aws_sdk_wafv2::types::builders

Struct ByteMatchStatementBuilder

Source
#[non_exhaustive]
pub struct ByteMatchStatementBuilder { /* private fields */ }
Expand description

A builder for ByteMatchStatement.

Implementations§

Source§

impl ByteMatchStatementBuilder

Source

pub fn search_string(self, input: Blob) -> Self

A string value that you want WAF to search for. WAF searches only in the part of web requests that you designate for inspection in FieldToMatch. The maximum length of the value is 200 bytes.

Valid values depend on the component that you specify for inspection in FieldToMatch:

  • Method: The HTTP method that you want WAF to search for. This indicates the type of operation specified in the request.

  • UriPath: The value that you want WAF to search for in the URI path, for example, /images/daily-ad.jpg.

  • JA3Fingerprint: Available for use with Amazon CloudFront distributions and Application Load Balancers. Match against the request's JA3 fingerprint. The JA3 fingerprint is a 32-character hash derived from the TLS Client Hello of an incoming request. This fingerprint serves as a unique identifier for the client's TLS configuration. You can use this choice only with a string match ByteMatchStatement with the PositionalConstraint set to EXACTLY.

    You can obtain the JA3 fingerprint for client requests from the web ACL logs. If WAF is able to calculate the fingerprint, it includes it in the logs. For information about the logging fields, see Log fields in the WAF Developer Guide.

  • HeaderOrder: The list of header names to match for. WAF creates a string that contains the ordered list of header names, from the headers in the web request, and then matches against that string.

If SearchString includes alphabetic characters A-Z and a-z, note that the value is case sensitive.

If you're using the WAF API

Specify a base64-encoded version of the value. The maximum length of the value before you base64-encode it is 200 bytes.

For example, suppose the value of Type is HEADER and the value of Data is User-Agent. If you want to search the User-Agent header for the value BadBot, you base64-encode BadBot using MIME base64-encoding and include the resulting value, QmFkQm90, in the value of SearchString.

If you're using the CLI or one of the Amazon Web Services SDKs

The value that you want WAF to search for. The SDK automatically base64 encodes the value.

This field is required.
Source

pub fn set_search_string(self, input: Option<Blob>) -> Self

A string value that you want WAF to search for. WAF searches only in the part of web requests that you designate for inspection in FieldToMatch. The maximum length of the value is 200 bytes.

Valid values depend on the component that you specify for inspection in FieldToMatch:

  • Method: The HTTP method that you want WAF to search for. This indicates the type of operation specified in the request.

  • UriPath: The value that you want WAF to search for in the URI path, for example, /images/daily-ad.jpg.

  • JA3Fingerprint: Available for use with Amazon CloudFront distributions and Application Load Balancers. Match against the request's JA3 fingerprint. The JA3 fingerprint is a 32-character hash derived from the TLS Client Hello of an incoming request. This fingerprint serves as a unique identifier for the client's TLS configuration. You can use this choice only with a string match ByteMatchStatement with the PositionalConstraint set to EXACTLY.

    You can obtain the JA3 fingerprint for client requests from the web ACL logs. If WAF is able to calculate the fingerprint, it includes it in the logs. For information about the logging fields, see Log fields in the WAF Developer Guide.

  • HeaderOrder: The list of header names to match for. WAF creates a string that contains the ordered list of header names, from the headers in the web request, and then matches against that string.

If SearchString includes alphabetic characters A-Z and a-z, note that the value is case sensitive.

If you're using the WAF API

Specify a base64-encoded version of the value. The maximum length of the value before you base64-encode it is 200 bytes.

For example, suppose the value of Type is HEADER and the value of Data is User-Agent. If you want to search the User-Agent header for the value BadBot, you base64-encode BadBot using MIME base64-encoding and include the resulting value, QmFkQm90, in the value of SearchString.

If you're using the CLI or one of the Amazon Web Services SDKs

The value that you want WAF to search for. The SDK automatically base64 encodes the value.

Source

pub fn get_search_string(&self) -> &Option<Blob>

A string value that you want WAF to search for. WAF searches only in the part of web requests that you designate for inspection in FieldToMatch. The maximum length of the value is 200 bytes.

Valid values depend on the component that you specify for inspection in FieldToMatch:

  • Method: The HTTP method that you want WAF to search for. This indicates the type of operation specified in the request.

  • UriPath: The value that you want WAF to search for in the URI path, for example, /images/daily-ad.jpg.

