Struct buf_min::ntex::Bytes [−][src]
pub struct Bytes { /* fields omitted */ }
Expand description
A reference counted contiguous slice of memory.
Bytes
is an efficient container for storing and operating on contiguous
slices of memory. It is intended for use primarily in networking code, but
could have applications elsewhere as well.
Bytes
values facilitate zero-copy network programming by allowing multiple
Bytes
objects to point to the same underlying memory. This is managed by
using a reference count to track when the memory is no longer needed and can
be freed.
use ntex_bytes::Bytes; let mut mem = Bytes::from(&b"Hello world"[..]); let a = mem.slice(0..5); assert_eq!(&a[..], b"Hello"); let b = mem.split_to(6); assert_eq!(&mem[..], b"world"); assert_eq!(&b[..], b"Hello ");
Memory layout
The Bytes
struct itself is fairly small, limited to a pointer to the
memory and 4 usize
fields used to track information about which segment of
the underlying memory the Bytes
handle has access to.
The memory layout looks like this:
+-------+
| Bytes |
+-------+
/ \_____
| \
v v
+-----+------------------------------------+
| Arc | | Data | |
+-----+------------------------------------+
Bytes
keeps both a pointer to the shared Arc
containing the full memory
slice and a pointer to the start of the region visible by the handle.
Bytes
also tracks the length of its view into the memory.
Sharing
The memory itself is reference counted, and multiple Bytes
objects may
point to the same region. Each Bytes
handle point to different sections within
the memory region, and Bytes
handle may or may not have overlapping views
into the memory.
Arc ptrs +---------+
________________________ / | Bytes 2 |
/ +---------+
/ +-----------+ | |
|_________/ | Bytes 1 | | |
| +-----------+ | |
| | | ___/ data | tail
| data | tail |/ |
v v v v
+-----+---------------------------------+-----+
| Arc | | | | |
+-----+---------------------------------+-----+
Mutating
While Bytes
handles may potentially represent overlapping views of the
underlying memory slice and may not be mutated, BytesMut
handles are
guaranteed to be the only handle able to view that slice of memory. As such,
BytesMut
handles are able to mutate the underlying memory. Note that
holding a unique view to a region of memory does not mean that there are no
other Bytes
and BytesMut
handles with disjoint views of the underlying
memory.
Inline bytes
As an optimization, when the slice referenced by a Bytes
or BytesMut
handle is small enough 1, with_capacity
will avoid the allocation
by inlining the slice directly in the handle. In this case, a clone is no
longer “shallow” and the data will be copied. Converting from a Vec
will
never use inlining.
Small enough: 31 bytes on 64 bit systems, 15 on 32 bit systems. ↩
Implementations
Creates a new Bytes
with the specified capacity.
The returned Bytes
will be able to hold at least capacity
bytes
without reallocating. If capacity
is under 4 * size_of::<usize>() - 1
,
then BytesMut
will not allocate.
It is important to note that this function does not specify the length
of the returned Bytes
, but only the capacity.
Examples
use ntex_bytes::Bytes; let mut bytes = Bytes::with_capacity(64); // `bytes` contains no data, even though there is capacity assert_eq!(bytes.len(), 0); bytes.extend_from_slice(&b"hello world"[..]); assert_eq!(&bytes[..], b"hello world");
Creates a new empty Bytes
.
This will not allocate and the returned Bytes
handle will be empty.
Examples
use ntex_bytes::Bytes; let b = Bytes::new(); assert_eq!(&b[..], b"");
Creates a new Bytes
from a static slice.
The returned Bytes
will point directly to the static slice. There is
no allocating or copying.
Examples
use ntex_bytes::Bytes; let b = Bytes::from_static(b"hello"); assert_eq!(&b[..], b"hello");
Returns the number of bytes contained in this Bytes
.
Examples
use ntex_bytes::Bytes; let b = Bytes::from(&b"hello"[..]); assert_eq!(b.len(), 5);
Returns true if the Bytes
has a length of 0.
Examples
use ntex_bytes::Bytes; let b = Bytes::new(); assert!(b.is_empty());
Return true if the Bytes
uses inline allocation
Examples
use ntex_bytes::Bytes; assert!(Bytes::with_capacity(4).is_inline()); assert!(!Bytes::from(Vec::with_capacity(4)).is_inline()); assert!(!Bytes::with_capacity(1024).is_inline());
Returns a slice of self for the provided range.
