aws_sdk_s3::operation::put_object::builders

Struct PutObjectFluentBuilder

Source
pub struct PutObjectFluentBuilder { /* private fields */ }
Expand description

Fluent builder constructing a request to PutObject.

Adds an object to a bucket.

  • Amazon S3 never adds partial objects; if you receive a success response, Amazon S3 added the entire object to the bucket. You cannot use PutObject to only update a single piece of metadata for an existing object. You must put the entire object with updated metadata if you want to update some values.

  • If your bucket uses the bucket owner enforced setting for Object Ownership, ACLs are disabled and no longer affect permissions. All objects written to the bucket by any account will be owned by the bucket owner.

  • Directory buckets - For directory buckets, you must make requests for this API operation to the Zonal endpoint. These endpoints support virtual-hosted-style requests in the format https://bucket_name.s3express-az_id.region.amazonaws.com/key-name . Path-style requests are not supported. For more information, see Regional and Zonal endpoints in the Amazon S3 User Guide.

Amazon S3 is a distributed system. If it receives multiple write requests for the same object simultaneously, it overwrites all but the last object written. However, Amazon S3 provides features that can modify this behavior:

  • S3 Object Lock - To prevent objects from being deleted or overwritten, you can use Amazon S3 Object Lock in the Amazon S3 User Guide.

    This functionality is not supported for directory buckets.

  • S3 Versioning - When you enable versioning for a bucket, if Amazon S3 receives multiple write requests for the same object simultaneously, it stores all versions of the objects. For each write request that is made to the same object, Amazon S3 automatically generates a unique version ID of that object being stored in Amazon S3. You can retrieve, replace, or delete any version of the object. For more information about versioning, see Adding Objects to Versioning-Enabled Buckets in the Amazon S3 User Guide. For information about returning the versioning state of a bucket, see GetBucketVersioning.

    This functionality is not supported for directory buckets.

Permissions
  • General purpose bucket permissions - The following permissions are required in your policies when your PutObject request includes specific headers.

    • s3:PutObject - To successfully complete the PutObject request, you must always have the s3:PutObject permission on a bucket to add an object to it.

    • s3:PutObjectAcl - To successfully change the objects ACL of your PutObject request, you must have the s3:PutObjectAcl.

    • s3:PutObjectTagging - To successfully set the tag-set with your PutObject request, you must have the s3:PutObjectTagging.

  • Directory bucket permissions - To grant access to this API operation on a directory bucket, we recommend that you use the CreateSession API operation for session-based authorization. Specifically, you grant the s3express:CreateSession permission to the directory bucket in a bucket policy or an IAM identity-based policy. Then, you make the CreateSession API call on the bucket to obtain a session token. With the session token in your request header, you can make API requests to this operation. After the session token expires, you make another CreateSession API call to generate a new session token for use. Amazon Web Services CLI or SDKs create session and refresh the session token automatically to avoid service interruptions when a session expires. For more information about authorization, see CreateSession .

    If the object is encrypted with SSE-KMS, you must also have the kms:GenerateDataKey and kms:Decrypt permissions in IAM identity-based policies and KMS key policies for the KMS key.

Data integrity with Content-MD5
  • General purpose bucket - To ensure that data is not corrupted traversing the network, use the Content-MD5 header. When you use this header, Amazon S3 checks the object against the provided MD5 value and, if they do not match, Amazon S3 returns an error. Alternatively, when the object's ETag is its MD5 digest, you can calculate the MD5 while putting the object to Amazon S3 and compare the returned ETag to the calculated MD5 value.

  • Directory bucket - This functionality is not supported for directory buckets.

HTTP Host header syntax

Directory buckets - The HTTP Host header syntax is Bucket_name.s3express-az_id.region.amazonaws.com.

For more information about related Amazon S3 APIs, see the following:

Implementations§

Source§

impl PutObjectFluentBuilder

Source

pub fn as_input(&self) -> &PutObjectInputBuilder

Access the PutObject as a reference.

Source

pub async fn send( self, ) -> Result<PutObjectOutput, SdkError<PutObjectError, HttpResponse>>

Sends the request and returns the response.

If an error occurs, an SdkError will be returned with additional details that can be matched against.

By default, any retryable failures will be retried twice. Retry behavior is configurable with the RetryConfig, which can be set when configuring the client.

Source

pub fn customize( self, ) -> CustomizableOperation<PutObjectOutput, PutObjectError, Self>

Consumes this builder, creating a customizable operation that can be modified before being sent.

Source

pub async fn presigned( self, presigning_config: PresigningConfig, ) -> Result<PresignedRequest, SdkError<PutObjectError, HttpResponse>>

Creates a presigned request for this operation.

The presigning_config provides additional presigning-specific config values, such as the amount of time the request should be valid for after creation.

Presigned requests can be given to other users or applications to access a resource or perform an operation without having access to the AWS security credentials.

Important: If you’re using credentials that can expire, such as those from STS AssumeRole or SSO, then the presigned request can only be valid for as long as the credentials used to create it are.

Source

pub fn acl(self, input: ObjectCannedAcl) -> Self

The canned ACL to apply to the object. For more information, see Canned ACL in the Amazon S3 User Guide.

When adding a new object, you can use headers to grant ACL-based permissions to individual Amazon Web Services accounts or to predefined groups defined by Amazon S3. These permissions are then added to the ACL on the object. By default, all objects are private. Only the owner has full access control. For more information, see Access Control List (ACL) Overview and Managing ACLs Using the REST API in the Amazon S3 User Guide.

If the bucket that you're uploading objects to uses the bucket owner enforced setting for S3 Object Ownership, ACLs are disabled and no longer affect permissions. Buckets that use this setting only accept PUT requests that don't specify an ACL or PUT requests that specify bucket owner full control ACLs, such as the bucket-owner-full-control canned ACL or an equivalent form of this ACL expressed in the XML format. PUT requests that contain other ACLs (for example, custom grants to certain Amazon Web Services accounts) fail and return a 400 error with the error code AccessControlListNotSupported. For more information, see Controlling ownership of objects and disabling ACLs in the Amazon S3 User Guide.

  • This functionality is not supported for directory buckets.

  • This functionality is not supported for Amazon S3 on Outposts.

Source

pub fn set_acl(self, input: Option<ObjectCannedAcl>) -> Self

The canned ACL to apply to the object. For more information, see Canned ACL in the Amazon S3 User Guide.

When adding a new object, you can use headers to grant ACL-based permissions to individual Amazon Web Services accounts or to predefined groups defined by Amazon S3. These permissions are then added to the ACL on the object. By default, all objects are private. Only the owner has full access control. For more information, see Access Control List (ACL) Overview and Managing ACLs Using the REST API in the Amazon S3 User Guide.

If the bucket that you're uploading objects to uses the bucket owner enforced setting for S3 Object Ownership, ACLs are disabled and no longer affect permissions. Buckets that use this setting only accept PUT requests that don't specify an ACL or PUT requests that specify bucket owner full control ACLs, such as the bucket-owner-full-control canned ACL or an equivalent form of this ACL expressed in the XML format. PUT requests that contain other ACLs (for example, custom grants to certain Amazon Web Services accounts) fail and return a 400 error with the error code AccessControlListNotSupported. For more information, see Controlling ownership of objects and disabling ACLs in the Amazon S3 User Guide.

  • This functionality is not supported for directory buckets.

  • This functionality is not supported for Amazon S3 on Outposts.

Source

pub fn get_acl(&self) -> &Option<ObjectCannedAcl>

The canned ACL to apply to the object. For more information, see Canned ACL in the Amazon S3 User Guide.

When adding a new object, you can use headers to grant ACL-based permissions to individual Amazon Web Services accounts or to predefined groups defined by Amazon S3. These permissions are then added to the ACL on the object. By default, all objects are private. Only the owner has full access control. For more information, see Access Control List (ACL) Overview and Managing ACLs Using the REST API in the Amazon S3 User Guide.

If the bucket that you're uploading objects to uses the bucket owner enforced setting for S3 Object Ownership, ACLs are disabled and no longer affect permissions. Buckets that use this setting only accept PUT requests that don't specify an ACL or PUT requests that specify bucket owner full control ACLs, such as the bucket-owner-full-control canned ACL or an equivalent form of this ACL expressed in the XML format. PUT requests that contain other ACLs (for example, custom grants to certain Amazon Web Services accounts) fail and return a 400 error with the error code AccessControlListNotSupported. For more information, see Controlling ownership of objects and disabling ACLs in the Amazon S3 User Guide.

  • This functionality is not supported for directory buckets.

  • This functionality is not supported for Amazon S3 on Outposts.

Source

pub fn body(self, input: ByteStream) -> Self

Object data.

Source

pub fn set_body(self, input: Option<ByteStream>) -> Self

Object data.

Source

pub fn get_body(&self) -> &Option<ByteStream>

Object data.

Source

pub fn bucket(self, input: impl Into<String>) -> Self

The bucket name to which the PUT action was initiated.