  • JA3Fingerprint: Available for use with Amazon CloudFront distributions and Application Load Balancers. Match against the request's JA3 fingerprint. The JA3 fingerprint is a 32-character hash derived from the TLS Client Hello of an incoming request. This fingerprint serves as a unique identifier for the client's TLS configuration. You can use this choice only with a string match ByteMatchStatement with the PositionalConstraint set to EXACTLY.

    You can obtain the JA3 fingerprint for client requests from the web ACL logs. If WAF is able to calculate the fingerprint, it includes it in the logs. For information about the logging fields, see Log fields in the WAF Developer Guide.

  • HeaderOrder: The list of header names to match for. WAF creates a string that contains the ordered list of header names, from the headers in the web request, and then matches against that string.

If SearchString includes alphabetic characters A-Z and a-z, note that the value is case sensitive.

If you're using the WAF API

Specify a base64-encoded version of the value. The maximum length of the value before you base64-encode it is 200 bytes.

For example, suppose the value of Type is HEADER and the value of Data is User-Agent. If you want to search the User-Agent header for the value BadBot, you base64-encode BadBot using MIME base64-encoding and include the resulting value, QmFkQm90, in the value of SearchString.

If you're using the CLI or one of the Amazon Web Services SDKs

The value that you want WAF to search for. The SDK automatically base64 encodes the value.

Source

pub fn field_to_match(self, input: FieldToMatch) -> Self

The part of the web request that you want WAF to inspect.

This field is required.
Source

pub fn set_field_to_match(self, input: Option<FieldToMatch>) -> Self

The part of the web request that you want WAF to inspect.

Source

pub fn get_field_to_match(&self) -> &Option<FieldToMatch>

The part of the web request that you want WAF to inspect.

Source

pub fn text_transformations(self, input: TextTransformation) -> Self

Appends an item to text_transformations.

To override the contents of this collection use set_text_transformations.

Text transformations eliminate some of the unusual formatting that attackers use in web requests in an effort to bypass detection. Text transformations are used in rule match statements, to transform the FieldToMatch request component before inspecting it, and they're used in rate-based rule statements, to transform request components before using them as custom aggregation keys. If you specify one or more transformations to apply, WAF performs all transformations on the specified content, starting from the lowest priority setting, and then uses the transformed component contents.

Source

pub fn set_text_transformations( self, input: Option<Vec<TextTransformation>>, ) -> Self

Text transformations eliminate some of the unusual formatting that attackers use in web requests in an effort to bypass detection. Text transformations are used in rule match statements, to transform the FieldToMatch request component before inspecting it, and they're used in rate-based rule statements, to transform request components before using them as custom aggregation keys. If you specify one or more transformations to apply, WAF performs all transformations on the specified content, starting from the lowest priority setting, and then uses the transformed component contents.

Source

pub fn get_text_transformations(&self) -> &Option<Vec<TextTransformation>>

Text transformations eliminate some of the unusual formatting that attackers use in web requests in an effort to bypass detection. Text transformations are used in rule match statements, to transform the FieldToMatch request component before inspecting it, and they're used in rate-based rule statements, to transform request components before using them as custom aggregation keys. If you specify one or more transformations to apply, WAF performs all transformations on the specified content, starting from the lowest priority setting, and then uses the transformed component contents.

Source

pub fn positional_constraint(self, input: PositionalConstraint) -> Self

The area within the portion of the web request that you want WAF to search for SearchString. Valid values include the following:

CONTAINS

The specified part of the web request must include the value of SearchString, but the location doesn't matter.

CONTAINS_WORD

The specified part of the web request must include the value of SearchString, and SearchString must contain only alphanumeric characters or underscore (A-Z, a-z, 0-9, or _). In addition, SearchString must be a word, which means that both of the following are true:

  • SearchString is at the beginning of the specified part of the web request or is preceded by a character other than an alphanumeric character or underscore (_). Examples include the value of a header and ;BadBot.

  • SearchString is at the end of the specified part of the web request or is followed by a character other than an alphanumeric character or underscore (_), for example, BadBot; and -BadBot;.

EXACTLY

The value of the specified part of the web request must exactly match the value of SearchString.

STARTS_WITH

The value of SearchString must appear at the beginning of the specified part of the web request.

ENDS_WITH

The value of SearchString must appear at the end of the specified part of the web request.

