algorithm.

  • Signing algorithms that end in SHA_512 use the SHA_512 hashing algorithm.

  • SM2DSA uses the SM3 hashing algorithm. For details, see Offline verification with SM2 key pairs.

source

pub fn set_message_type(self, input: Option<MessageType>) -> Self

Tells KMS whether the value of the Message parameter should be hashed as part of the signing algorithm. Use RAW for unhashed messages; use DIGEST for message digests, which are already hashed.

When the value of MessageType is RAW, KMS uses the standard signing algorithm, which begins with a hash function. When the value is DIGEST, KMS skips the hashing step in the signing algorithm.

Use the DIGEST value only when the value of the Message parameter is a message digest. If you use the DIGEST value with an unhashed message, the security of the verification operation can be compromised.

When the value of MessageTypeis DIGEST, the length of the Message value must match the length of hashed messages for the specified signing algorithm.

You can submit a message digest and omit the MessageType or specify RAW so the digest is hashed again while signing. However, if the signed message is hashed once while signing, but twice while verifying, verification fails, even when the message hasn't changed.

The hashing algorithm in that Verify uses is based on the SigningAlgorithm value.

  • Signing algorithms that end in SHA_256 use the SHA_256 hashing algorithm.

  • Signing algorithms that end in SHA_384 use the SHA_384 hashing algorithm.

  • Signing algorithms that end in SHA_512 use the SHA_512 hashing algorithm.

  • SM2DSA uses the SM3 hashing algorithm. For details, see Offline verification with SM2 key pairs.

source

pub fn get_message_type(&self) -> &Option<MessageType>

Tells KMS whether the value of the Message parameter should be hashed as part of the signing algorithm. Use RAW for unhashed messages; use DIGEST for message digests, which are already hashed.

When the value of MessageType is RAW, KMS uses the standard signing algorithm, which begins with a hash function. When the value is DIGEST, KMS skips the hashing step in the signing algorithm.

Use the DIGEST value only when the value of the Message parameter is a message digest. If you use the DIGEST value with an unhashed message, the security of the verification operation can be compromised.

When the value of MessageTypeis DIGEST, the length of the Message value must match the length of hashed messages for the specified signing algorithm.

You can submit a message digest and omit the MessageType or specify RAW so the digest is hashed again while signing. However, if the signed message is hashed once while signing, but twice while verifying, verification fails, even when the message hasn't changed.

The hashing algorithm in that Verify uses is based on the SigningAlgorithm value.

  • Signing algorithms that end in SHA_256 use the SHA_256 hashing algorithm.

  • Signing algorithms that end in SHA_384 use the SHA_384 hashing algorithm.

  • Signing algorithms that end in SHA_512 use the SHA_512 hashing algorithm.

  • SM2DSA uses the SM3 hashing algorithm. For details, see Offline verification with SM2 key pairs.

source

pub fn signature(self, input: Blob) -> Self

The signature that the Sign operation generated.

source

pub fn set_signature(self, input: Option<Blob>) -> Self

The signature that the Sign operation generated.

source

pub fn get_signature(&self) -> &Option<Blob>

The signature that the Sign operation generated.

source

pub fn signing_algorithm(self, input: SigningAlgorithmSpec) -> Self

The signing algorithm that was used to sign the message. If you submit a different algorithm, the signature verification fails.

source

pub fn set_signing_algorithm(self, input: Option<SigningAlgorithmSpec>) -> Self

The signing algorithm that was used to sign the message. If you submit a different algorithm, the signature verification fails.

source

pub fn get_signing_algorithm(&self) -> &Option<SigningAlgorithmSpec>

The signing algorithm that was used to sign the message. If you submit a different algorithm, the signature verification fails.

source

pub fn grant_tokens(self, input: impl Into<String>) -> Self

Appends an item to GrantTokens.

To override the contents of this collection use set_grant_tokens.

A list of grant tokens.

Use a grant token when your permission to call this operation comes from a new grant that has not yet achieved eventual consistency. For more information, see Grant token and Using a grant token in the Key Management Service Developer Guide.

source

pub fn set_grant_tokens(self, input: Option<Vec<String>>) -> Self

A list of grant tokens.

Use a grant token when your permission to call this operation comes from a new grant that has not yet achieved eventual consistency. For more information, see Grant token and Using a grant token in the Key Management Service Developer Guide.

source

pub fn get_grant_tokens(&self) -> &Option<Vec<String>>

A list of grant tokens.

Use a grant token when your permission to call this operation comes from a new grant that has not yet achieved eventual consistency. For more information, see Grant token and Using a grant token in the Key Management Service Developer Guide.

source

pub fn dry_run(self, input: bool) -> Self

Checks if your request will succeed. DryRun is an optional parameter.

To learn more about how to use this parameter, see Testing your KMS API calls in the Key Management Service Developer Guide.

source

pub fn set_dry_run(self, input: Option<bool>) -> Self

Checks if your request will succeed. DryRun is an optional parameter.

To learn more about how to use this parameter, see Testing your KMS API calls in the Key Management Service Developer Guide.

source

pub fn get_dry_run(&self) -> &Option<bool>

Checks if your request will succeed. DryRun is an optional parameter.

To learn more about how to use this parameter, see Testing your KMS API calls in the Key Management Service Developer Guide.

Trait Implementations§

source§

impl Clone for VerifyFluentBuilder

source§

fn clone(&self) -> VerifyFluentBuilder

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl Debug for VerifyFluentBuilder

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more

Auto Trait Implementations§

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T> Instrument for T

source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<Unshared, Shared> IntoShared<Shared> for Unshared
where Shared: FromUnshared<Unshared>,

source§

fn into_shared(self) -> Shared

Creates a shared type from an unshared type.
source§

impl<T> Same for T

§

type Output = T

Should always be Self
source§

impl<T> ToOwned for T
where T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
source§

impl<T> WithSubscriber for T

source§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
source§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more