Directory buckets - When you use this operation with a directory bucket, you must use virtual-hosted-style requests in the format Bucket_name.s3express-az_id.region.amazonaws.com. Path-style requests are not supported. Directory bucket names must be unique in the chosen Availability Zone. Bucket names must follow the format bucket_base_name--az-id--x-s3 (for example, DOC-EXAMPLE-BUCKET--usw2-az1--x-s3). For information about bucket naming restrictions, see Directory bucket naming rules in the Amazon S3 User Guide.

Access points - When you use this action with an access point, you must provide the alias of the access point in place of the bucket name or specify the access point ARN. When using the access point ARN, you must direct requests to the access point hostname. The access point hostname takes the form AccessPointName-AccountId.s3-accesspoint.Region.amazonaws.com. When using this action with an access point through the Amazon Web Services SDKs, you provide the access point ARN in place of the bucket name. For more information about access point ARNs, see Using access points in the Amazon S3 User Guide.

Access points and Object Lambda access points are not supported by directory buckets.

S3 on Outposts - When you use this action with Amazon S3 on Outposts, you must direct requests to the S3 on Outposts hostname. The S3 on Outposts hostname takes the form AccessPointName-AccountId.outpostID.s3-outposts.Region.amazonaws.com. When you use this action with S3 on Outposts through the Amazon Web Services SDKs, you provide the Outposts access point ARN in place of the bucket name. For more information about S3 on Outposts ARNs, see What is S3 on Outposts? in the Amazon S3 User Guide.

Source

pub fn set_bucket(self, input: Option<String>) -> Self

The bucket name to which the PUT action was initiated.

Directory buckets - When you use this operation with a directory bucket, you must use virtual-hosted-style requests in the format Bucket_name.s3express-az_id.region.amazonaws.com. Path-style requests are not supported. Directory bucket names must be unique in the chosen Availability Zone. Bucket names must follow the format bucket_base_name--az-id--x-s3 (for example, DOC-EXAMPLE-BUCKET--usw2-az1--x-s3). For information about bucket naming restrictions, see Directory bucket naming rules in the Amazon S3 User Guide.

Access points - When you use this action with an access point, you must provide the alias of the access point in place of the bucket name or specify the access point ARN. When using the access point ARN, you must direct requests to the access point hostname. The access point hostname takes the form AccessPointName-AccountId.s3-accesspoint.Region.amazonaws.com. When using this action with an access point through the Amazon Web Services SDKs, you provide the access point ARN in place of the bucket name. For more information about access point ARNs, see Using access points in the Amazon S3 User Guide.

Access points and Object Lambda access points are not supported by directory buckets.

S3 on Outposts - When you use this action with Amazon S3 on Outposts, you must direct requests to the S3 on Outposts hostname. The S3 on Outposts hostname takes the form AccessPointName-AccountId.outpostID.s3-outposts.Region.amazonaws.com. When you use this action with S3 on Outposts through the Amazon Web Services SDKs, you provide the Outposts access point ARN in place of the bucket name. For more information about S3 on Outposts ARNs, see What is S3 on Outposts? in the Amazon S3 User Guide.

Source

pub fn get_bucket(&self) -> &Option<String>

The bucket name to which the PUT action was initiated.

Directory buckets - When you use this operation with a directory bucket, you must use virtual-hosted-style requests in the format Bucket_name.s3express-az_id.region.amazonaws.com. Path-style requests are not supported. Directory bucket names must be unique in the chosen Availability Zone. Bucket names must follow the format bucket_base_name--az-id--x-s3 (for example, DOC-EXAMPLE-BUCKET--usw2-az1--x-s3). For information about bucket naming restrictions, see Directory bucket naming rules in the Amazon S3 User Guide.

Access points - When you use this action with an access point, you must provide the alias of the access point in place of the bucket name or specify the access point ARN. When using the access point ARN, you must direct requests to the access point hostname. The access point hostname takes the form AccessPointName-AccountId.s3-accesspoint.Region.amazonaws.com. When using this action with an access point through the Amazon Web Services SDKs, you provide the access point ARN in place of the bucket name. For more information about access point ARNs, see Using access points in the Amazon S3 User Guide.

Access points and Object Lambda access points are not supported by directory buckets.

S3 on Outposts - When you use this action with Amazon S3 on Outposts, you must direct requests to the S3 on Outposts hostname. The S3 on Outposts hostname takes the form AccessPointName-AccountId.outpostID.s3-outposts.Region.amazonaws.com. When you use this action with S3 on Outposts through the Amazon Web Services SDKs, you provide the Outposts access point ARN in place of the bucket name. For more information about S3 on Outposts ARNs, see What is S3 on Outposts? in the Amazon S3 User Guide.

Source

pub fn cache_control(self, input: impl Into<String>) -> Self

Can be used to specify caching behavior along the request/reply chain. For more information, see http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9.

Source

pub fn set_cache_control(self, input: Option<String>) -> Self

Can be used to specify caching behavior along the request/reply chain. For more information, see http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9.

Source

pub fn get_cache_control(&self) -> &Option<String>

Can be used to specify caching behavior along the request/reply chain. For more information, see http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9.

Source

pub fn content_disposition(self, input: impl Into<String>) -> Self

Specifies presentational information for the object. For more information, see https://www.rfc-editor.org/rfc/rfc6266#section-4.

Source

pub fn set_content_disposition(self, input: Option<String>) -> Self

Specifies presentational information for the object. For more information, see https://www.rfc-editor.org/rfc/rfc6266#section-4.

Source

pub fn get_content_disposition(&self) -> &Option<String>

Specifies presentational information for the object. For more information, see https://www.rfc-editor.org/rfc/rfc6266#section-4.

Source

pub fn content_encoding(self, input: impl Into<String>) -> Self

Specifies what content encodings have been applied to the object and thus what decoding mechanisms must be applied to obtain the media-type referenced by the Content-Type header field. For more information, see https://www.rfc-editor.org/rfc/rfc9110.html#field.content-encoding.

Source

pub fn set_content_encoding(self, input: Option<String>) -> Self

Specifies what content encodings have been applied to the object and thus what decoding mechanisms must be applied to obtain the media-type referenced by the Content-Type header field. For more information, see https://www.rfc-editor.org/rfc/rfc9110.html#field.content-encoding.

Source

pub fn get_content_encoding(&self) -> &Option<String>

Specifies what content encodings have been applied to the object and thus what decoding mechanisms must be applied to obtain the media-type referenced by the Content-Type header field. For more information, see https://www.rfc-editor.org/rfc/rfc9110.html#field.content-encoding.

Source

pub fn content_language(self, input: impl Into<String>) -> Self

The language the content is in.

Source

pub fn set_content_language(self, input: Option<String>) -> Self

The language the content is in.

Source

pub fn get_content_language(&self) -> &Option<String>

The language the content is in.

Source

pub fn content_length(self, input: i64) -> Self

Size of the body in bytes. This parameter is useful when the size of the body cannot be determined automatically. For more information, see https://www.rfc-editor.org/rfc/rfc9110.html#name-content-length.

Source

pub fn set_content_length(self, input: Option<i64>) -> Self

Size of the body in bytes. This parameter is useful when the size of the body cannot be determined automatically. For more information, see https://www.rfc-editor.org/rfc/rfc9110.html#name-content-length.

Source

pub fn get_content_length(&self) -> &Option<i64>

Size of the body in bytes. This parameter is useful when the size of the body cannot be determined automatically. For more information, see https://www.rfc-editor.org/rfc/rfc9110.html#name-content-length.

Source

pub fn content_md5(self, input: impl Into<String>) -> Self

The base64-encoded 128-bit MD5 digest of the message (without the headers) according to RFC 1864. This header can be used as a message integrity check to verify that the data is the same data that was originally sent. Although it is optional, we recommend using the Content-MD5 mechanism as an end-to-end integrity check. For more information about REST request authentication, see REST Authentication.

The Content-MD5 or x-amz-sdk-checksum-algorithm header is required for any request to upload an object with a retention period configured using Amazon S3 Object Lock. For more information, see Uploading objects to an Object Lock enabled bucket in the Amazon S3 User Guide.

This functionality is not supported for directory buckets.

Source

pub fn set_content_md5(self, input: Option<String>) -> Self

The base64-encoded 128-bit MD5 digest of the message (without the headers) according to RFC 1864. This header can be used as a message integrity check to verify that the data is the same data that was originally sent. Although it is optional, we recommend using the Content-MD5 mechanism as an end-to-end integrity check. For more information about REST request authentication, see REST Authentication.

The Content-MD5 or x-amz-sdk-checksum-algorithm header is required for any request to upload an object with a retention period configured using Amazon S3 Object Lock. For more information, see Uploading objects to an Object Lock enabled bucket in the Amazon S3 User Guide.

This functionality is not supported for directory buckets.

Source

pub fn get_content_md5(&self) -> &Option<String>

The base64-encoded 128-bit MD5 digest of the message (without the headers) according to RFC 1864. This header can be used as a message integrity check to verify that the data is the same data that was originally sent. Although it is optional, we recommend using the Content-MD5 mechanism as an end-to-end integrity check. For more information about REST request authentication, see REST Authentication.

The Content-MD5 or x-amz-sdk-checksum-algorithm header is required for any request to upload an object with a retention period configured using Amazon S3 Object Lock. For more information, see Uploading objects to an Object Lock enabled bucket in the Amazon S3 User Guide.

