bootloader_x86_64_common/
load_kernel.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
use crate::{level_4_entries::UsedLevel4Entries, PAGE_SIZE};
use bootloader_api::info::TlsTemplate;
use core::{cmp, iter::Step, mem::size_of, ops::Add};

use x86_64::{
    align_up,
    structures::paging::{
        mapper::{MappedFrame, MapperAllSizes, TranslateResult},
        FrameAllocator, Page, PageSize, PageTableFlags as Flags, PhysFrame, Size4KiB, Translate,
    },
    PhysAddr, VirtAddr,
};
use xmas_elf::{
    dynamic, header,
    program::{self, ProgramHeader, SegmentData, Type},
    sections::Rela,
    ElfFile,
};

use super::Kernel;

/// Used by [`Inner::make_mut`] and [`Inner::clean_copied_flag`].
const COPIED: Flags = Flags::BIT_9;

struct Loader<'a, M, F> {
    elf_file: ElfFile<'a>,
    inner: Inner<'a, M, F>,
}

struct Inner<'a, M, F> {
    kernel_offset: PhysAddr,
    virtual_address_offset: VirtualAddressOffset,
    page_table: &'a mut M,
    frame_allocator: &'a mut F,
}

impl<'a, M, F> Loader<'a, M, F>
where
    M: MapperAllSizes + Translate,
    F: FrameAllocator<Size4KiB>,
{
    fn new(
        kernel: Kernel<'a>,
        page_table: &'a mut M,
        frame_allocator: &'a mut F,
        used_entries: &mut UsedLevel4Entries,
    ) -> Result<Self, &'static str> {
        log::info!("Elf file loaded at {:#p}", kernel.elf.input);
        let kernel_offset = PhysAddr::new(&kernel.elf.input[0] as *const u8 as u64);
        if !kernel_offset.is_aligned(PAGE_SIZE) {
            return Err("Loaded kernel ELF file is not sufficiently aligned");
        }

        let elf_file = kernel.elf;
        for program_header in elf_file.program_iter() {
            program::sanity_check(program_header, &elf_file)?;
        }

        let virtual_address_offset = match elf_file.header.pt2.type_().as_type() {
            header::Type::None => unimplemented!(),
            header::Type::Relocatable => unimplemented!(),
            header::Type::Executable => VirtualAddressOffset::zero(),
            header::Type::SharedObject => {
                // Find the highest virtual memory address and the biggest alignment.
                let load_program_headers = elf_file
                    .program_iter()
                    .filter(|h| matches!(h.get_type(), Ok(Type::Load)));
                let max_addr = load_program_headers
                    .clone()
                    .map(|h| h.virtual_addr() + h.mem_size())
                    .max()
                    .unwrap_or(0);
                let min_addr = load_program_headers
                    .clone()
                    .map(|h| h.virtual_addr())
                    .min()
                    .unwrap_or(0);
                let size = max_addr - min_addr;
                let align = load_program_headers.map(|h| h.align()).max().unwrap_or(1);

                let offset = used_entries.get_free_address(size, align).as_u64();
                VirtualAddressOffset::new(i128::from(offset) - i128::from(min_addr))
            }
            header::Type::Core => unimplemented!(),
            header::Type::ProcessorSpecific(_) => unimplemented!(),
        };
        log::info!(
            "virtual_address_offset: {:#x}",
            virtual_address_offset.virtual_address_offset()
        );

        used_entries.mark_segments(elf_file.program_iter(), virtual_address_offset);

        header::sanity_check(&elf_file)?;
        let loader = Loader {
            elf_file,
            inner: Inner {
                kernel_offset,
                virtual_address_offset,
                page_table,
                frame_allocator,
            },
        };