This field is required.
Source

pub fn set_positional_constraint( self, input: Option<PositionalConstraint>, ) -> Self

The area within the portion of the web request that you want WAF to search for SearchString. Valid values include the following:

CONTAINS

The specified part of the web request must include the value of SearchString, but the location doesn't matter.

CONTAINS_WORD

The specified part of the web request must include the value of SearchString, and SearchString must contain only alphanumeric characters or underscore (A-Z, a-z, 0-9, or _). In addition, SearchString must be a word, which means that both of the following are true:

  • SearchString is at the beginning of the specified part of the web request or is preceded by a character other than an alphanumeric character or underscore (_). Examples include the value of a header and ;BadBot.

  • SearchString is at the end of the specified part of the web request or is followed by a character other than an alphanumeric character or underscore (_), for example, BadBot; and -BadBot;.

EXACTLY

The value of the specified part of the web request must exactly match the value of SearchString.

STARTS_WITH

The value of SearchString must appear at the beginning of the specified part of the web request.

ENDS_WITH

The value of SearchString must appear at the end of the specified part of the web request.

Source

pub fn get_positional_constraint(&self) -> &Option<PositionalConstraint>

The area within the portion of the web request that you want WAF to search for SearchString. Valid values include the following:

CONTAINS

The specified part of the web request must include the value of SearchString, but the location doesn't matter.

CONTAINS_WORD

The specified part of the web request must include the value of SearchString, and SearchString must contain only alphanumeric characters or underscore (A-Z, a-z, 0-9, or _). In addition, SearchString must be a word, which means that both of the following are true:

  • SearchString is at the beginning of the specified part of the web request or is preceded by a character other than an alphanumeric character or underscore (_). Examples include the value of a header and ;BadBot.

  • SearchString is at the end of the specified part of the web request or is followed by a character other than an alphanumeric character or underscore (_), for example, BadBot; and -BadBot;.

EXACTLY

The value of the specified part of the web request must exactly match the value of SearchString.

STARTS_WITH

The value of SearchString must appear at the beginning of the specified part of the web request.

ENDS_WITH

The value of SearchString must appear at the end of the specified part of the web request.

Source

pub fn build(self) -> Result<ByteMatchStatement, BuildError>

Consumes the builder and constructs a ByteMatchStatement. This method will fail if any of the following fields are not set:

Trait Implementations§

Source§

impl Clone for ByteMatchStatementBuilder

Source§

fn clone(&self) -> ByteMatchStatementBuilder

Returns a copy of the value. Read more
1.0.0 · Source§

fn clone_from(&mut self, source: &Self)

Performs copy-assignment from source. Read more
Source§

impl Debug for ByteMatchStatementBuilder

Source§

fn fmt(&self, f: &mut Formatter<'_>) -> Result

Formats the value using the given formatter. Read more
Source§

impl Default for ByteMatchStatementBuilder

Source§

fn default() -> ByteMatchStatementBuilder

Returns the “default value” for a type. Read more
Source§

impl PartialEq for ByteMatchStatementBuilder

Source§

fn eq(&self, other: &ByteMatchStatementBuilder) -> bool

Tests for self and other values to be equal, and is used by ==.
1.0.0 · Source§

fn ne(&self, other: &Rhs) -> bool

Tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.
Source§

impl StructuralPartialEq for ByteMatchStatementBuilder

Auto Trait Implementations§

Blanket Implementations§

Source§

impl<T> Any for T
where T: 'static + ?Sized,

Source§

fn type_id(&self) -> TypeId

Gets the TypeId of self. Read more
Source§

impl<T> Borrow<T> for T
where T: ?Sized,

Source§

fn borrow(&self) -> &T

Immutably borrows from an owned value. Read more
Source§

impl<T> BorrowMut<T> for T
where T: ?Sized,

Source§

fn borrow_mut(&mut self) -> &mut T

Mutably borrows from an owned value. Read more
Source§

impl<T> CloneToUninit for T
where T: Clone,

Source§

unsafe fn clone_to_uninit(&self, dst: *mut T)

🔬This is a nightly-only experimental API. (clone_to_uninit)
Performs copy-assignment from self to dst. Read more
Source§

impl<T> From<T> for T

Source§

fn from(t: T) -> T

Returns the argument unchanged.