This functionality is not supported for directory buckets.

Source

pub fn content_type(self, input: impl Into<String>) -> Self

A standard MIME type describing the format of the contents. For more information, see https://www.rfc-editor.org/rfc/rfc9110.html#name-content-type.

Source

pub fn set_content_type(self, input: Option<String>) -> Self

A standard MIME type describing the format of the contents. For more information, see https://www.rfc-editor.org/rfc/rfc9110.html#name-content-type.

Source

pub fn get_content_type(&self) -> &Option<String>

A standard MIME type describing the format of the contents. For more information, see https://www.rfc-editor.org/rfc/rfc9110.html#name-content-type.

Source

pub fn checksum_algorithm(self, input: ChecksumAlgorithm) -> Self

Indicates the algorithm used to create the checksum for the object when you use the SDK. This header will not provide any additional functionality if you don't use the SDK. When you send this header, there must be a corresponding x-amz-checksum-algorithm or x-amz-trailer header sent. Otherwise, Amazon S3 fails the request with the HTTP status code 400 Bad Request.

For the x-amz-checksum-algorithm header, replace algorithm with the supported algorithm from the following list:

  • CRC32

  • CRC32C

  • SHA1

  • SHA256

For more information, see Checking object integrity in the Amazon S3 User Guide.

If the individual checksum value you provide through x-amz-checksum-algorithm doesn't match the checksum algorithm you set through x-amz-sdk-checksum-algorithm, Amazon S3 ignores any provided ChecksumAlgorithm parameter and uses the checksum algorithm that matches the provided value in x-amz-checksum-algorithm .

The Content-MD5 or x-amz-sdk-checksum-algorithm header is required for any request to upload an object with a retention period configured using Amazon S3 Object Lock. For more information, see Uploading objects to an Object Lock enabled bucket in the Amazon S3 User Guide.

For directory buckets, when you use Amazon Web Services SDKs, CRC32 is the default checksum algorithm that's used for performance.

Source

pub fn set_checksum_algorithm(self, input: Option<ChecksumAlgorithm>) -> Self

Indicates the algorithm used to create the checksum for the object when you use the SDK. This header will not provide any additional functionality if you don't use the SDK. When you send this header, there must be a corresponding x-amz-checksum-algorithm or x-amz-trailer header sent. Otherwise, Amazon S3 fails the request with the HTTP status code 400 Bad Request.

For the x-amz-checksum-algorithm header, replace algorithm with the supported algorithm from the following list:

  • CRC32

  • CRC32C

  • SHA1

  • SHA256

For more information, see Checking object integrity in the Amazon S3 User Guide.

If the individual checksum value you provide through x-amz-checksum-algorithm doesn't match the checksum algorithm you set through x-amz-sdk-checksum-algorithm, Amazon S3 ignores any provided ChecksumAlgorithm parameter and uses the checksum algorithm that matches the provided value in x-amz-checksum-algorithm .

The Content-MD5 or x-amz-sdk-checksum-algorithm header is required for any request to upload an object with a retention period configured using Amazon S3 Object Lock. For more information, see Uploading objects to an Object Lock enabled bucket in the Amazon S3 User Guide.

For directory buckets, when you use Amazon Web Services SDKs, CRC32 is the default checksum algorithm that's used for performance.

Source

pub fn get_checksum_algorithm(&self) -> &Option<ChecksumAlgorithm>

Indicates the algorithm used to create the checksum for the object when you use the SDK. This header will not provide any additional functionality if you don't use the SDK. When you send this header, there must be a corresponding x-amz-checksum-algorithm or x-amz-trailer header sent. Otherwise, Amazon S3 fails the request with the HTTP status code 400 Bad Request.

For the x-amz-checksum-algorithm header, replace algorithm with the supported algorithm from the following list:

  • CRC32

  • CRC32C

  • SHA1

  • SHA256

For more information, see Checking object integrity in the Amazon S3 User Guide.

If the individual checksum value you provide through x-amz-checksum-algorithm doesn't match the checksum algorithm you set through x-amz-sdk-checksum-algorithm, Amazon S3 ignores any provided ChecksumAlgorithm parameter and uses the checksum algorithm that matches the provided value in x-amz-checksum-algorithm .

The Content-MD5 or x-amz-sdk-checksum-algorithm header is required for any request to upload an object with a retention period configured using Amazon S3 Object Lock. For more information, see Uploading objects to an Object Lock enabled bucket in the Amazon S3 User Guide.

For directory buckets, when you use Amazon Web Services SDKs, CRC32 is the default checksum algorithm that's used for performance.

Source

pub fn checksum_crc32(self, input: impl Into<String>) -> Self

This header can be used as a data integrity check to verify that the data received is the same data that was originally sent. This header specifies the base64-encoded, 32-bit CRC-32 checksum of the object. For more information, see Checking object integrity in the Amazon S3 User Guide.

Source

pub fn set_checksum_crc32(self, input: Option<String>) -> Self

This header can be used as a data integrity check to verify that the data received is the same data that was originally sent. This header specifies the base64-encoded, 32-bit CRC-32 checksum of the object. For more information, see Checking object integrity in the Amazon S3 User Guide.

Source

pub fn get_checksum_crc32(&self) -> &Option<String>

This header can be used as a data integrity check to verify that the data received is the same data that was originally sent. This header specifies the base64-encoded, 32-bit CRC-32 checksum of the object. For more information, see Checking object integrity in the Amazon S3 User Guide.

Source

pub fn checksum_crc32_c(self, input: impl Into<String>) -> Self

This header can be used as a data integrity check to verify that the data received is the same data that was originally sent. This header specifies the base64-encoded, 32-bit CRC-32C checksum of the object. For more information, see Checking object integrity in the Amazon S3 User Guide.

Source

pub fn set_checksum_crc32_c(self, input: Option<String>) -> Self

This header can be used as a data integrity check to verify that the data received is the same data that was originally sent. This header specifies the base64-encoded, 32-bit CRC-32C checksum of the object. For more information, see Checking object integrity in the Amazon S3 User Guide.

Source

pub fn get_checksum_crc32_c(&self) -> &Option<String>

This header can be used as a data integrity check to verify that the data received is the same data that was originally sent. This header specifies the base64-encoded, 32-bit CRC-32C checksum of the object. For more information, see Checking object integrity in the Amazon S3 User Guide.

Source

pub fn checksum_sha1(self, input: impl Into<String>) -> Self

This header can be used as a data integrity check to verify that the data received is the same data that was originally sent. This header specifies the base64-encoded, 160-bit SHA-1 digest of the object. For more information, see Checking object integrity in the Amazon S3 User Guide.

Source

pub fn set_checksum_sha1(self, input: Option<String>) -> Self

This header can be used as a data integrity check to verify that the data received is the same data that was originally sent. This header specifies the base64-encoded, 160-bit SHA-1 digest of the object. For more information, see Checking object integrity in the Amazon S3 User Guide.

Source

pub fn get_checksum_sha1(&self) -> &Option<String>

This header can be used as a data integrity check to verify that the data received is the same data that was originally sent. This header specifies the base64-encoded, 160-bit SHA-1 digest of the object. For more information, see Checking object integrity in the Amazon S3 User Guide.

Source

pub fn checksum_sha256(self, input: impl Into<String>) -> Self

This header can be used as a data integrity check to verify that the data received is the same data that was originally sent. This header specifies the base64-encoded, 256-bit SHA-256 digest of the object. For more information, see Checking object integrity in the Amazon S3 User Guide.

Source

pub fn set_checksum_sha256(self, input: Option<String>) -> Self

This header can be used as a data integrity check to verify that the data received is the same data that was originally sent. This header specifies the base64-encoded, 256-bit SHA-256 digest of the object. For more information, see Checking object integrity in the Amazon S3 User Guide.

Source

pub fn get_checksum_sha256(&self) -> &Option<String>

This header can be used as a data integrity check to verify that the data received is the same data that was originally sent. This header specifies the base64-encoded, 256-bit SHA-256 digest of the object. For more information, see Checking object integrity in the Amazon S3 User Guide.

Source

pub fn expires(self, input: DateTime) -> Self

The date and time at which the object is no longer cacheable. For more information, see https://www.rfc-editor.org/rfc/rfc7234#section-5.3.

Source

pub fn set_expires(self, input: Option<DateTime>) -> Self

The date and time at which the object is no longer cacheable. For more information, see https://www.rfc-editor.org/rfc/rfc7234#section-5.3.

Source

pub fn get_expires(&self) -> &Option<DateTime>

The date and time at which the object is no longer cacheable. For more information, see https://www.rfc-editor.org/rfc/rfc7234#section-5.3.

Source

pub fn if_match(self, input: impl Into<String>) -> Self

Uploads the object only if the ETag (entity tag) value provided during the WRITE operation matches the ETag of the object in S3. If the ETag values do not match, the operation returns a 412 Precondition Failed error.

If a conflicting operation occurs during the upload S3 returns a 409 ConditionalRequestConflict response. On a 409 failure you should fetch the object's ETag and retry the upload.

Expects the ETag value as a string.

For more information about conditional requests, see RFC 7232, or Conditional requests in the Amazon S3 User Guide.