        Ok(loader)
    }

    fn load_segments(&mut self) -> Result<Option<TlsTemplate>, &'static str> {
        // Load the segments into virtual memory.
        let mut tls_template = None;
        for program_header in self.elf_file.program_iter() {
            match program_header.get_type()? {
                Type::Load => self.inner.handle_load_segment(program_header)?,
                Type::Tls => {
                    if tls_template.is_none() {
                        tls_template = Some(self.inner.handle_tls_segment(program_header)?);
                    } else {
                        return Err("multiple TLS segments not supported");
                    }
                }
                Type::Null
                | Type::Dynamic
                | Type::Interp
                | Type::Note
                | Type::ShLib
                | Type::Phdr
                | Type::GnuRelro
                | Type::OsSpecific(_)
                | Type::ProcessorSpecific(_) => {}
            }
        }

        // Apply relocations in virtual memory.
        for program_header in self.elf_file.program_iter() {
            if let Type::Dynamic = program_header.get_type()? {
                self.inner
                    .handle_dynamic_segment(program_header, &self.elf_file)?
            }
        }

        // Mark some memory regions as read-only after relocations have been
        // applied.
        for program_header in self.elf_file.program_iter() {
            if let Type::GnuRelro = program_header.get_type()? {
                self.inner.handle_relro_segment(program_header);
            }
        }

        self.inner.remove_copied_flags(&self.elf_file).unwrap();

        Ok(tls_template)
    }

    fn entry_point(&self) -> VirtAddr {
        VirtAddr::new(self.inner.virtual_address_offset + self.elf_file.header.pt2.entry_point())
    }
}

impl<'a, M, F> Inner<'a, M, F>
where
    M: MapperAllSizes + Translate,
    F: FrameAllocator<Size4KiB>,
{
    fn handle_load_segment(&mut self, segment: ProgramHeader) -> Result<(), &'static str> {
        log::info!("Handling Segment: {:x?}", segment);

        let phys_start_addr = self.kernel_offset + segment.offset();
        let start_frame: PhysFrame = PhysFrame::containing_address(phys_start_addr);
        let end_frame: PhysFrame =
            PhysFrame::containing_address(phys_start_addr + segment.file_size() - 1u64);

        let virt_start_addr = VirtAddr::new(self.virtual_address_offset + segment.virtual_addr());
        let start_page: Page = Page::containing_address(virt_start_addr);

        let mut segment_flags = Flags::PRESENT;
        if !segment.flags().is_execute() {
            segment_flags |= Flags::NO_EXECUTE;
        }
        if segment.flags().is_write() {
            segment_flags |= Flags::WRITABLE;
        }

        // map all frames of the segment at the desired virtual address
        for frame in PhysFrame::range_inclusive(start_frame, end_frame) {
            let offset = frame - start_frame;
            let page = start_page + offset;
            let flusher = unsafe {
                // The parent table flags need to be both readable and writable to
                // support recursive page tables.
                // See https://github.com/rust-osdev/bootloader/issues/443#issuecomment-2130010621
                self.page_table
                    .map_to_with_table_flags(
                        page,
                        frame,
                        segment_flags,
                        Flags::PRESENT | Flags::WRITABLE,
                        self.frame_allocator,
                    )
                    .map_err(|_err| "map_to failed")?
            };
            // we operate on an inactive page table, so there's no need to flush anything
            flusher.ignore();
        }

        // Handle .bss section (mem_size > file_size)
        if segment.mem_size() > segment.file_size() {
            // .bss section (or similar), which needs to be mapped and zeroed
            self.handle_bss_section(&segment, segment_flags)?;
        }

        Ok(())
    }

    fn handle_bss_section(
        &mut self,
        segment: &ProgramHeader,
        segment_flags: Flags,
    ) -> Result<(), &'static str> {
        log::info!("Mapping bss section");

        let virt_start_addr = VirtAddr::new(self.virtual_address_offset + segment.virtual_addr());
        let mem_size = segment.mem_size();
        let file_size = segment.file_size();

        // calculate virtual memory region that must be zeroed
        let zero_start = virt_start_addr + file_size;
        let zero_end = virt_start_addr + mem_size;

        // a type alias that helps in efficiently clearing a page
        type PageArray = [u64; Size4KiB::SIZE as usize / 8];
        const ZERO_ARRAY: PageArray = [0; Size4KiB::SIZE as usize / 8];