Source§

impl<T> Instrument for T

Source§

fn instrument(self, span: Span) -> Instrumented<Self>

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more
Source§

fn in_current_span(self) -> Instrumented<Self>

Instruments this type with the current Span, returning an Instrumented wrapper. Read more
Source§

impl<T, U> Into<U> for T
where U: From<T>,

Source§

fn into(self) -> U

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Source§

impl<T> IntoEither for T

Source§

fn into_either(self, into_left: bool) -> Either<Self, Self>

Converts self into a Left variant of Either<Self, Self> if into_left is true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

fn into_either_with<F>(self, into_left: F) -> Either<Self, Self>
where F: FnOnce(&Self) -> bool,

Converts self into a Left variant of Either<Self, Self> if into_left(&self) returns true. Converts self into a Right variant of Either<Self, Self> otherwise. Read more
Source§

impl<Unshared, Shared> IntoShared<Shared> for Unshared
where Shared: FromUnshared<Unshared>,

Source§

fn into_shared(self) -> Shared

Creates a shared type from an unshared type.
Source§

impl<T> Paint for T
where T: ?Sized,

Source§

fn fg(&self, value: Color) -> Painted<&T>

Returns a styled value derived from self with the foreground set to value.

This method should be used rarely. Instead, prefer to use color-specific builder methods like red() and green(), which have the same functionality but are pithier.

§Example

Set foreground color to white using fg():

use yansi::{Paint, Color};

painted.fg(Color::White);

Set foreground color to white using white().

use yansi::Paint;

painted.white();
Source§

fn primary(&self) -> Painted<&T>

Returns self with the fg() set to Color::Primary.

§Example
println!("{}", value.primary());
Source§

fn fixed(&self, color: u8) -> Painted<&T>

Returns self with the fg() set to Color::Fixed.

§Example
println!("{}", value.fixed(color));
Source§

fn rgb(&self, r: u8, g: u8, b: u8) -> Painted<&T>

Returns self with the fg() set to Color::Rgb.

§Example
println!("{}", value.rgb(r, g, b));
Source§

fn black(&self) -> Painted<&T>

Returns self with the fg() set to Color::Black.

§Example
println!("{}", value.black());
Source§

fn red(&self) -> Painted<&T>

Returns self with the fg() set to Color::Red.

§Example
println!("{}", value.red());
Source§

fn green(&self) -> Painted<&T>

Returns self with the fg() set to Color::Green.

§Example
println!("{}", value.green());
Source§

fn yellow(&self) -> Painted<&T>

Returns self with the fg() set to Color::Yellow.

§Example
println!("{}", value.yellow());
Source§

fn blue(&self) -> Painted<&T>

Returns self with the fg() set to Color::Blue.

§Example
println!("{}", value.blue());
Source§

fn magenta(&self) -> Painted<&T>

Returns self with the fg() set to Color::Magenta.

§Example
println!("{}", value.magenta());
Source§

fn cyan(&self) -> Painted<&T>

Returns self with the fg() set to Color::Cyan.

§Example
println!("{}", value.cyan());
Source§

fn white(&self) -> Painted<&T>

Returns self with the fg() set to Color::White.

§Example
println!("{}", value.white());
Source§

fn bright_black(&self) -> Painted<&T>

Returns self with the fg() set to Color::BrightBlack.

§Example
println!("{}", value.bright_black());
Source§

fn bright_red(&self) -> Painted<&T>

Returns self with the fg() set to Color::BrightRed.

§Example
println!("{}", value.bright_red());
Source§

fn bright_green(&self) -> Painted<&T>

Returns self with the fg() set to Color::BrightGreen.

§Example
println!("{}", value.bright_green());
Source§

fn bright_yellow(&self) -> Painted<&T>

Returns self with the fg() set to Color::BrightYellow.

§Example
println!("{}", value.bright_yellow());
Source§

fn bright_blue(&self) -> Painted<&T>

Returns self with the fg() set to Color::BrightBlue.

§Example
println!("{}", value.bright_blue());
Source§

fn bright_magenta(&self) -> Painted<&T>

Returns self with the fg() set to Color::BrightMagenta.

§Example
println!("{}", value.bright_magenta());
Source§

fn bright_cyan(&self) -> Painted<&T>

Returns self with the fg() set to Color::BrightCyan.

§Example
println!("{}", value.bright_cyan());
Source§

fn bright_white(&self) -> Painted<&T>

Returns self with the fg() set to Color::BrightWhite.

§Example
println!("{}", value.bright_white());
Source§

fn bg(&self, value: Color) -> Painted<&T>

Returns a styled value derived from self with the background set to value.

