#[non_exhaustive]
pub struct VerifyInput { pub key_id: Option<String>, pub message: Option<Blob>, pub message_type: Option<MessageType>, pub signature: Option<Blob>, pub signing_algorithm: Option<SigningAlgorithmSpec>, pub grant_tokens: Option<Vec<String>>, pub dry_run: Option<bool>, }

Fields (Non-exhaustive)§

This struct is marked as non-exhaustive
Non-exhaustive structs could have additional fields added in future. Therefore, non-exhaustive structs cannot be constructed in external crates using the traditional Struct { .. } syntax; cannot be matched against without a wildcard ..; and struct update syntax will not work.
§key_id: Option<String>

Identifies the asymmetric KMS key that will be used to verify the signature. This must be the same KMS key that was used to generate the signature. If you specify a different KMS key, the signature verification fails.

To specify a KMS key, use its key ID, key ARN, alias name, or alias ARN. When using an alias name, prefix it with "alias/". To specify a KMS key in a different Amazon Web Services account, you must use the key ARN or alias ARN.

For example:

  • Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab

  • Key ARN: arn:aws:kms:us-east-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

  • Alias name: alias/ExampleAlias

  • Alias ARN: arn:aws:kms:us-east-2:111122223333:alias/ExampleAlias

To get the key ID and key ARN for a KMS key, use ListKeys or DescribeKey. To get the alias name and alias ARN, use ListAliases.

§message: Option<Blob>

Specifies the message that was signed. You can submit a raw message of up to 4096 bytes, or a hash digest of the message. If you submit a digest, use the MessageType parameter with a value of DIGEST.

If the message specified here is different from the message that was signed, the signature verification fails. A message and its hash digest are considered to be the same message.

§message_type: Option<MessageType>

Tells KMS whether the value of the Message parameter should be hashed as part of the signing algorithm. Use RAW for unhashed messages; use DIGEST for message digests, which are already hashed.

When the value of MessageType is RAW, KMS uses the standard signing algorithm, which begins with a hash function. When the value is DIGEST, KMS skips the hashing step in the signing algorithm.

Use the DIGEST value only when the value of the Message parameter is a message digest. If you use the DIGEST value with an unhashed message, the security of the verification operation can be compromised.

When the value of MessageTypeis DIGEST, the length of the Message value must match the length of hashed messages for the specified signing algorithm.

You can submit a message digest and omit the MessageType or specify RAW so the digest is hashed again while signing. However, if the signed message is hashed once while signing, but twice while verifying, verification fails, even when the message hasn't changed.

The hashing algorithm in that Verify uses is based on the SigningAlgorithm value.

  • Signing algorithms that end in SHA_256 use the SHA_256 hashing algorithm.

  • Signing algorithms that end in SHA_384 use the SHA_384 hashing algorithm.

  • Signing algorithms that end in SHA_512 use the SHA_512 hashing algorithm.

  • SM2DSA uses the SM3 hashing algorithm. For details, see Offline verification with SM2 key pairs.

§signature: Option<Blob>

The signature that the Sign operation generated.

§signing_algorithm: Option<SigningAlgorithmSpec>

The signing algorithm that was used to sign the message. If you submit a different algorithm, the signature verification fails.

§grant_tokens: Option<Vec<String>>

A list of grant tokens.

Use a grant token when your permission to call this operation comes from a new grant that has not yet achieved eventual consistency. For more information, see Grant token and Using a grant token in the Key Management Service Developer Guide.

§dry_run: Option<bool>

Checks if your request will succeed. DryRun is an optional parameter.

To learn more about how to use this parameter, see Testing your KMS API calls in the Key Management Service Developer Guide.

Implementations§

source§

impl VerifyInput

source

pub fn key_id(&self) -> Option<&str>

Identifies the asymmetric KMS key that will be used to verify the signature. This must be the same KMS key that was used to generate the signature. If you specify a different KMS key, the signature verification fails.

To specify a KMS key, use its key ID, key ARN, alias name, or alias ARN. When using an alias name, prefix it with "alias/". To specify a KMS key in a different Amazon Web Services account, you must use the key ARN or alias ARN.