        // In some cases, `zero_start` might not be page-aligned. This requires some
        // special treatment because we can't safely zero a frame of the original file.
        let data_bytes_before_zero = zero_start.as_u64() & 0xfff;
        if data_bytes_before_zero != 0 {
            // The last non-bss frame of the segment consists partly of data and partly of bss
            // memory, which must be zeroed. Unfortunately, the file representation might have
            // reused the part of the frame that should be zeroed to store the next segment. This
            // means that we can't simply overwrite that part with zeroes, as we might overwrite
            // other data this way.
            //
            // Example:
            //
            //   XXXXXXXXXXXXXXX000000YYYYYYY000ZZZZZZZZZZZ     virtual memory (XYZ are data)
            //   |·············|     /·····/   /·········/
            //   |·············| ___/·····/   /·········/
            //   |·············|/·····/‾‾‾   /·········/
            //   |·············||·····|/·̅·̅·̅·̅·̅·····/‾‾‾‾
            //   XXXXXXXXXXXXXXXYYYYYYYZZZZZZZZZZZ              file memory (zeros are not saved)
            //   '       '       '       '        '
            //   The areas filled with dots (`·`) indicate a mapping between virtual and file
            //   memory. We see that the data regions `X`, `Y`, `Z` have a valid mapping, while
            //   the regions that are initialized with 0 have not.
            //
            //   The ticks (`'`) below the file memory line indicate the start of a new frame. We
            //   see that the last frames of the `X` and `Y` regions in the file are followed
            //   by the bytes of the next region. So we can't zero these parts of the frame
            //   because they are needed by other memory regions.
            //
            // To solve this problem, we need to allocate a new frame for the last segment page
            // and copy all data content of the original frame over. Afterwards, we can zero
            // the remaining part of the frame since the frame is no longer shared with other
            // segments now.

            let last_page = Page::containing_address(virt_start_addr + file_size - 1u64);
            let new_frame = unsafe { self.make_mut(last_page) };
            let new_bytes_ptr = new_frame.start_address().as_u64() as *mut u8;
            unsafe {
                core::ptr::write_bytes(
                    new_bytes_ptr.add(data_bytes_before_zero as usize),
                    0,
                    (Size4KiB::SIZE - data_bytes_before_zero) as usize,
                );
            }
        }

        // map additional frames for `.bss` memory that is not present in source file
        let start_page: Page =
            Page::containing_address(VirtAddr::new(align_up(zero_start.as_u64(), Size4KiB::SIZE)));
        let end_page = Page::containing_address(zero_end - 1u64);
        for page in Page::range_inclusive(start_page, end_page) {
            // allocate a new unused frame
            let frame = self.frame_allocator.allocate_frame().unwrap();

            // zero frame, utilizing identity-mapping
            let frame_ptr = frame.start_address().as_u64() as *mut PageArray;
            unsafe { frame_ptr.write(ZERO_ARRAY) };

            // map frame
            let flusher = unsafe {
                // The parent table flags need to be both readable and writable to
                // support recursive page tables.
                // See https://github.com/rust-osdev/bootloader/issues/443#issuecomment-2130010621
                self.page_table
                    .map_to_with_table_flags(
                        page,
                        frame,
                        segment_flags,
                        Flags::PRESENT | Flags::WRITABLE,
                        self.frame_allocator,
                    )
                    .map_err(|_err| "Failed to map new frame for bss memory")?
            };
            // we operate on an inactive page table, so we don't need to flush our changes
            flusher.ignore();
        }

        Ok(())
    }

    /// Copy from the kernel address space.
    ///
    /// ## Panics
    ///
    /// Panics if a page is not mapped in `self.page_table`.
    fn copy_from(&self, addr: VirtAddr, buf: &mut [u8]) {
        // We can't know for sure that contiguous virtual address are contiguous
        // in physical memory, so we iterate of the pages spanning the
        // addresses, translate them to frames and copy the data.

        let end_inclusive_addr = Step::forward_checked(addr, buf.len() - 1)
            .expect("end address outside of the virtual address space");
        let start_page = Page::<Size4KiB>::containing_address(addr);
        let end_inclusive_page = Page::<Size4KiB>::containing_address(end_inclusive_addr);

        for page in start_page..=end_inclusive_page {
            // Translate the virtual page to the physical frame.
            let phys_addr = self
                .page_table
                .translate_page(page)
                .expect("address is not mapped to the kernel's memory space");

            // Figure out which address range we want to copy from the frame.