This method should be used rarely. Instead, prefer to use color-specific builder methods like on_red() and on_green(), which have the same functionality but are pithier.

§Example

Set background color to red using fg():

use yansi::{Paint, Color};

painted.bg(Color::Red);

Set background color to red using on_red().

use yansi::Paint;

painted.on_red();
Source§

fn on_primary(&self) -> Painted<&T>

Returns self with the bg() set to Color::Primary.

§Example
println!("{}", value.on_primary());
Source§

fn on_fixed(&self, color: u8) -> Painted<&T>

Returns self with the bg() set to Color::Fixed.

§Example
println!("{}", value.on_fixed(color));
Source§

fn on_rgb(&self, r: u8, g: u8, b: u8) -> Painted<&T>

Returns self with the bg() set to Color::Rgb.

§Example
println!("{}", value.on_rgb(r, g, b));
Source§

fn on_black(&self) -> Painted<&T>

Returns self with the bg() set to Color::Black.

§Example
println!("{}", value.on_black());
Source§

fn on_red(&self) -> Painted<&T>

Returns self with the bg() set to Color::Red.

§Example
println!("{}", value.on_red());
Source§

fn on_green(&self) -> Painted<&T>

Returns self with the bg() set to Color::Green.

§Example
println!("{}", value.on_green());
Source§

fn on_yellow(&self) -> Painted<&T>

Returns self with the bg() set to Color::Yellow.

§Example
println!("{}", value.on_yellow());
Source§

fn on_blue(&self) -> Painted<&T>

Returns self with the bg() set to Color::Blue.

§Example
println!("{}", value.on_blue());
Source§

fn on_magenta(&self) -> Painted<&T>

Returns self with the bg() set to Color::Magenta.

§Example
println!("{}", value.on_magenta());
Source§

fn on_cyan(&self) -> Painted<&T>

Returns self with the bg() set to Color::Cyan.

§Example
println!("{}", value.on_cyan());
Source§

fn on_white(&self) -> Painted<&T>

Returns self with the bg() set to Color::White.

§Example
println!("{}", value.on_white());
Source§

fn on_bright_black(&self) -> Painted<&T>

Returns self with the bg() set to Color::BrightBlack.

§Example
println!("{}", value.on_bright_black());
Source§

fn on_bright_red(&self) -> Painted<&T>

Returns self with the bg() set to Color::BrightRed.

§Example
println!("{}", value.on_bright_red());
Source§

fn on_bright_green(&self) -> Painted<&T>

Returns self with the bg() set to Color::BrightGreen.

§Example
println!("{}", value.on_bright_green());
Source§

fn on_bright_yellow(&self) -> Painted<&T>

Returns self with the bg() set to Color::BrightYellow.

§Example
println!("{}", value.on_bright_yellow());
Source§

fn on_bright_blue(&self) -> Painted<&T>

Returns self with the bg() set to Color::BrightBlue.

§Example
println!("{}", value.on_bright_blue());
Source§

fn on_bright_magenta(&self) -> Painted<&T>

Returns self with the bg() set to Color::BrightMagenta.

§Example
println!("{}", value.on_bright_magenta());
Source§

fn on_bright_cyan(&self) -> Painted<&T>

Returns self with the bg() set to Color::BrightCyan.

§Example
println!("{}", value.on_bright_cyan());
Source§

fn on_bright_white(&self) -> Painted<&T>

Returns self with the bg() set to Color::BrightWhite.

§Example
println!("{}", value.on_bright_white());
Source§

fn attr(&self, value: Attribute) -> Painted<&T>

Enables the styling Attribute value.

This method should be used rarely. Instead, prefer to use attribute-specific builder methods like bold() and underline(), which have the same functionality but are pithier.

§Example

Make text bold using attr():

use yansi::{Paint, Attribute};

painted.attr(Attribute::Bold);

Make text bold using using bold().

use yansi::Paint;

painted.bold();
Source§

fn bold(&self) -> Painted<&T>

Returns self with the attr() set to Attribute::Bold.

§Example
println!("{}", value.bold());
Source§

fn dim(&self) -> Painted<&T>

Returns self with the attr() set to Attribute::Dim.

§Example
println!("{}", value.dim());
Source§

fn italic(&self) -> Painted<&T>

Returns self with the attr() set to Attribute::Italic.

