aws_sdk_s3::operation::put_bucket_encryption::builders

Struct PutBucketEncryptionFluentBuilder

Source
pub struct PutBucketEncryptionFluentBuilder { /* private fields */ }
Expand description

Fluent builder constructing a request to PutBucketEncryption.

This operation configures default encryption and Amazon S3 Bucket Keys for an existing bucket.

Directory buckets - For directory buckets, you must make requests for this API operation to the Regional endpoint. These endpoints support path-style requests in the format https://s3express-control.region_code.amazonaws.com/bucket-name . Virtual-hosted-style requests aren't supported. For more information, see Regional and Zonal endpoints in the Amazon S3 User Guide.

By default, all buckets have a default encryption configuration that uses server-side encryption with Amazon S3 managed keys (SSE-S3).

  • General purpose buckets

    • You can optionally configure default encryption for a bucket by using server-side encryption with Key Management Service (KMS) keys (SSE-KMS) or dual-layer server-side encryption with Amazon Web Services KMS keys (DSSE-KMS). If you specify default encryption by using SSE-KMS, you can also configure Amazon S3 Bucket Keys. For information about the bucket default encryption feature, see Amazon S3 Bucket Default Encryption in the Amazon S3 User Guide.

    • If you use PutBucketEncryption to set your default bucket encryption to SSE-KMS, you should verify that your KMS key ID is correct. Amazon S3 doesn't validate the KMS key ID provided in PutBucketEncryption requests.

  • Directory buckets - You can optionally configure default encryption for a bucket by using server-side encryption with Key Management Service (KMS) keys (SSE-KMS).

    • We recommend that the bucket's default encryption uses the desired encryption configuration and you don't override the bucket default encryption in your CreateSession requests or PUT object requests. Then, new objects are automatically encrypted with the desired encryption settings. For more information about the encryption overriding behaviors in directory buckets, see Specifying server-side encryption with KMS for new object uploads.

    • Your SSE-KMS configuration can only support 1 customer managed key per directory bucket for the lifetime of the bucket. The Amazon Web Services managed key (aws/s3) isn't supported.

    • S3 Bucket Keys are always enabled for GET and PUT operations in a directory bucket and can’t be disabled. S3 Bucket Keys aren't supported, when you copy SSE-KMS encrypted objects from general purpose buckets to directory buckets, from directory buckets to general purpose buckets, or between directory buckets, through CopyObject, UploadPartCopy, the Copy operation in Batch Operations, or the import jobs. In this case, Amazon S3 makes a call to KMS every time a copy request is made for a KMS-encrypted object.

    • When you specify an KMS customer managed key for encryption in your directory bucket, only use the key ID or key ARN. The key alias format of the KMS key isn't supported.

    • For directory buckets, if you use PutBucketEncryption to set your default bucket encryption to SSE-KMS, Amazon S3 validates the KMS key ID provided in PutBucketEncryption requests.

If you're specifying a customer managed KMS key, we recommend using a fully qualified KMS key ARN. If you use a KMS key alias instead, then KMS resolves the key within the requester’s account. This behavior can result in data that's encrypted with a KMS key that belongs to the requester, and not the bucket owner.

Also, this action requires Amazon Web Services Signature Version 4. For more information, see Authenticating Requests (Amazon Web Services Signature Version 4).

Permissions
  • General purpose bucket permissions - The s3:PutEncryptionConfiguration permission is required in a policy. The bucket owner has this permission by default. The bucket owner can grant this permission to others. For more information about permissions, see Permissions Related to Bucket Operations and Managing Access Permissions to Your Amazon S3 Resources in the Amazon S3 User Guide.

  • Directory bucket permissions - To grant access to this API operation, you must have the s3express:PutEncryptionConfiguration permission in an IAM identity-based policy instead of a bucket policy. Cross-account access to this API operation isn't supported. This operation can only be performed by the Amazon Web Services account that owns the resource. For more information about directory bucket policies and permissions, see Amazon Web Services Identity and Access Management (IAM) for S3 Express One Zone in the Amazon S3 User Guide.