            // This page covers these addresses.
            let page_start = page.start_address();
            let page_end_inclusive = page.start_address() + 4095u64;

            // We want to copy from the following address in this frame.
            let start_copy_address = cmp::max(addr, page_start);
            let end_inclusive_copy_address = cmp::min(end_inclusive_addr, page_end_inclusive);

            // These are the offsets into the frame we want to copy from.
            let start_offset_in_frame = (start_copy_address - page_start) as usize;
            let end_inclusive_offset_in_frame = (end_inclusive_copy_address - page_start) as usize;

            // Calculate how many bytes we want to copy from this frame.
            let copy_len = end_inclusive_offset_in_frame - start_offset_in_frame + 1;

            // Calculate the physical addresses.
            let start_phys_addr = phys_addr.start_address() + start_offset_in_frame;

            // These are the offsets from the start address. These correspond
            // to the destination indices in `buf`.
            let start_offset_in_buf = Step::steps_between(&addr, &start_copy_address).unwrap();

            // Calculate the source slice.
            // Utilize that frames are identity mapped.
            let src_ptr = start_phys_addr.as_u64() as *const u8;
            let src = unsafe {
                // SAFETY: We know that this memory is valid because we got it
                // as a result from a translation. There are not other
                // references to it.
                &*core::ptr::slice_from_raw_parts(src_ptr, copy_len)
            };

            // Calculate the destination pointer.
            let dest = &mut buf[start_offset_in_buf..][..copy_len];

            // Do the actual copy.
            dest.copy_from_slice(src);
        }
    }

    /// Write to the kernel address space.
    ///
    /// ## Safety
    /// - `addr` should refer to a page mapped by a Load segment.
    ///  
    /// ## Panics
    ///
    /// Panics if a page is not mapped in `self.page_table`.
    unsafe fn copy_to(&mut self, addr: VirtAddr, buf: &[u8]) {
        // We can't know for sure that contiguous virtual address are contiguous
        // in physical memory, so we iterate of the pages spanning the
        // addresses, translate them to frames and copy the data.

        let end_inclusive_addr = Step::forward_checked(addr, buf.len() - 1)
            .expect("the end address should be in the virtual address space");
        let start_page = Page::<Size4KiB>::containing_address(addr);
        let end_inclusive_page = Page::<Size4KiB>::containing_address(end_inclusive_addr);

        for page in start_page..=end_inclusive_page {
            // Translate the virtual page to the physical frame.
            let phys_addr = unsafe {
                // SAFETY: The caller asserts that the pages are mapped by a Load segment.
                self.make_mut(page)
            };

            // Figure out which address range we want to copy from the frame.

            // This page covers these addresses.
            let page_start = page.start_address();
            let page_end_inclusive = page.start_address() + 4095u64;

            // We want to copy from the following address in this frame.
            let start_copy_address = cmp::max(addr, page_start);
            let end_inclusive_copy_address = cmp::min(end_inclusive_addr, page_end_inclusive);

            // These are the offsets into the frame we want to copy from.
            let start_offset_in_frame = (start_copy_address - page_start) as usize;
            let end_inclusive_offset_in_frame = (end_inclusive_copy_address - page_start) as usize;

            // Calculate how many bytes we want to copy from this frame.
            let copy_len = end_inclusive_offset_in_frame - start_offset_in_frame + 1;

            // Calculate the physical addresses.
            let start_phys_addr = phys_addr.start_address() + start_offset_in_frame;

            // These are the offsets from the start address. These correspond
            // to the destination indices in `buf`.
            let start_offset_in_buf = Step::steps_between(&addr, &start_copy_address).unwrap();