Source

pub fn set_if_match(self, input: Option<String>) -> Self

Uploads the object only if the ETag (entity tag) value provided during the WRITE operation matches the ETag of the object in S3. If the ETag values do not match, the operation returns a 412 Precondition Failed error.

If a conflicting operation occurs during the upload S3 returns a 409 ConditionalRequestConflict response. On a 409 failure you should fetch the object's ETag and retry the upload.

Expects the ETag value as a string.

For more information about conditional requests, see RFC 7232, or Conditional requests in the Amazon S3 User Guide.

Source

pub fn get_if_match(&self) -> &Option<String>

Uploads the object only if the ETag (entity tag) value provided during the WRITE operation matches the ETag of the object in S3. If the ETag values do not match, the operation returns a 412 Precondition Failed error.

If a conflicting operation occurs during the upload S3 returns a 409 ConditionalRequestConflict response. On a 409 failure you should fetch the object's ETag and retry the upload.

Expects the ETag value as a string.

For more information about conditional requests, see RFC 7232, or Conditional requests in the Amazon S3 User Guide.

Source

pub fn if_none_match(self, input: impl Into<String>) -> Self

Uploads the object only if the object key name does not already exist in the bucket specified. Otherwise, Amazon S3 returns a 412 Precondition Failed error.

If a conflicting operation occurs during the upload S3 returns a 409 ConditionalRequestConflict response. On a 409 failure you should retry the upload.

Expects the '*' (asterisk) character.

For more information about conditional requests, see RFC 7232, or Conditional requests in the Amazon S3 User Guide.

Source

pub fn set_if_none_match(self, input: Option<String>) -> Self

Uploads the object only if the object key name does not already exist in the bucket specified. Otherwise, Amazon S3 returns a 412 Precondition Failed error.

If a conflicting operation occurs during the upload S3 returns a 409 ConditionalRequestConflict response. On a 409 failure you should retry the upload.

Expects the '*' (asterisk) character.

For more information about conditional requests, see RFC 7232, or Conditional requests in the Amazon S3 User Guide.

Source

pub fn get_if_none_match(&self) -> &Option<String>

Uploads the object only if the object key name does not already exist in the bucket specified. Otherwise, Amazon S3 returns a 412 Precondition Failed error.

If a conflicting operation occurs during the upload S3 returns a 409 ConditionalRequestConflict response. On a 409 failure you should retry the upload.

Expects the '*' (asterisk) character.

For more information about conditional requests, see RFC 7232, or Conditional requests in the Amazon S3 User Guide.

Source

pub fn grant_full_control(self, input: impl Into<String>) -> Self

Gives the grantee READ, READ_ACP, and WRITE_ACP permissions on the object.

  • This functionality is not supported for directory buckets.

  • This functionality is not supported for Amazon S3 on Outposts.

Source

pub fn set_grant_full_control(self, input: Option<String>) -> Self

Gives the grantee READ, READ_ACP, and WRITE_ACP permissions on the object.

  • This functionality is not supported for directory buckets.

  • This functionality is not supported for Amazon S3 on Outposts.

Source

pub fn get_grant_full_control(&self) -> &Option<String>

Gives the grantee READ, READ_ACP, and WRITE_ACP permissions on the object.

  • This functionality is not supported for directory buckets.

  • This functionality is not supported for Amazon S3 on Outposts.

Source

pub fn grant_read(self, input: impl Into<String>) -> Self

Allows grantee to read the object data and its metadata.

  • This functionality is not supported for directory buckets.

  • This functionality is not supported for Amazon S3 on Outposts.

Source

pub fn set_grant_read(self, input: Option<String>) -> Self

Allows grantee to read the object data and its metadata.

  • This functionality is not supported for directory buckets.

  • This functionality is not supported for Amazon S3 on Outposts.

Source

pub fn get_grant_read(&self) -> &Option<String>

Allows grantee to read the object data and its metadata.

  • This functionality is not supported for directory buckets.

  • This functionality is not supported for Amazon S3 on Outposts.

Source

pub fn grant_read_acp(self, input: impl Into<String>) -> Self

Allows grantee to read the object ACL.

  • This functionality is not supported for directory buckets.

  • This functionality is not supported for Amazon S3 on Outposts.

Source

pub fn set_grant_read_acp(self, input: Option<String>) -> Self

Allows grantee to read the object ACL.

  • This functionality is not supported for directory buckets.

  • This functionality is not supported for Amazon S3 on Outposts.

Source

pub fn get_grant_read_acp(&self) -> &Option<String>

Allows grantee to read the object ACL.

  • This functionality is not supported for directory buckets.

  • This functionality is not supported for Amazon S3 on Outposts.

Source

pub fn grant_write_acp(self, input: impl Into<String>) -> Self

Allows grantee to write the ACL for the applicable object.

  • This functionality is not supported for directory buckets.

  • This functionality is not supported for Amazon S3 on Outposts.

Source

pub fn set_grant_write_acp(self, input: Option<String>) -> Self

Allows grantee to write the ACL for the applicable object.

  • This functionality is not supported for directory buckets.

  • This functionality is not supported for Amazon S3 on Outposts.

Source

pub fn get_grant_write_acp(&self) -> &Option<String>

Allows grantee to write the ACL for the applicable object.

  • This functionality is not supported for directory buckets.

  • This functionality is not supported for Amazon S3 on Outposts.

Source

pub fn key(self, input: impl Into<String>) -> Self

Object key for which the PUT action was initiated.

Source

pub fn set_key(self, input: Option<String>) -> Self

Object key for which the PUT action was initiated.

Source

pub fn get_key(&self) -> &Option<String>

Object key for which the PUT action was initiated.

Source

pub fn write_offset_bytes(self, input: i64) -> Self

Specifies the offset for appending data to existing objects in bytes. The offset must be equal to the size of the existing object being appended to. If no object exists, setting this header to 0 will create a new object.

This functionality is only supported for objects in the Amazon S3 Express One Zone storage class in directory buckets.

Source

pub fn set_write_offset_bytes(self, input: Option<i64>) -> Self

Specifies the offset for appending data to existing objects in bytes. The offset must be equal to the size of the existing object being appended to. If no object exists, setting this header to 0 will create a new object.

This functionality is only supported for objects in the Amazon S3 Express One Zone storage class in directory buckets.

Source

pub fn get_write_offset_bytes(&self) -> &Option<i64>

Specifies the offset for appending data to existing objects in bytes. The offset must be equal to the size of the existing object being appended to. If no object exists, setting this header to 0 will create a new object.

This functionality is only supported for objects in the Amazon S3 Express One Zone storage class in directory buckets.

Source

pub fn metadata(self, k: impl Into<String>, v: impl Into<String>) -> Self

Adds a key-value pair to Metadata.

To override the contents of this collection use set_metadata.

A map of metadata to store with the object in S3.

Source

pub fn set_metadata(self, input: Option<HashMap<String, String>>) -> Self

A map of metadata to store with the object in S3.

Source

pub fn get_metadata(&self) -> &Option<HashMap<String, String>>

A map of metadata to store with the object in S3.

Source

pub fn server_side_encryption(self, input: ServerSideEncryption) -> Self

The server-side encryption algorithm that was used when you store this object in Amazon S3 (for example, AES256, aws:kms, aws:kms:dsse).

  • General purpose buckets - You have four mutually exclusive options to protect data using server-side encryption in Amazon S3, depending on how you choose to manage the encryption keys. Specifically, the encryption key options are Amazon S3 managed keys (SSE-S3), Amazon Web Services KMS keys (SSE-KMS or DSSE-KMS), and customer-provided keys (SSE-C). Amazon S3 encrypts data with server-side encryption by using Amazon S3 managed keys (SSE-S3) by default. You can optionally tell Amazon S3 to encrypt data at rest by using server-side encryption with other key options. For more information, see Using Server-Side Encryption in the Amazon S3 User Guide.

  • Directory buckets - For directory buckets, there are only two supported options for server-side encryption: server-side encryption with Amazon S3 managed keys (SSE-S3) (AES256) and server-side encryption with KMS keys (SSE-KMS) (aws:kms). We recommend that the bucket's default encryption uses the desired encryption configuration and you don't override the bucket default encryption in your CreateSession requests or PUT object requests. Then, new objects are automatically encrypted with the desired encryption settings. For more information, see Protecting data with server-side encryption in the Amazon S3 User Guide. For more information about the encryption overriding behaviors in directory buckets, see Specifying server-side encryption with KMS for new object uploads.

    In the Zonal endpoint API calls (except CopyObject and UploadPartCopy) using the REST API, the encryption request headers must match the encryption settings that are specified in the CreateSession request. You can't override the values of the encryption settings (x-amz-server-side-encryption, x-amz-server-side-encryption-aws-kms-key-id, x-amz-server-side-encryption-context, and x-amz-server-side-encryption-bucket-key-enabled) that are specified in the CreateSession request. You don't need to explicitly specify these encryption settings values in Zonal endpoint API calls, and Amazon S3 will use the encryption settings values from the CreateSession request to protect new objects in the directory bucket.