§Example
println!("{}", value.italic());
Source§

fn underline(&self) -> Painted<&T>

Returns self with the attr() set to Attribute::Underline.

§Example
println!("{}", value.underline());

Returns self with the attr() set to Attribute::Blink.

§Example
println!("{}", value.blink());

Returns self with the attr() set to Attribute::RapidBlink.

§Example
println!("{}", value.rapid_blink());
Source§

fn invert(&self) -> Painted<&T>

Returns self with the attr() set to Attribute::Invert.

§Example
println!("{}", value.invert());
Source§

fn conceal(&self) -> Painted<&T>

Returns self with the attr() set to Attribute::Conceal.

§Example
println!("{}", value.conceal());
Source§

fn strike(&self) -> Painted<&T>

Returns self with the attr() set to Attribute::Strike.

§Example
println!("{}", value.strike());
Source§

fn quirk(&self, value: Quirk) -> Painted<&T>

Enables the yansi Quirk value.

This method should be used rarely. Instead, prefer to use quirk-specific builder methods like mask() and wrap(), which have the same functionality but are pithier.

§Example

Enable wrapping using .quirk():

use yansi::{Paint, Quirk};

painted.quirk(Quirk::Wrap);

Enable wrapping using wrap().

use yansi::Paint;

painted.wrap();
Source§

fn mask(&self) -> Painted<&T>

Returns self with the quirk() set to Quirk::Mask.

§Example
println!("{}", value.mask());
Source§

fn wrap(&self) -> Painted<&T>

Returns self with the quirk() set to Quirk::Wrap.

§Example
println!("{}", value.wrap());
Source§

fn linger(&self) -> Painted<&T>

Returns self with the quirk() set to Quirk::Linger.

§Example
println!("{}", value.linger());
Source§

fn clear(&self) -> Painted<&T>

👎Deprecated since 1.0.1: renamed to resetting() due to conflicts with Vec::clear(). The clear() method will be removed in a future release.

Returns self with the quirk() set to Quirk::Clear.

§Example
println!("{}", value.clear());
Source§

fn resetting(&self) -> Painted<&T>

Returns self with the quirk() set to Quirk::Resetting.

§Example
println!("{}", value.resetting());
Source§

fn bright(&self) -> Painted<&T>

Returns self with the quirk() set to Quirk::Bright.

§Example
println!("{}", value.bright());
Source§

fn on_bright(&self) -> Painted<&T>

Returns self with the quirk() set to Quirk::OnBright.

§Example
println!("{}", value.on_bright());
Source§

fn whenever(&self, value: Condition) -> Painted<&T>

Conditionally enable styling based on whether the Condition value applies. Replaces any previous condition.

See the crate level docs for more details.

§Example

Enable styling painted only when both stdout and stderr are TTYs:

use yansi::{Paint, Condition};

painted.red().on_yellow().whenever(Condition::STDOUTERR_ARE_TTY);
Source§

fn new(self) -> Painted<Self>
where Self: Sized,

Create a new Painted with a default Style. Read more
Source§

fn paint<S>(&self, style: S) -> Painted<&Self>
where S: Into<Style>,

Apply a style wholesale to self. Any previous style is replaced. Read more
Source§

impl<T> Same for T

Source§

type Output = T

Should always be Self
Source§

impl<T> ToOwned for T
where T: Clone,

Source§

type Owned = T

The resulting type after obtaining ownership.
Source§

fn to_owned(&self) -> T

Creates owned data from borrowed data, usually by cloning. Read more
Source§

fn clone_into(&self, target: &mut T)

Uses borrowed data to replace owned data, usually by cloning. Read more
Source§

impl<T, U> TryFrom<U> for T
where U: Into<T>,

Source§

type Error = Infallible

The type returned in the event of a conversion error.
Source§

fn try_from(value: U) -> Result<T, <T as TryFrom<U>>::Error>

Performs the conversion.
Source§

impl<T, U> TryInto<U> for T
where U: TryFrom<T>,

Source§

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.
Source§

fn try_into(self) -> Result<U, <U as TryFrom<T>>::Error>

Performs the conversion.
Source§

impl<T> WithSubscriber for T

Source§

fn with_subscriber<S>(self, subscriber: S) -> WithDispatch<Self>
where S: Into<Dispatch>,

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

fn with_current_subscriber(self) -> WithDispatch<Self>

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more
Source§

impl<T> ErasedDestructor for T
where T: 'static,

Source§

impl<T> MaybeSendSync for T