            // Calculate the source slice.
            // Utilize that frames are identity mapped.
            let dest_ptr = start_phys_addr.as_u64() as *mut u8;
            let dest = unsafe {
                // SAFETY: We know that this memory is valid because we got it
                // as a result from a translation. There are not other
                // references to it.
                &mut *core::ptr::slice_from_raw_parts_mut(dest_ptr, copy_len)
            };

            // Calculate the destination pointer.
            let src = &buf[start_offset_in_buf..][..copy_len];

            // Do the actual copy.
            dest.copy_from_slice(src);
        }
    }

    /// This method is intended for making the memory loaded by a Load segment mutable.
    ///
    /// All memory from a Load segment starts out by mapped to the same frames that
    /// contain the elf file. Thus writing to memory in that state will cause aliasing issues.
    /// To avoid that, we allocate a new frame, copy all bytes from the old frame to the new frame,
    /// and remap the page to the new frame. At this point the page no longer aliases the elf file
    /// and we can write to it.
    ///
    /// When we map the new frame we also set [`COPIED`] flag in the page table flags, so that
    /// we can detect if the frame has already been copied when we try to modify the page again.
    ///
    /// ## Safety
    /// - `page` should be a page mapped by a Load segment.
    ///  
    /// ## Panics
    /// Panics if the page is not mapped in `self.page_table`.
    unsafe fn make_mut(&mut self, page: Page) -> PhysFrame {
        let (frame, flags) = match self.page_table.translate(page.start_address()) {
            TranslateResult::Mapped {
                frame,
                offset: _,
                flags,
            } => (frame, flags),
            TranslateResult::NotMapped => panic!("{:?} is not mapped", page),
            TranslateResult::InvalidFrameAddress(_) => unreachable!(),
        };
        let frame = if let MappedFrame::Size4KiB(frame) = frame {
            frame
        } else {
            // We only map 4k pages.
            unreachable!()
        };

        if flags.contains(COPIED) {
            // The frame was already copied, we are free to modify it.
            return frame;
        }

        // Allocate a new frame and copy the memory, utilizing that both frames are identity mapped.
        let new_frame = self.frame_allocator.allocate_frame().unwrap();
        let frame_ptr = frame.start_address().as_u64() as *const u8;
        let new_frame_ptr = new_frame.start_address().as_u64() as *mut u8;
        unsafe {
            core::ptr::copy_nonoverlapping(frame_ptr, new_frame_ptr, Size4KiB::SIZE as usize);
        }

        // Replace the underlying frame and update the flags.
        self.page_table.unmap(page).unwrap().1.ignore();
        let new_flags = flags | COPIED;
        unsafe {
            self.page_table
                .map_to(page, new_frame, new_flags, self.frame_allocator)
                .unwrap()
                .ignore();
        }

        new_frame
    }

    /// Cleans up the custom flags set by [`Inner::make_mut`].
    fn remove_copied_flags(&mut self, elf_file: &ElfFile) -> Result<(), &'static str> {
        for program_header in elf_file.program_iter() {
            if let Type::Load = program_header.get_type()? {
                let start = self.virtual_address_offset + program_header.virtual_addr();
                let end = start + program_header.mem_size();
                let start = VirtAddr::new(start);
                let end = VirtAddr::new(end);
                let start_page = Page::containing_address(start);
                let end_page = Page::containing_address(end - 1u64);
                for page in Page::<Size4KiB>::range_inclusive(start_page, end_page) {
                    // Translate the page and get the flags.
                    let res = self.page_table.translate(page.start_address());
                    let flags = match res {
                        TranslateResult::Mapped {
                            frame: _,
                            offset: _,
                            flags,
                        } => flags,
                        TranslateResult::NotMapped | TranslateResult::InvalidFrameAddress(_) => {
                            unreachable!("has the elf file not been mapped correctly?")
                        }
                    };

                    if flags.contains(COPIED) {
                        // Remove the flag.
                        unsafe {
                            self.page_table
                                .update_flags(page, flags & !COPIED)
                                .unwrap()
                                .ignore();
                        }
                    }
                }
            }
        }
        Ok(())
    }