    When you use the CLI or the Amazon Web Services SDKs, for CreateSession, the session token refreshes automatically to avoid service interruptions when a session expires. The CLI or the Amazon Web Services SDKs use the bucket's default encryption configuration for the CreateSession request. It's not supported to override the encryption settings values in the CreateSession request. So in the Zonal endpoint API calls (except CopyObject and UploadPartCopy), the encryption request headers must match the default encryption configuration of the directory bucket.

Source

pub fn set_server_side_encryption( self, input: Option<ServerSideEncryption>, ) -> Self

The server-side encryption algorithm that was used when you store this object in Amazon S3 (for example, AES256, aws:kms, aws:kms:dsse).

  • General purpose buckets - You have four mutually exclusive options to protect data using server-side encryption in Amazon S3, depending on how you choose to manage the encryption keys. Specifically, the encryption key options are Amazon S3 managed keys (SSE-S3), Amazon Web Services KMS keys (SSE-KMS or DSSE-KMS), and customer-provided keys (SSE-C). Amazon S3 encrypts data with server-side encryption by using Amazon S3 managed keys (SSE-S3) by default. You can optionally tell Amazon S3 to encrypt data at rest by using server-side encryption with other key options. For more information, see Using Server-Side Encryption in the Amazon S3 User Guide.

  • Directory buckets - For directory buckets, there are only two supported options for server-side encryption: server-side encryption with Amazon S3 managed keys (SSE-S3) (AES256) and server-side encryption with KMS keys (SSE-KMS) (aws:kms). We recommend that the bucket's default encryption uses the desired encryption configuration and you don't override the bucket default encryption in your CreateSession requests or PUT object requests. Then, new objects are automatically encrypted with the desired encryption settings. For more information, see Protecting data with server-side encryption in the Amazon S3 User Guide. For more information about the encryption overriding behaviors in directory buckets, see Specifying server-side encryption with KMS for new object uploads.

    In the Zonal endpoint API calls (except CopyObject and UploadPartCopy) using the REST API, the encryption request headers must match the encryption settings that are specified in the CreateSession request. You can't override the values of the encryption settings (x-amz-server-side-encryption, x-amz-server-side-encryption-aws-kms-key-id, x-amz-server-side-encryption-context, and x-amz-server-side-encryption-bucket-key-enabled) that are specified in the CreateSession request. You don't need to explicitly specify these encryption settings values in Zonal endpoint API calls, and Amazon S3 will use the encryption settings values from the CreateSession request to protect new objects in the directory bucket.

    When you use the CLI or the Amazon Web Services SDKs, for CreateSession, the session token refreshes automatically to avoid service interruptions when a session expires. The CLI or the Amazon Web Services SDKs use the bucket's default encryption configuration for the CreateSession request. It's not supported to override the encryption settings values in the CreateSession request. So in the Zonal endpoint API calls (except CopyObject and UploadPartCopy), the encryption request headers must match the default encryption configuration of the directory bucket.

Source

pub fn get_server_side_encryption(&self) -> &Option<ServerSideEncryption>

The server-side encryption algorithm that was used when you store this object in Amazon S3 (for example, AES256, aws:kms, aws:kms:dsse).

  • General purpose buckets - You have four mutually exclusive options to protect data using server-side encryption in Amazon S3, depending on how you choose to manage the encryption keys. Specifically, the encryption key options are Amazon S3 managed keys (SSE-S3), Amazon Web Services KMS keys (SSE-KMS or DSSE-KMS), and customer-provided keys (SSE-C). Amazon S3 encrypts data with server-side encryption by using Amazon S3 managed keys (SSE-S3) by default. You can optionally tell Amazon S3 to encrypt data at rest by using server-side encryption with other key options. For more information, see Using Server-Side Encryption in the Amazon S3 User Guide.

  • Directory buckets - For directory buckets, there are only two supported options for server-side encryption: server-side encryption with Amazon S3 managed keys (SSE-S3) (AES256) and server-side encryption with KMS keys (SSE-KMS) (aws:kms). We recommend that the bucket's default encryption uses the desired encryption configuration and you don't override the bucket default encryption in your CreateSession requests or PUT object requests. Then, new objects are automatically encrypted with the desired encryption settings. For more information, see Protecting data with server-side encryption in the Amazon S3 User Guide. For more information about the encryption overriding behaviors in directory buckets, see Specifying server-side encryption with KMS for new object uploads.

    In the Zonal endpoint API calls (except CopyObject and UploadPartCopy) using the REST API, the encryption request headers must match the encryption settings that are specified in the CreateSession request. You can't override the values of the encryption settings (x-amz-server-side-encryption, x-amz-server-side-encryption-aws-kms-key-id, x-amz-server-side-encryption-context, and x-amz-server-side-encryption-bucket-key-enabled) that are specified in the CreateSession request. You don't need to explicitly specify these encryption settings values in Zonal endpoint API calls, and Amazon S3 will use the encryption settings values from the CreateSession request to protect new objects in the directory bucket.

    When you use the CLI or the Amazon Web Services SDKs, for CreateSession, the session token refreshes automatically to avoid service interruptions when a session expires. The CLI or the Amazon Web Services SDKs use the bucket's default encryption configuration for the CreateSession request. It's not supported to override the encryption settings values in the CreateSession request. So in the Zonal endpoint API calls (except CopyObject and UploadPartCopy), the encryption request headers must match the default encryption configuration of the directory bucket.

Source

pub fn storage_class(self, input: StorageClass) -> Self

By default, Amazon S3 uses the STANDARD Storage Class to store newly created objects. The STANDARD storage class provides high durability and high availability. Depending on performance needs, you can specify a different Storage Class. For more information, see Storage Classes in the Amazon S3 User Guide.

  • For directory buckets, only the S3 Express One Zone storage class is supported to store newly created objects.

  • Amazon S3 on Outposts only uses the OUTPOSTS Storage Class.

Source

pub fn set_storage_class(self, input: Option<StorageClass>) -> Self

By default, Amazon S3 uses the STANDARD Storage Class to store newly created objects. The STANDARD storage class provides high durability and high availability. Depending on performance needs, you can specify a different Storage Class. For more information, see Storage Classes in the Amazon S3 User Guide.

  • For directory buckets, only the S3 Express One Zone storage class is supported to store newly created objects.

  • Amazon S3 on Outposts only uses the OUTPOSTS Storage Class.

Source

pub fn get_storage_class(&self) -> &Option<StorageClass>

By default, Amazon S3 uses the STANDARD Storage Class to store newly created objects. The STANDARD storage class provides high durability and high availability. Depending on performance needs, you can specify a different Storage Class. For more information, see Storage Classes in the Amazon S3 User Guide.

  • For directory buckets, only the S3 Express One Zone storage class is supported to store newly created objects.

  • Amazon S3 on Outposts only uses the OUTPOSTS Storage Class.

Source

pub fn website_redirect_location(self, input: impl Into<String>) -> Self

If the bucket is configured as a website, redirects requests for this object to another object in the same bucket or to an external URL. Amazon S3 stores the value of this header in the object metadata. For information about object metadata, see Object Key and Metadata in the Amazon S3 User Guide.

In the following example, the request header sets the redirect to an object (anotherPage.html) in the same bucket:

x-amz-website-redirect-location: /anotherPage.html

In the following example, the request header sets the object redirect to another website:

x-amz-website-redirect-location: http://www.example.com/

For more information about website hosting in Amazon S3, see Hosting Websites on Amazon S3 and How to Configure Website Page Redirects in the Amazon S3 User Guide.

This functionality is not supported for directory buckets.

Source

pub fn set_website_redirect_location(self, input: Option<String>) -> Self

If the bucket is configured as a website, redirects requests for this object to another object in the same bucket or to an external URL. Amazon S3 stores the value of this header in the object metadata. For information about object metadata, see Object Key and Metadata in the Amazon S3 User Guide.

In the following example, the request header sets the redirect to an object (anotherPage.html) in the same bucket:

x-amz-website-redirect-location: /anotherPage.html

In the following example, the request header sets the object redirect to another website:

x-amz-website-redirect-location: http://www.example.com/

For more information about website hosting in Amazon S3, see Hosting Websites on Amazon S3 and How to Configure Website Page Redirects in the Amazon S3 User Guide.

This functionality is not supported for directory buckets.

Source

pub fn get_website_redirect_location(&self) -> &Option<String>

If the bucket is configured as a website, redirects requests for this object to another object in the same bucket or to an external URL. Amazon S3 stores the value of this header in the object metadata. For information about object metadata, see Object Key and Metadata in the Amazon S3 User Guide.

In the following example, the request header sets the redirect to an object (anotherPage.html) in the same bucket:

x-amz-website-redirect-location: /anotherPage.html

In the following example, the request header sets the object redirect to another website:

x-amz-website-redirect-location: http://www.example.com/

For more information about website hosting in Amazon S3, see Hosting Websites on Amazon S3 and How to Configure Website Page Redirects in the Amazon S3 User Guide.

This functionality is not supported for directory buckets.

Source

pub fn sse_customer_algorithm(self, input: impl Into<String>) -> Self

Specifies the algorithm to use when encrypting the object (for example, AES256).

This functionality is not supported for directory buckets.

Source

pub fn set_sse_customer_algorithm(self, input: Option<String>) -> Self

Specifies the algorithm to use when encrypting the object (for example, AES256).