For example:

  • Key ID: 1234abcd-12ab-34cd-56ef-1234567890ab

  • Key ARN: arn:aws:kms:us-east-2:111122223333:key/1234abcd-12ab-34cd-56ef-1234567890ab

  • Alias name: alias/ExampleAlias

  • Alias ARN: arn:aws:kms:us-east-2:111122223333:alias/ExampleAlias

To get the key ID and key ARN for a KMS key, use ListKeys or DescribeKey. To get the alias name and alias ARN, use ListAliases.

source

pub fn message(&self) -> Option<&Blob>

Specifies the message that was signed. You can submit a raw message of up to 4096 bytes, or a hash digest of the message. If you submit a digest, use the MessageType parameter with a value of DIGEST.

If the message specified here is different from the message that was signed, the signature verification fails. A message and its hash digest are considered to be the same message.

source

pub fn message_type(&self) -> Option<&MessageType>

Tells KMS whether the value of the Message parameter should be hashed as part of the signing algorithm. Use RAW for unhashed messages; use DIGEST for message digests, which are already hashed.

When the value of MessageType is RAW, KMS uses the standard signing algorithm, which begins with a hash function. When the value is DIGEST, KMS skips the hashing step in the signing algorithm.

Use the DIGEST value only when the value of the Message parameter is a message digest. If you use the DIGEST value with an unhashed message, the security of the verification operation can be compromised.

When the value of MessageTypeis DIGEST, the length of the Message value must match the length of hashed messages for the specified signing algorithm.

You can submit a message digest and omit the MessageType or specify RAW so the digest is hashed again while signing. However, if the signed message is hashed once while signing, but twice while verifying, verification fails, even when the message hasn't changed.

The hashing algorithm in that Verify uses is based on the SigningAlgorithm value.

  • Signing algorithms that end in SHA_256 use the SHA_256 hashing algorithm.

  • Signing algorithms that end in SHA_384 use the SHA_384 hashing algorithm.

  • Signing algorithms that end in SHA_512 use the SHA_512 hashing algorithm.

  • SM2DSA uses the SM3 hashing algorithm. For details, see Offline verification with SM2 key pairs.

source

pub fn signature(&self) -> Option<&Blob>

The signature that the Sign operation generated.

source

pub fn signing_algorithm(&self) -> Option<&SigningAlgorithmSpec>

The signing algorithm that was used to sign the message. If you submit a different algorithm, the signature verification fails.

source

pub fn grant_tokens(&self) -> &[String]

A list of grant tokens.

Use a grant token when your permission to call this operation comes from a new grant that has not yet achieved eventual consistency. For more information, see Grant token and Using a grant token in the Key Management Service Developer Guide.

If no value was sent for this field, a default will be set. If you want to determine if no value was sent, use .grant_tokens.is_none().

source

pub fn dry_run(&self) -> Option<bool>

Checks if your request will succeed. DryRun is an optional parameter.

To learn more about how to use this parameter, see Testing your KMS API calls in the Key Management Service Developer Guide.

source§

impl VerifyInput

source

pub fn builder() -> VerifyInputBuilder

Creates a new builder-style object to manufacture VerifyInput.

Trait Implementations§

source§

impl Clone for VerifyInput

source§

fn clone(&self) -> VerifyInput

Returns a copy of the value. Read more
1.0.0 · source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
source§

impl Debug for VerifyInput

source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
source§

impl PartialEq for VerifyInput

source§

fn eq(&self, other: &VerifyInput) -> bool

This method tests for self and other values to be equal, and is used by ==.
1.0.0 · source§

fn ne(&self, other: &Rhs) -> bool

This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
source§

impl StructuralPartialEq for VerifyInput

Auto Trait Implementations§

Blanket Implementations§

source§

impl<T> Any for T
where T: 'static + ?Sized,

source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
source§

impl<T> Borrow<T> for T
where T: ?Sized,

source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
source§

impl<T> From<T> for T

source§

fn from(t: T) -> T

Returns the argument unchanged.

source§

impl<T> Instrument for T

source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
source§

impl<T, U> Into<U> for T
where U: From<T>,

source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

source§

impl<Unshared, Shared> IntoShared<Shared> for Unshared
where Shared: FromUnshared<Unshared>,

source§

fn into_shared(self) -> Shared

Creates a shared type from an unshared type.
source§

impl<T> Same for T

§

type Output = T

Should always be Self
source§

impl<T> ToOwned for T
where T: Clone,

§

type Owned = T

The resulting type after obtaining ownership.
source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

§

type Error = Infallible

The type returned in the event of a conversion error.
source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
source§

impl<T> WithSubscriber for T

source§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
source§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more