    fn handle_tls_segment(&mut self, segment: ProgramHeader) -> Result<TlsTemplate, &'static str> {
        Ok(TlsTemplate {
            start_addr: self.virtual_address_offset + segment.virtual_addr(),
            mem_size: segment.mem_size(),
            file_size: segment.file_size(),
        })
    }

    fn handle_dynamic_segment(
        &mut self,
        segment: ProgramHeader,
        elf_file: &ElfFile,
    ) -> Result<(), &'static str> {
        let data = segment.get_data(elf_file)?;
        let data = if let SegmentData::Dynamic64(data) = data {
            data
        } else {
            panic!("expected Dynamic64 segment")
        };

        // Find the `Rela`, `RelaSize` and `RelaEnt` entries.
        let mut rela = None;
        let mut rela_size = None;
        let mut rela_ent = None;
        for rel in data {
            let tag = rel.get_tag()?;
            match tag {
                dynamic::Tag::Rela => {
                    let ptr = rel.get_ptr()?;
                    let prev = rela.replace(ptr);
                    if prev.is_some() {
                        return Err("Dynamic section contains more than one Rela entry");
                    }
                }
                dynamic::Tag::RelaSize => {
                    let val = rel.get_val()?;
                    let prev = rela_size.replace(val);
                    if prev.is_some() {
                        return Err("Dynamic section contains more than one RelaSize entry");
                    }
                }
                dynamic::Tag::RelaEnt => {
                    let val = rel.get_val()?;
                    let prev = rela_ent.replace(val);
                    if prev.is_some() {
                        return Err("Dynamic section contains more than one RelaEnt entry");
                    }
                }
                _ => {}
            }
        }
        let offset = if let Some(rela) = rela {
            rela
        } else {
            // The section doesn't contain any relocations.

            if rela_size.is_some() || rela_ent.is_some() {
                return Err("Rela entry is missing but RelaSize or RelaEnt have been provided");
            }

            return Ok(());
        };
        let total_size = rela_size.ok_or("RelaSize entry is missing")?;
        let entry_size = rela_ent.ok_or("RelaEnt entry is missing")?;

        // Make sure that the reported size matches our `Rela<u64>`.
        assert_eq!(
            entry_size,
            size_of::<Rela<u64>>() as u64,
            "unsupported entry size: {entry_size}"
        );

        // Apply the relocations.
        let num_entries = total_size / entry_size;
        for idx in 0..num_entries {
            let rela = self.read_relocation(offset, idx);
            self.apply_relocation(rela, elf_file)?;
        }

        Ok(())
    }

    /// Reads a relocation from a relocation table.
    fn read_relocation(&self, relocation_table: u64, idx: u64) -> Rela<u64> {
        // Calculate the address of the entry in the relocation table.
        let offset = relocation_table + size_of::<Rela<u64>>() as u64 * idx;
        let value = self.virtual_address_offset + offset;
        let addr = VirtAddr::try_new(value).expect("relocation table is outside the address space");

        // Read the Rela from the kernel address space.
        let mut buf = [0; 24];
        self.copy_from(addr, &mut buf);

        // Convert the bytes we read into a `Rela<u64>`.
        unsafe {
            // SAFETY: Any bitpattern is valid for `Rela<u64>` and buf is
            // valid for reads.
            core::ptr::read_unaligned(&buf as *const u8 as *const Rela<u64>)
        }
    }

    fn apply_relocation(
        &mut self,
        rela: Rela<u64>,
        elf_file: &ElfFile,
    ) -> Result<(), &'static str> {
        let symbol_idx = rela.get_symbol_table_index();
        assert_eq!(
            symbol_idx, 0,
            "relocations using the symbol table are not supported"
        );

        match rela.get_type() {
            // R_AMD64_RELATIVE
            8 => {
                // Make sure that the relocation happens in memory mapped
                // by a Load segment.
                check_is_in_load(elf_file, rela.get_offset())?;