This functionality is not supported for directory buckets.

Source

pub fn get_sse_customer_algorithm(&self) -> &Option<String>

Specifies the algorithm to use when encrypting the object (for example, AES256).

This functionality is not supported for directory buckets.

Source

pub fn sse_customer_key(self, input: impl Into<String>) -> Self

Specifies the customer-provided encryption key for Amazon S3 to use in encrypting data. This value is used to store the object and then it is discarded; Amazon S3 does not store the encryption key. The key must be appropriate for use with the algorithm specified in the x-amz-server-side-encryption-customer-algorithm header.

This functionality is not supported for directory buckets.

Source

pub fn set_sse_customer_key(self, input: Option<String>) -> Self

Specifies the customer-provided encryption key for Amazon S3 to use in encrypting data. This value is used to store the object and then it is discarded; Amazon S3 does not store the encryption key. The key must be appropriate for use with the algorithm specified in the x-amz-server-side-encryption-customer-algorithm header.

This functionality is not supported for directory buckets.

Source

pub fn get_sse_customer_key(&self) -> &Option<String>

Specifies the customer-provided encryption key for Amazon S3 to use in encrypting data. This value is used to store the object and then it is discarded; Amazon S3 does not store the encryption key. The key must be appropriate for use with the algorithm specified in the x-amz-server-side-encryption-customer-algorithm header.

This functionality is not supported for directory buckets.

Source

pub fn sse_customer_key_md5(self, input: impl Into<String>) -> Self

Specifies the 128-bit MD5 digest of the encryption key according to RFC 1321. Amazon S3 uses this header for a message integrity check to ensure that the encryption key was transmitted without error.

This functionality is not supported for directory buckets.

Source

pub fn set_sse_customer_key_md5(self, input: Option<String>) -> Self

Specifies the 128-bit MD5 digest of the encryption key according to RFC 1321. Amazon S3 uses this header for a message integrity check to ensure that the encryption key was transmitted without error.

This functionality is not supported for directory buckets.

Source

pub fn get_sse_customer_key_md5(&self) -> &Option<String>

Specifies the 128-bit MD5 digest of the encryption key according to RFC 1321. Amazon S3 uses this header for a message integrity check to ensure that the encryption key was transmitted without error.

This functionality is not supported for directory buckets.

Source

pub fn ssekms_key_id(self, input: impl Into<String>) -> Self

Specifies the KMS key ID (Key ID, Key ARN, or Key Alias) to use for object encryption. If the KMS key doesn't exist in the same account that's issuing the command, you must use the full Key ARN not the Key ID.

General purpose buckets - If you specify x-amz-server-side-encryption with aws:kms or aws:kms:dsse, this header specifies the ID (Key ID, Key ARN, or Key Alias) of the KMS key to use. If you specify x-amz-server-side-encryption:aws:kms or x-amz-server-side-encryption:aws:kms:dsse, but do not provide x-amz-server-side-encryption-aws-kms-key-id, Amazon S3 uses the Amazon Web Services managed key (aws/s3) to protect the data.

Directory buckets - If you specify x-amz-server-side-encryption with aws:kms, the x-amz-server-side-encryption-aws-kms-key-id header is implicitly assigned the ID of the KMS symmetric encryption customer managed key that's configured for your directory bucket's default encryption setting. If you want to specify the x-amz-server-side-encryption-aws-kms-key-id header explicitly, you can only specify it with the ID (Key ID or Key ARN) of the KMS customer managed key that's configured for your directory bucket's default encryption setting. Otherwise, you get an HTTP 400 Bad Request error. Only use the key ID or key ARN. The key alias format of the KMS key isn't supported. Your SSE-KMS configuration can only support 1 customer managed key per directory bucket for the lifetime of the bucket. The Amazon Web Services managed key (aws/s3) isn't supported.

Source

pub fn set_ssekms_key_id(self, input: Option<String>) -> Self

Specifies the KMS key ID (Key ID, Key ARN, or Key Alias) to use for object encryption. If the KMS key doesn't exist in the same account that's issuing the command, you must use the full Key ARN not the Key ID.

General purpose buckets - If you specify x-amz-server-side-encryption with aws:kms or aws:kms:dsse, this header specifies the ID (Key ID, Key ARN, or Key Alias) of the KMS key to use. If you specify x-amz-server-side-encryption:aws:kms or x-amz-server-side-encryption:aws:kms:dsse, but do not provide x-amz-server-side-encryption-aws-kms-key-id, Amazon S3 uses the Amazon Web Services managed key (aws/s3) to protect the data.

Directory buckets - If you specify x-amz-server-side-encryption with aws:kms, the x-amz-server-side-encryption-aws-kms-key-id header is implicitly assigned the ID of the KMS symmetric encryption customer managed key that's configured for your directory bucket's default encryption setting. If you want to specify the x-amz-server-side-encryption-aws-kms-key-id header explicitly, you can only specify it with the ID (Key ID or Key ARN) of the KMS customer managed key that's configured for your directory bucket's default encryption setting. Otherwise, you get an HTTP 400 Bad Request error. Only use the key ID or key ARN. The key alias format of the KMS key isn't supported. Your SSE-KMS configuration can only support 1 customer managed key per directory bucket for the lifetime of the bucket. The Amazon Web Services managed key (aws/s3) isn't supported.

Source

pub fn get_ssekms_key_id(&self) -> &Option<String>

Specifies the KMS key ID (Key ID, Key ARN, or Key Alias) to use for object encryption. If the KMS key doesn't exist in the same account that's issuing the command, you must use the full Key ARN not the Key ID.

General purpose buckets - If you specify x-amz-server-side-encryption with aws:kms or aws:kms:dsse, this header specifies the ID (Key ID, Key ARN, or Key Alias) of the KMS key to use. If you specify x-amz-server-side-encryption:aws:kms or x-amz-server-side-encryption:aws:kms:dsse, but do not provide x-amz-server-side-encryption-aws-kms-key-id, Amazon S3 uses the Amazon Web Services managed key (aws/s3) to protect the data.

Directory buckets - If you specify x-amz-server-side-encryption with aws:kms, the x-amz-server-side-encryption-aws-kms-key-id header is implicitly assigned the ID of the KMS symmetric encryption customer managed key that's configured for your directory bucket's default encryption setting. If you want to specify the x-amz-server-side-encryption-aws-kms-key-id header explicitly, you can only specify it with the ID (Key ID or Key ARN) of the KMS customer managed key that's configured for your directory bucket's default encryption setting. Otherwise, you get an HTTP 400 Bad Request error. Only use the key ID or key ARN. The key alias format of the KMS key isn't supported. Your SSE-KMS configuration can only support 1 customer managed key per directory bucket for the lifetime of the bucket. The Amazon Web Services managed key (aws/s3) isn't supported.

Source

pub fn ssekms_encryption_context(self, input: impl Into<String>) -> Self

Specifies the Amazon Web Services KMS Encryption Context as an additional encryption context to use for object encryption. The value of this header is a Base64-encoded string of a UTF-8 encoded JSON, which contains the encryption context as key-value pairs. This value is stored as object metadata and automatically gets passed on to Amazon Web Services KMS for future GetObject operations on this object.

General purpose buckets - This value must be explicitly added during CopyObject operations if you want an additional encryption context for your object. For more information, see Encryption context in the Amazon S3 User Guide.

Directory buckets - You can optionally provide an explicit encryption context value. The value must match the default encryption context - the bucket Amazon Resource Name (ARN). An additional encryption context value is not supported.

Source

pub fn set_ssekms_encryption_context(self, input: Option<String>) -> Self

Specifies the Amazon Web Services KMS Encryption Context as an additional encryption context to use for object encryption. The value of this header is a Base64-encoded string of a UTF-8 encoded JSON, which contains the encryption context as key-value pairs. This value is stored as object metadata and automatically gets passed on to Amazon Web Services KMS for future GetObject operations on this object.

General purpose buckets - This value must be explicitly added during CopyObject operations if you want an additional encryption context for your object. For more information, see Encryption context in the Amazon S3 User Guide.

Directory buckets - You can optionally provide an explicit encryption context value. The value must match the default encryption context - the bucket Amazon Resource Name (ARN). An additional encryption context value is not supported.

Source

pub fn get_ssekms_encryption_context(&self) -> &Option<String>

Specifies the Amazon Web Services KMS Encryption Context as an additional encryption context to use for object encryption. The value of this header is a Base64-encoded string of a UTF-8 encoded JSON, which contains the encryption context as key-value pairs. This value is stored as object metadata and automatically gets passed on to Amazon Web Services KMS for future GetObject operations on this object.

General purpose buckets - This value must be explicitly added during CopyObject operations if you want an additional encryption context for your object. For more information, see Encryption context in the Amazon S3 User Guide.

Directory buckets - You can optionally provide an explicit encryption context value. The value must match the default encryption context - the bucket Amazon Resource Name (ARN). An additional encryption context value is not supported.

Source

pub fn bucket_key_enabled(self, input: bool) -> Self

Specifies whether Amazon S3 should use an S3 Bucket Key for object encryption with server-side encryption using Key Management Service (KMS) keys (SSE-KMS).