    To set a directory bucket default encryption with SSE-KMS, you must also have the kms:GenerateDataKey and the kms:Decrypt permissions in IAM identity-based policies and KMS key policies for the target KMS key.

HTTP Host header syntax

Directory buckets - The HTTP Host header syntax is s3express-control.region.amazonaws.com.

The following operations are related to PutBucketEncryption:

Implementations§

Source§

impl PutBucketEncryptionFluentBuilder

Source

pub fn as_input(&self) -> &PutBucketEncryptionInputBuilder

Access the PutBucketEncryption as a reference.

Source

pub async fn send( self, ) -> Result<PutBucketEncryptionOutput, SdkError<PutBucketEncryptionError, HttpResponse>>

Sends the request and returns the response.

If an error occurs, an SdkError will be returned with additional details that can be matched against.

By default, any retryable failures will be retried twice. Retry behavior is configurable with the RetryConfig, which can be set when configuring the client.

Source

pub fn customize( self, ) -> CustomizableOperation<PutBucketEncryptionOutput, PutBucketEncryptionError, Self>

Consumes this builder, creating a customizable operation that can be modified before being sent.

Source

pub fn bucket(self, input: impl Into<String>) -> Self

Specifies default encryption for a bucket using server-side encryption with different key options.

Directory buckets - When you use this operation with a directory bucket, you must use path-style requests in the format https://s3express-control.region_code.amazonaws.com/bucket-name . Virtual-hosted-style requests aren't supported. Directory bucket names must be unique in the chosen Availability Zone. Bucket names must also follow the format bucket_base_name--az_id--x-s3 (for example, DOC-EXAMPLE-BUCKET--usw2-az1--x-s3). For information about bucket naming restrictions, see Directory bucket naming rules in the Amazon S3 User Guide

Source

pub fn set_bucket(self, input: Option<String>) -> Self

Specifies default encryption for a bucket using server-side encryption with different key options.

Directory buckets - When you use this operation with a directory bucket, you must use path-style requests in the format https://s3express-control.region_code.amazonaws.com/bucket-name . Virtual-hosted-style requests aren't supported. Directory bucket names must be unique in the chosen Availability Zone. Bucket names must also follow the format bucket_base_name--az_id--x-s3 (for example, DOC-EXAMPLE-BUCKET--usw2-az1--x-s3). For information about bucket naming restrictions, see Directory bucket naming rules in the Amazon S3 User Guide

Source

pub fn get_bucket(&self) -> &Option<String>

Specifies default encryption for a bucket using server-side encryption with different key options.

Directory buckets - When you use this operation with a directory bucket, you must use path-style requests in the format https://s3express-control.region_code.amazonaws.com/bucket-name . Virtual-hosted-style requests aren't supported. Directory bucket names must be unique in the chosen Availability Zone. Bucket names must also follow the format bucket_base_name--az_id--x-s3 (for example, DOC-EXAMPLE-BUCKET--usw2-az1--x-s3). For information about bucket naming restrictions, see Directory bucket naming rules in the Amazon S3 User Guide

Source

pub fn content_md5(self, input: impl Into<String>) -> Self

The base64-encoded 128-bit MD5 digest of the server-side encryption configuration.

For requests made using the Amazon Web Services Command Line Interface (CLI) or Amazon Web Services SDKs, this field is calculated automatically.

This functionality is not supported for directory buckets.

Source

pub fn set_content_md5(self, input: Option<String>) -> Self

The base64-encoded 128-bit MD5 digest of the server-side encryption configuration.

For requests made using the Amazon Web Services Command Line Interface (CLI) or Amazon Web Services SDKs, this field is calculated automatically.

This functionality is not supported for directory buckets.