                // Calculate the destination of the relocation.
                let addr = self.virtual_address_offset + rela.get_offset();
                let addr = VirtAddr::new(addr);

                // Calculate the relocated value.
                let value = self.virtual_address_offset + rela.get_addend();

                // Write the relocated value to memory.
                unsafe {
                    // SAFETY: We just verified that the address is in a Load segment.
                    self.copy_to(addr, &value.to_ne_bytes());
                }
            }
            ty => unimplemented!("relocation type {:x} not supported", ty),
        }

        Ok(())
    }

    /// Mark a region of memory indicated by a GNU_RELRO segment as read-only.
    ///
    /// This is a security mitigation used to protect memory regions that
    /// need to be writable while applying relocations, but should never be
    /// written to after relocations have been applied.
    fn handle_relro_segment(&mut self, program_header: ProgramHeader) {
        let start = self.virtual_address_offset + program_header.virtual_addr();
        let end = start + program_header.mem_size();
        let start = VirtAddr::new(start);
        let end = VirtAddr::new(end);
        let start_page = Page::containing_address(start);
        let end_page = Page::containing_address(end - 1u64);
        for page in Page::<Size4KiB>::range_inclusive(start_page, end_page) {
            // Translate the page and get the flags.
            let res = self.page_table.translate(page.start_address());
            let flags = match res {
                TranslateResult::Mapped {
                    frame: _,
                    offset: _,
                    flags,
                } => flags,
                TranslateResult::NotMapped | TranslateResult::InvalidFrameAddress(_) => {
                    unreachable!("has the elf file not been mapped correctly?")
                }
            };

            if flags.contains(Flags::WRITABLE) {
                // Remove the WRITABLE flag.
                unsafe {
                    self.page_table
                        .update_flags(page, flags & !Flags::WRITABLE)
                        .unwrap()
                        .ignore();
                }
            }
        }
    }
}

/// Check that the virtual offset belongs to a load segment.
fn check_is_in_load(elf_file: &ElfFile, virt_offset: u64) -> Result<(), &'static str> {
    for program_header in elf_file.program_iter() {
        if let Type::Load = program_header.get_type()? {
            if program_header.virtual_addr() <= virt_offset {
                let offset_in_segment = virt_offset - program_header.virtual_addr();
                if offset_in_segment < program_header.mem_size() {
                    return Ok(());
                }
            }
        }
    }
    Err("offset is not in load segment")
}

/// Loads the kernel ELF file given in `bytes` in the given `page_table`.
///
/// Returns the kernel entry point address, it's thread local storage template (if any),
/// and a structure describing which level 4 page table entries are in use.  
pub fn load_kernel(
    kernel: Kernel<'_>,
    page_table: &mut (impl MapperAllSizes + Translate),
    frame_allocator: &mut impl FrameAllocator<Size4KiB>,
    used_entries: &mut UsedLevel4Entries,
) -> Result<(VirtAddr, VirtAddr, Option<TlsTemplate>), &'static str> {
    let mut loader = Loader::new(kernel, page_table, frame_allocator, used_entries)?;
    let tls_template = loader.load_segments()?;

    Ok((
        VirtAddr::new(loader.inner.virtual_address_offset.virtual_address_offset() as u64),
        loader.entry_point(),
        tls_template,
    ))
}

/// A helper type used to offset virtual addresses for position independent
/// executables.
#[derive(Clone, Copy)]
pub struct VirtualAddressOffset {
    virtual_address_offset: i128,
}

impl VirtualAddressOffset {
    pub fn zero() -> Self {
        Self::new(0)
    }

    pub fn new(virtual_address_offset: i128) -> Self {
        Self {
            virtual_address_offset,
        }
    }

    pub fn virtual_address_offset(&self) -> i128 {
        self.virtual_address_offset
    }
}

impl Add<u64> for VirtualAddressOffset {
    type Output = u64;

    fn add(self, offset: u64) -> Self::Output {
        u64::try_from(
            self.virtual_address_offset
                .checked_add(i128::from(offset))
                .unwrap(),
        )
        .unwrap()
    }
}