General purpose buckets - Setting this header to true causes Amazon S3 to use an S3 Bucket Key for object encryption with SSE-KMS. Also, specifying this header with a PUT action doesn't affect bucket-level settings for S3 Bucket Key.

Directory buckets - S3 Bucket Keys are always enabled for GET and PUT operations in a directory bucket and can’t be disabled. S3 Bucket Keys aren't supported, when you copy SSE-KMS encrypted objects from general purpose buckets to directory buckets, from directory buckets to general purpose buckets, or between directory buckets, through CopyObject, UploadPartCopy, the Copy operation in Batch Operations, or the import jobs. In this case, Amazon S3 makes a call to KMS every time a copy request is made for a KMS-encrypted object.

Source

pub fn set_bucket_key_enabled(self, input: Option<bool>) -> Self

Specifies whether Amazon S3 should use an S3 Bucket Key for object encryption with server-side encryption using Key Management Service (KMS) keys (SSE-KMS).

General purpose buckets - Setting this header to true causes Amazon S3 to use an S3 Bucket Key for object encryption with SSE-KMS. Also, specifying this header with a PUT action doesn't affect bucket-level settings for S3 Bucket Key.

Directory buckets - S3 Bucket Keys are always enabled for GET and PUT operations in a directory bucket and can’t be disabled. S3 Bucket Keys aren't supported, when you copy SSE-KMS encrypted objects from general purpose buckets to directory buckets, from directory buckets to general purpose buckets, or between directory buckets, through CopyObject, UploadPartCopy, the Copy operation in Batch Operations, or the import jobs. In this case, Amazon S3 makes a call to KMS every time a copy request is made for a KMS-encrypted object.

Source

pub fn get_bucket_key_enabled(&self) -> &Option<bool>

Specifies whether Amazon S3 should use an S3 Bucket Key for object encryption with server-side encryption using Key Management Service (KMS) keys (SSE-KMS).

General purpose buckets - Setting this header to true causes Amazon S3 to use an S3 Bucket Key for object encryption with SSE-KMS. Also, specifying this header with a PUT action doesn't affect bucket-level settings for S3 Bucket Key.

Directory buckets - S3 Bucket Keys are always enabled for GET and PUT operations in a directory bucket and can’t be disabled. S3 Bucket Keys aren't supported, when you copy SSE-KMS encrypted objects from general purpose buckets to directory buckets, from directory buckets to general purpose buckets, or between directory buckets, through CopyObject, UploadPartCopy, the Copy operation in Batch Operations, or the import jobs. In this case, Amazon S3 makes a call to KMS every time a copy request is made for a KMS-encrypted object.

Source

pub fn request_payer(self, input: RequestPayer) -> Self

Confirms that the requester knows that they will be charged for the request. Bucket owners need not specify this parameter in their requests. If either the source or destination S3 bucket has Requester Pays enabled, the requester will pay for corresponding charges to copy the object. For information about downloading objects from Requester Pays buckets, see Downloading Objects in Requester Pays Buckets in the Amazon S3 User Guide.

This functionality is not supported for directory buckets.

Source

pub fn set_request_payer(self, input: Option<RequestPayer>) -> Self

Confirms that the requester knows that they will be charged for the request. Bucket owners need not specify this parameter in their requests. If either the source or destination S3 bucket has Requester Pays enabled, the requester will pay for corresponding charges to copy the object. For information about downloading objects from Requester Pays buckets, see Downloading Objects in Requester Pays Buckets in the Amazon S3 User Guide.

This functionality is not supported for directory buckets.

Source

pub fn get_request_payer(&self) -> &Option<RequestPayer>

Confirms that the requester knows that they will be charged for the request. Bucket owners need not specify this parameter in their requests. If either the source or destination S3 bucket has Requester Pays enabled, the requester will pay for corresponding charges to copy the object. For information about downloading objects from Requester Pays buckets, see Downloading Objects in Requester Pays Buckets in the Amazon S3 User Guide.

This functionality is not supported for directory buckets.

Source

pub fn tagging(self, input: impl Into<String>) -> Self

The tag-set for the object. The tag-set must be encoded as URL Query parameters. (For example, "Key1=Value1")

This functionality is not supported for directory buckets.

Source

pub fn set_tagging(self, input: Option<String>) -> Self

The tag-set for the object. The tag-set must be encoded as URL Query parameters. (For example, "Key1=Value1")

This functionality is not supported for directory buckets.

Source

pub fn get_tagging(&self) -> &Option<String>

The tag-set for the object. The tag-set must be encoded as URL Query parameters. (For example, "Key1=Value1")

This functionality is not supported for directory buckets.

Source

pub fn object_lock_mode(self, input: ObjectLockMode) -> Self

The Object Lock mode that you want to apply to this object.

This functionality is not supported for directory buckets.

Source

pub fn set_object_lock_mode(self, input: Option<ObjectLockMode>) -> Self

The Object Lock mode that you want to apply to this object.

This functionality is not supported for directory buckets.

Source

pub fn get_object_lock_mode(&self) -> &Option<ObjectLockMode>

The Object Lock mode that you want to apply to this object.

This functionality is not supported for directory buckets.

Source

pub fn object_lock_retain_until_date(self, input: DateTime) -> Self

The date and time when you want this object's Object Lock to expire. Must be formatted as a timestamp parameter.

This functionality is not supported for directory buckets.

Source

pub fn set_object_lock_retain_until_date(self, input: Option<DateTime>) -> Self

The date and time when you want this object's Object Lock to expire. Must be formatted as a timestamp parameter.

This functionality is not supported for directory buckets.

Source

pub fn get_object_lock_retain_until_date(&self) -> &Option<DateTime>

The date and time when you want this object's Object Lock to expire. Must be formatted as a timestamp parameter.

This functionality is not supported for directory buckets.

Specifies whether a legal hold will be applied to this object. For more information about S3 Object Lock, see Object Lock in the Amazon S3 User Guide.

This functionality is not supported for directory buckets.

Specifies whether a legal hold will be applied to this object. For more information about S3 Object Lock, see Object Lock in the Amazon S3 User Guide.

This functionality is not supported for directory buckets.

Specifies whether a legal hold will be applied to this object. For more information about S3 Object Lock, see Object Lock in the Amazon S3 User Guide.

This functionality is not supported for directory buckets.

Source

pub fn expected_bucket_owner(self, input: impl Into<String>) -> Self

The account ID of the expected bucket owner. If the account ID that you provide does not match the actual owner of the bucket, the request fails with the HTTP status code 403 Forbidden (access denied).

Source

pub fn set_expected_bucket_owner(self, input: Option<String>) -> Self

The account ID of the expected bucket owner. If the account ID that you provide does not match the actual owner of the bucket, the request fails with the HTTP status code 403 Forbidden (access denied).

Source

pub fn get_expected_bucket_owner(&self) -> &Option<String>

The account ID of the expected bucket owner. If the account ID that you provide does not match the actual owner of the bucket, the request fails with the HTTP status code 403 Forbidden (access denied).

Trait Implementations§

Source§

impl Debug for PutObjectFluentBuilder

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T> Instrument for T

Source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
Source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<Unshared, Shared> IntoShared<Shared> for Unshared
where Shared: FromUnshared<Unshared>,

Source§

fn into_shared(self) -> Shared

Creates a shared type from an unshared type.
Source§

impl<T> Paint for T
where T: ?Sized,

Source§

fn fg(&self, value: Color) -> Painted<&T>

Returns a styled value derived from self with the foreground set to value.

This method should be used rarely. Instead, prefer to use color-specific builder methods like red() and green(), which have the same functionality but are pithier.

§Example

Set foreground color to white using fg():

use yansi::{Paint, Color};

painted.fg(Color::White);

Set foreground color to white using white().

use yansi::Paint;

painted.white();
Source§

fn primary(&self) -> Painted<&T>

Returns self with the fg() set to Color::Primary.

§Example
println!("{}", value.primary());
Source§

fn fixed(&self, color: u8) -> Painted<&T>

Returns self with the fg() set to Color::Fixed.

§Example
println!("{}", value.fixed(color));
Source§

fn rgb(&self, r: u8, g: u8, b: u8) -> Painted<&T>

Returns self with the fg() set to Color::Rgb.

§Example
println!("{}", value.rgb(r, g, b));
Source§

fn black(&self) -> Painted<&T>

Returns self with the fg() set to Color::Black.

§Example
println!("{}", value.black());
Source§

fn red(&self) -> Painted<&T>

Returns self with the fg() set to Color::Red.

§Example
println!("{}", value.red());
Source§

fn green(&self) -> Painted<&T>

Returns self with the fg() set to Color::Green.

§Example
println!("{}", value.green());
Source§

fn yellow(&self) -> Painted<&T>

Returns self with the fg() set to Color::Yellow.

§Example
println!("{}", value.yellow());
Source§

fn blue(&self) -> Painted<&T>

Returns self with the fg() set to Color::Blue.

§Example
println!("{}", value.blue());
Source§

fn magenta(&self) -> Painted<&T>

Returns self with the fg() set to Color::Magenta.

§Example
println!("{}", value.magenta());
Source§

fn cyan(&self) -> Painted<&T>

Returns self with the fg() set to Color::Cyan.