Source

pub fn get_content_md5(&self) -> &Option<String>

The base64-encoded 128-bit MD5 digest of the server-side encryption configuration.

For requests made using the Amazon Web Services Command Line Interface (CLI) or Amazon Web Services SDKs, this field is calculated automatically.

This functionality is not supported for directory buckets.

Source

pub fn checksum_algorithm(self, input: ChecksumAlgorithm) -> Self

Indicates the algorithm used to create the checksum for the object when you use the SDK. This header will not provide any additional functionality if you don't use the SDK. When you send this header, there must be a corresponding x-amz-checksum or x-amz-trailer header sent. Otherwise, Amazon S3 fails the request with the HTTP status code 400 Bad Request. For more information, see Checking object integrity in the Amazon S3 User Guide.

If you provide an individual checksum, Amazon S3 ignores any provided ChecksumAlgorithm parameter.

For directory buckets, when you use Amazon Web Services SDKs, CRC32 is the default checksum algorithm that's used for performance.

Source

pub fn set_checksum_algorithm(self, input: Option<ChecksumAlgorithm>) -> Self

Indicates the algorithm used to create the checksum for the object when you use the SDK. This header will not provide any additional functionality if you don't use the SDK. When you send this header, there must be a corresponding x-amz-checksum or x-amz-trailer header sent. Otherwise, Amazon S3 fails the request with the HTTP status code 400 Bad Request. For more information, see Checking object integrity in the Amazon S3 User Guide.

If you provide an individual checksum, Amazon S3 ignores any provided ChecksumAlgorithm parameter.

For directory buckets, when you use Amazon Web Services SDKs, CRC32 is the default checksum algorithm that's used for performance.

Source

pub fn get_checksum_algorithm(&self) -> &Option<ChecksumAlgorithm>

Indicates the algorithm used to create the checksum for the object when you use the SDK. This header will not provide any additional functionality if you don't use the SDK. When you send this header, there must be a corresponding x-amz-checksum or x-amz-trailer header sent. Otherwise, Amazon S3 fails the request with the HTTP status code 400 Bad Request. For more information, see Checking object integrity in the Amazon S3 User Guide.

If you provide an individual checksum, Amazon S3 ignores any provided ChecksumAlgorithm parameter.

For directory buckets, when you use Amazon Web Services SDKs, CRC32 is the default checksum algorithm that's used for performance.

Source

pub fn server_side_encryption_configuration( self, input: ServerSideEncryptionConfiguration, ) -> Self

Specifies the default server-side-encryption configuration.

Source

pub fn set_server_side_encryption_configuration( self, input: Option<ServerSideEncryptionConfiguration>, ) -> Self

Specifies the default server-side-encryption configuration.

Source

pub fn get_server_side_encryption_configuration( &self, ) -> &Option<ServerSideEncryptionConfiguration>

Specifies the default server-side-encryption configuration.

Source

pub fn expected_bucket_owner(self, input: impl Into<String>) -> Self

The account ID of the expected bucket owner. If the account ID that you provide does not match the actual owner of the bucket, the request fails with the HTTP status code 403 Forbidden (access denied).

For directory buckets, this header is not supported in this API operation. If you specify this header, the request fails with the HTTP status code 501 Not Implemented.

Source

pub fn set_expected_bucket_owner(self, input: Option<String>) -> Self

The account ID of the expected bucket owner. If the account ID that you provide does not match the actual owner of the bucket, the request fails with the HTTP status code 403 Forbidden (access denied).

For directory buckets, this header is not supported in this API operation. If you specify this header, the request fails with the HTTP status code 501 Not Implemented.

Source

pub fn get_expected_bucket_owner(&self) -> &Option<String>

The account ID of the expected bucket owner. If the account ID that you provide does not match the actual owner of the bucket, the request fails with the HTTP status code 403 Forbidden (access denied).

For directory buckets, this header is not supported in this API operation. If you specify this header, the request fails with the HTTP status code 501 Not Implemented.

Trait Implementations§

Source§

impl Clone for PutBucketEncryptionFluentBuilder

Source§

fn clone(&self) -> PutBucketEncryptionFluentBuilder

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for PutBucketEncryptionFluentBuilder

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dst: *mut u8)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dst. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T> Instrument for T

Source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
Source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<Unshared, Shared> IntoShared<Shared> for Unshared
where Shared: FromUnshared<Unshared>,

Source§

fn into_shared(self) -> Shared

Creates a shared type from an unshared type.
Source§

impl<T> Paint for T
where T: ?Sized,

Source§

fn fg(&self, value: Color) -> Painted<&T>

Returns a styled value derived from self with the foreground set to value.

This method should be used rarely. Instead, prefer to use color-specific builder methods like red() and green(), which have the same functionality but are pithier.

§Example

Set foreground color to white using fg():

use yansi::{Paint, Color};

painted.fg(Color::White);

Set foreground color to white using white().

use yansi::Paint;

painted.white();
Source§

fn primary(&self) -> Painted<&T>

Returns self with the fg() set to Color::Primary.

§Example
println!("{}", value.primary());
Source§

fn fixed(&self, color: u8) -> Painted<&T>

Returns self with the fg() set to Color::Fixed.

§Example
println!("{}", value.fixed(color));
Source§

fn rgb(&self, r: u8, g: u8, b: u8) -> Painted<&T>

Returns self with the fg() set to Color::Rgb.

§Example
println!("{}", value.rgb(r, g, b));
Source§

fn black(&self) -> Painted<&T>

Returns self with the fg() set to Color::Black.

§Example
println!("{}", value.black());
Source§

fn red(&self) -> Painted<&T>

Returns self with the fg() set to Color::Red.

§Example
println!("{}", value.red());
Source§

fn green(&self) -> Painted<&T>

Returns self with the fg() set to Color::Green.

§Example
println!("{}", value.green());
Source§

fn yellow(&self) -> Painted<&T>

Returns self with the fg() set to Color::Yellow.

§Example
println!("{}", value.yellow());
Source§

fn blue(&self) -> Painted<&T>

Returns self with the fg() set to Color::Blue.

§Example
println!("{}", value.blue());
Source§

fn magenta(&self) -> Painted<&T>

Returns self with the fg() set to Color::Magenta.

§Example
println!("{}", value.magenta());
Source§

fn cyan(&self) -> Painted<&T>

Returns self with the fg() set to Color::Cyan.

§Example
println!("{}", value.cyan());
Source§

fn white(&self) -> Painted<&T>

Returns self with the fg() set to Color::White.

§Example
println!("{}", value.white());
Source§

fn bright_black(&self) -> Painted<&T>

Returns self with the fg() set to Color::BrightBlack.

§Example
println!("{}", value.bright_black());
Source§

fn bright_red(&self) -> Painted<&T>

Returns self with the fg() set to Color::BrightRed.

§Example
println!("{}", value.bright_red());
Source§

fn bright_green(&self) -> Painted<&T>

Returns self with the fg() set to Color::BrightGreen.

§Example
println!("{}", value.bright_green());
Source§

fn bright_yellow(&self) -> Painted<&T>

Returns self with the fg() set to Color::BrightYellow.

§Example
println!("{}", value.bright_yellow());
Source§

fn bright_blue(&self) -> Painted<&T>

Returns self with the fg() set to Color::BrightBlue.

§Example
println!("{}", value.bright_blue());
Source§

fn bright_magenta(&self) -> Painted<&T>

Returns self with the fg() set to Color::BrightMagenta.

§Example
println!("{}", value.bright_magenta());
Source§

fn bright_cyan(&self) -> Painted<&T>

Returns self with the fg() set to Color::BrightCyan.

§Example
println!("{}", value.bright_cyan());
Source§

fn bright_white(&self) -> Painted<&T>

Returns self with the fg() set to Color::BrightWhite.