§Example
println!("{}", value.cyan());
Source§

fn white(&self) -> Painted<&T>

Returns self with the fg() set to Color::White.

§Example
println!("{}", value.white());
Source§

fn bright_black(&self) -> Painted<&T>

Returns self with the fg() set to Color::BrightBlack.

§Example
println!("{}", value.bright_black());
Source§

fn bright_red(&self) -> Painted<&T>

Returns self with the fg() set to Color::BrightRed.

§Example
println!("{}", value.bright_red());
Source§

fn bright_green(&self) -> Painted<&T>

Returns self with the fg() set to Color::BrightGreen.

§Example
println!("{}", value.bright_green());
Source§

fn bright_yellow(&self) -> Painted<&T>

Returns self with the fg() set to Color::BrightYellow.

§Example
println!("{}", value.bright_yellow());
Source§

fn bright_blue(&self) -> Painted<&T>

Returns self with the fg() set to Color::BrightBlue.

§Example
println!("{}", value.bright_blue());
Source§

fn bright_magenta(&self) -> Painted<&T>

Returns self with the fg() set to Color::BrightMagenta.

§Example
println!("{}", value.bright_magenta());
Source§

fn bright_cyan(&self) -> Painted<&T>

Returns self with the fg() set to Color::BrightCyan.

§Example
println!("{}", value.bright_cyan());
Source§

fn bright_white(&self) -> Painted<&T>

Returns self with the fg() set to Color::BrightWhite.

§Example
println!("{}", value.bright_white());
Source§

fn bg(&self, value: Color) -> Painted<&T>

Returns a styled value derived from self with the background set to value.

This method should be used rarely. Instead, prefer to use color-specific builder methods like on_red() and on_green(), which have the same functionality but are pithier.

§Example

Set background color to red using fg():

use yansi::{Paint, Color};

painted.bg(Color::Red);

Set background color to red using on_red().

use yansi::Paint;

painted.on_red();
Source§

fn on_primary(&self) -> Painted<&T>

Returns self with the bg() set to Color::Primary.

§Example
println!("{}", value.on_primary());
Source§

fn on_fixed(&self, color: u8) -> Painted<&T>

Returns self with the bg() set to Color::Fixed.

§Example
println!("{}", value.on_fixed(color));
Source§

fn on_rgb(&self, r: u8, g: u8, b: u8) -> Painted<&T>

Returns self with the bg() set to Color::Rgb.

§Example
println!("{}", value.on_rgb(r, g, b));
Source§

fn on_black(&self) -> Painted<&T>

Returns self with the bg() set to Color::Black.

§Example
println!("{}", value.on_black());
Source§

fn on_red(&self) -> Painted<&T>

Returns self with the bg() set to Color::Red.

§Example
println!("{}", value.on_red());
Source§

fn on_green(&self) -> Painted<&T>

Returns self with the bg() set to Color::Green.

§Example
println!("{}", value.on_green());
Source§

fn on_yellow(&self) -> Painted<&T>

Returns self with the bg() set to Color::Yellow.

§Example
println!("{}", value.on_yellow());
Source§

fn on_blue(&self) -> Painted<&T>

Returns self with the bg() set to Color::Blue.

§Example
println!("{}", value.on_blue());
Source§

fn on_magenta(&self) -> Painted<&T>

Returns self with the bg() set to Color::Magenta.

§Example
println!("{}", value.on_magenta());
Source§

fn on_cyan(&self) -> Painted<&T>

Returns self with the bg() set to Color::Cyan.

§Example
println!("{}", value.on_cyan());
Source§

fn on_white(&self) -> Painted<&T>

Returns self with the bg() set to Color::White.

§Example
println!("{}", value.on_white());
Source§

fn on_bright_black(&self) -> Painted<&T>

Returns self with the bg() set to Color::BrightBlack.

§Example
println!("{}", value.on_bright_black());
Source§

fn on_bright_red(&self) -> Painted<&T>

Returns self with the bg() set to Color::BrightRed.

§Example
println!("{}", value.on_bright_red());
Source§

fn on_bright_green(&self) -> Painted<&T>

Returns self with the bg() set to Color::BrightGreen.

§Example
println!("{}", value.on_bright_green());
Source§

fn on_bright_yellow(&self) -> Painted<&T>

Returns self with the bg() set to Color::BrightYellow.

§Example
println!("{}", value.on_bright_yellow());
Source§

fn on_bright_blue(&self) -> Painted<&T>

Returns self with the bg() set to Color::BrightBlue.

§Example
println!("{}", value.on_bright_blue());
Source§

fn on_bright_magenta(&self) -> Painted<&T>

Returns self with the bg() set to Color::BrightMagenta.

§Example
println!("{}", value.on_bright_magenta());
Source§

fn on_bright_cyan(&self) -> Painted<&T>

Returns self with the bg() set to Color::BrightCyan.

§Example
println!("{}", value.on_bright_cyan());
Source§

fn on_bright_white(&self) -> Painted<&T>

Returns self with the bg() set to Color::BrightWhite.

§Example
println!("{}", value.on_bright_white());
Source§

fn attr(&self, value: Attribute) -> Painted<&T>

Enables the styling Attribute value.

This method should be used rarely. Instead, prefer to use attribute-specific builder methods like bold() and underline(), which have the same functionality but are pithier.

§Example

Make text bold using attr():

use yansi::{Paint, Attribute};

painted.attr(Attribute::Bold);

Make text bold using using bold().

use yansi::Paint;

painted.bold();
Source§

fn bold(&self) -> Painted<&T>

Returns self with the attr() set to Attribute::Bold.

§Example
println!("{}", value.bold());
Source§

fn dim(&self) -> Painted<&T>

Returns self with the attr() set to Attribute::Dim.

§Example
println!("{}", value.dim());
Source§

fn italic(&self) -> Painted<&T>

Returns self with the attr() set to Attribute::Italic.

§Example
println!("{}", value.italic());
Source§

fn underline(&self) -> Painted<&T>

Returns self with the attr() set to Attribute::Underline.

§Example
println!("{}", value.underline());

Returns self with the attr() set to Attribute::Blink.

§Example
println!("{}", value.blink());

Returns self with the attr() set to Attribute::RapidBlink.

§Example
println!("{}", value.rapid_blink());
Source§

fn invert(&self) -> Painted<&T>

Returns self with the attr() set to Attribute::Invert.

§Example
println!("{}", value.invert());
Source§

fn conceal(&self) -> Painted<&T>

Returns self with the attr() set to Attribute::Conceal.

§Example
println!("{}", value.conceal());
Source§

fn strike(&self) -> Painted<&T>

Returns self with the attr() set to Attribute::Strike.

§Example
println!("{}", value.strike());
Source§

fn quirk(&self, value: Quirk) -> Painted<&T>

Enables the yansi Quirk value.

This method should be used rarely. Instead, prefer to use quirk-specific builder methods like mask() and wrap(), which have the same functionality but are pithier.

§Example

Enable wrapping using .quirk():

use yansi::{Paint, Quirk};

painted.quirk(Quirk::Wrap);

Enable wrapping using wrap().

use yansi::Paint;

painted.wrap();
Source§

fn mask(&self) -> Painted<&T>

Returns self with the quirk() set to Quirk::Mask.

§Example
println!("{}", value.mask());
Source§

fn wrap(&self) -> Painted<&T>

Returns self with the quirk() set to Quirk::Wrap.

§Example
println!("{}", value.wrap());
Source§

fn linger(&self) -> Painted<&T>

Returns self with the quirk() set to Quirk::Linger.

§Example
println!("{}", value.linger());
Source§

fn clear(&self) -> Painted<&T>

👎Deprecated since 1.0.1: renamed to resetting() due to conflicts with Vec::clear(). The clear() method will be removed in a future release.

Returns self with the quirk() set to Quirk::Clear.

§Example
println!("{}", value.clear());
Source§

fn resetting(&self) -> Painted<&T>

Returns self with the quirk() set to Quirk::Resetting.

§Example
println!("{}", value.resetting());
Source§

fn bright(&self) -> Painted<&T>

Returns self with the quirk() set to Quirk::Bright.

§Example
println!("{}", value.bright());
Source§

fn on_bright(&self) -> Painted<&T>

Returns self with the quirk() set to Quirk::OnBright.

§Example
println!("{}", value.on_bright());
Source§

fn whenever(&self, value: Condition) -> Painted<&T>

Conditionally enable styling based on whether the Condition value applies. Replaces any previous condition.

See the crate level docs for more details.

§Example

Enable styling painted only when both stdout and stderr are TTYs:

use yansi::{Paint, Condition};

painted.red().on_yellow().whenever(Condition::STDOUTERR_ARE_TTY);
Source§

fn new(self) -> Painted<Self>
where Self: Sized,

Create a new Painted with a default Style. Read more
Source§

fn paint<S>(&self, style: S) -> Painted<&Self>
where S: Into<Style>,

Apply a style wholesale to self. Any previous style is replaced. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<T> WithSubscriber for T

Source§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

impl<T> ErasedDestructor for T
where T: 'static,

Source§

impl<T> MaybeSendSync for T