§Example
println!("{}", value.bright_white());
Source§

fn bg(&self, value: Color) -> Painted<&T>

Returns a styled value derived from self with the background set to value.

This method should be used rarely. Instead, prefer to use color-specific builder methods like on_red() and on_green(), which have the same functionality but are pithier.

§Example

Set background color to red using fg():

use yansi::{Paint, Color};

painted.bg(Color::Red);

Set background color to red using on_red().

use yansi::Paint;

painted.on_red();
Source§

fn on_primary(&self) -> Painted<&T>

Returns self with the bg() set to Color::Primary.

§Example
println!("{}", value.on_primary());
Source§

fn on_fixed(&self, color: u8) -> Painted<&T>

Returns self with the bg() set to Color::Fixed.

§Example
println!("{}", value.on_fixed(color));
Source§

fn on_rgb(&self, r: u8, g: u8, b: u8) -> Painted<&T>

Returns self with the bg() set to Color::Rgb.

§Example
println!("{}", value.on_rgb(r, g, b));
Source§

fn on_black(&self) -> Painted<&T>

Returns self with the bg() set to Color::Black.

§Example
println!("{}", value.on_black());
Source§

fn on_red(&self) -> Painted<&T>

Returns self with the bg() set to Color::Red.

§Example
println!("{}", value.on_red());
Source§

fn on_green(&self) -> Painted<&T>

Returns self with the bg() set to Color::Green.

§Example
println!("{}", value.on_green());
Source§

fn on_yellow(&self) -> Painted<&T>

Returns self with the bg() set to Color::Yellow.

§Example
println!("{}", value.on_yellow());
Source§

fn on_blue(&self) -> Painted<&T>

Returns self with the bg() set to Color::Blue.

§Example
println!("{}", value.on_blue());
Source§

fn on_magenta(&self) -> Painted<&T>

Returns self with the bg() set to Color::Magenta.

§Example
println!("{}", value.on_magenta());
Source§

fn on_cyan(&self) -> Painted<&T>

Returns self with the bg() set to Color::Cyan.

§Example
println!("{}", value.on_cyan());
Source§

fn on_white(&self) -> Painted<&T>

Returns self with the bg() set to Color::White.

§Example
println!("{}", value.on_white());
Source§

fn on_bright_black(&self) -> Painted<&T>

Returns self with the bg() set to Color::BrightBlack.

§Example
println!("{}", value.on_bright_black());
Source§

fn on_bright_red(&self) -> Painted<&T>

Returns self with the bg() set to Color::BrightRed.

§Example
println!("{}", value.on_bright_red());
Source§

fn on_bright_green(&self) -> Painted<&T>

Returns self with the bg() set to Color::BrightGreen.

§Example
println!("{}", value.on_bright_green());
Source§

fn on_bright_yellow(&self) -> Painted<&T>

Returns self with the bg() set to Color::BrightYellow.

§Example
println!("{}", value.on_bright_yellow());
Source§

fn on_bright_blue(&self) -> Painted<&T>

Returns self with the bg() set to Color::BrightBlue.

§Example
println!("{}", value.on_bright_blue());
Source§

fn on_bright_magenta(&self) -> Painted<&T>

Returns self with the bg() set to Color::BrightMagenta.

§Example
println!("{}", value.on_bright_magenta());
Source§

fn on_bright_cyan(&self) -> Painted<&T>

Returns self with the bg() set to Color::BrightCyan.

§Example
println!("{}", value.on_bright_cyan());
Source§

fn on_bright_white(&self) -> Painted<&T>

Returns self with the bg() set to Color::BrightWhite.

§Example
println!("{}", value.on_bright_white());
Source§

fn attr(&self, value: Attribute) -> Painted<&T>

Enables the styling Attribute value.

This method should be used rarely. Instead, prefer to use attribute-specific builder methods like bold() and underline(), which have the same functionality but are pithier.

§Example

Make text bold using attr():

use yansi::{Paint, Attribute};

painted.attr(Attribute::Bold);

Make text bold using using bold().

use yansi::Paint;

painted.bold();
Source§

fn bold(&self) -> Painted<&T>

Returns self with the attr() set to Attribute::Bold.

§Example
println!("{}", value.bold());
Source§

fn dim(&self) -> Painted<&T>

Returns self with the attr() set to Attribute::Dim.

§Example
println!("{}", value.dim());
Source§

fn italic(&self) -> Painted<&T>

Returns self with the attr() set to Attribute::Italic.

§Example
println!("{}", value.italic());
Source§

fn underline(&self) -> Painted<&T>

Returns self with the attr() set to Attribute::Underline.

§Example
println!("{}", value.underline());

Returns self with the attr() set to Attribute::Blink.

§Example
println!("{}", value.blink());

Returns self with the attr() set to Attribute::RapidBlink.

§Example
println!("{}", value.rapid_blink());
Source§

fn invert(&self) -> Painted<&T>

Returns self with the attr() set to Attribute::Invert.

§Example
println!("{}", value.invert());
Source§

fn conceal(&self) -> Painted<&T>

Returns self with the attr() set to Attribute::Conceal.

§Example
println!("{}", value.conceal());
Source§

fn strike(&self) -> Painted<&T>

Returns self with the attr() set to Attribute::Strike.

§Example
println!("{}", value.strike());
Source§

fn quirk(&self, value: Quirk) -> Painted<&T>

Enables the yansi Quirk value.

This method should be used rarely. Instead, prefer to use quirk-specific builder methods like mask() and wrap(), which have the same functionality but are pithier.

§Example

Enable wrapping using .quirk():

use yansi::{Paint, Quirk};

painted.quirk(Quirk::Wrap);

Enable wrapping using wrap().

use yansi::Paint;

painted.wrap();
Source§

fn mask(&self) -> Painted<&T>

Returns self with the quirk() set to Quirk::Mask.

§Example
println!("{}", value.mask());
Source§

fn wrap(&self) -> Painted<&T>

Returns self with the quirk() set to Quirk::Wrap.

§Example
println!("{}", value.wrap());
Source§

fn linger(&self) -> Painted<&T>

Returns self with the quirk() set to Quirk::Linger.

§Example
println!("{}", value.linger());
Source§

fn clear(&self) -> Painted<&T>

👎Deprecated since 1.0.1: renamed to resetting() due to conflicts with Vec::clear(). The clear() method will be removed in a future release.

Returns self with the quirk() set to Quirk::Clear.

§Example
println!("{}", value.clear());
Source§

fn resetting(&self) -> Painted<&T>

Returns self with the quirk() set to Quirk::Resetting.

§Example
println!("{}", value.resetting());
Source§

fn bright(&self) -> Painted<&T>

Returns self with the quirk() set to Quirk::Bright.

§Example
println!("{}", value.bright());
Source§

fn on_bright(&self) -> Painted<&T>

Returns self with the quirk() set to Quirk::OnBright.

§Example
println!("{}", value.on_bright());
Source§

fn whenever(&self, value: Condition) -> Painted<&T>

Conditionally enable styling based on whether the Condition value applies. Replaces any previous condition.

See the crate level docs for more details.

§Example

Enable styling painted only when both stdout and stderr are TTYs:

use yansi::{Paint, Condition};

painted.red().on_yellow().whenever(Condition::STDOUTERR_ARE_TTY);
Source§

fn new(self) -> Painted<Self>
where Self: Sized,

Create a new Painted with a default Style. Read more
Source§

fn paint<S>(&self, style: S) -> Painted<&Self>
where S: Into<Style>,

Apply a style wholesale to self. Any previous style is replaced. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<T> WithSubscriber for T

Source§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

impl<T> ErasedDestructor for T
where T: 'static,

Source§

impl<T> MaybeSendSync for T