This will increment the reference count for the underlying memory and
return a new Bytes
handle set to the slice.
This operation is O(1)
.
Examples
use ntex_bytes::Bytes; let a = Bytes::from(&b"hello world"[..]); let b = a.slice(2..5); assert_eq!(&b[..], b"llo");
Panics
Requires that begin <= end
and end <= self.len()
, otherwise slicing
will panic.
Returns a slice of self that is equivalent to the given subset
.
When processing a Bytes
buffer with other tools, one often gets a
&[u8]
which is in fact a slice of the Bytes
, i.e. a subset of it.
This function turns that &[u8]
into another Bytes
, as if one had
called self.slice()
with the offsets that correspond to subset
.
This operation is O(1)
.
Examples
use ntex_bytes::Bytes; let bytes = Bytes::from(&b"012345678"[..]); let as_slice = bytes.as_ref(); let subset = &as_slice[2..6]; let subslice = bytes.slice_ref(&subset); assert_eq!(&subslice[..], b"2345");
Panics
Requires that the given sub
slice is in fact contained within the
Bytes
buffer; otherwise this function will panic.
Splits the bytes into two at the given index.
Afterwards self
contains elements [0, at)
, and the returned Bytes
contains elements [at, len)
.
This is an O(1)
operation that just increases the reference count and
sets a few indices.
Examples
use ntex_bytes::Bytes; let mut a = Bytes::from(&b"hello world"[..]); let b = a.split_off(5); assert_eq!(&a[..], b"hello"); assert_eq!(&b[..], b" world");
Panics
Panics if at > len
.
Splits the bytes into two at the given index.
Afterwards self
contains elements [at, len)
, and the returned
Bytes
contains elements [0, at)
.
This is an O(1)
operation that just increases the reference count and
sets a few indices.
Examples
use ntex_bytes::Bytes; let mut a = Bytes::from(&b"hello world"[..]); let b = a.split_to(5); assert_eq!(&a[..], b" world"); assert_eq!(&b[..], b"hello");
Panics
Panics if at > len
.
Shortens the buffer, keeping the first len
bytes and dropping the
rest.
If len
is greater than the buffer’s current length, this has no
effect.
The split_off
method can emulate truncate
, but this causes the
excess bytes to be returned instead of dropped.
Examples
use ntex_bytes::Bytes; let mut buf = Bytes::from(&b"hello world"[..]); buf.truncate(5); assert_eq!(buf, b"hello"[..]);
Shortens the buffer to len
bytes and dropping the rest.
This is useful if underlying buffer is larger than cuurrent bytes object.
Examples
use ntex_bytes::Bytes; let mut buf = Bytes::from(&b"hello world"[..]); buf.trimdown(); assert_eq!(buf, b"hello world"[..]);
Clears the buffer, removing all data.
Examples
use ntex_bytes::Bytes; let mut buf = Bytes::from(&b"hello world"[..]); buf.clear(); assert!(buf.is_empty());
Attempts to convert into a BytesMut
handle.
This will only succeed if there are no other outstanding references to
the underlying chunk of memory. Bytes
handles that contain inlined
bytes will always be convertible to BytesMut
.
Examples
use ntex_bytes::Bytes; let a = Bytes::copy_from_slice(&b"Mary had a little lamb, little lamb, little lamb..."[..]); // Create a shallow clone let b = a.clone(); // This will fail because `b` shares a reference with `a` let a = a.try_mut().unwrap_err(); drop(b); // This will succeed let mut a = a.try_mut().unwrap(); a[0] = b'b'; assert_eq!(&a[..4], b"bary");
Acquires a mutable reference to the owned form of the data.
Clones the data if it is not already owned.
Appends given bytes to this object.
If this Bytes
object has not enough capacity, it is resized first.
If it is shared (refcount > 1
), it is copied first.
This operation can be less effective than the similar operation on
BytesMut
, especially on small additions.
Examples
use ntex_bytes::Bytes; let mut buf = Bytes::from("aabb"); buf.extend_from_slice(b"ccdd"); buf.extend_from_slice(b"eeff"); assert_eq!(b"aabbccddeeff", &buf[..]);
Combine splitted Bytes objects back as contiguous.
If Bytes
objects were not contiguous originally, they will be extended.
Examples
use ntex_bytes::Bytes; let mut buf = Bytes::with_capacity(64); buf.extend_from_slice(b"aaabbbcccddd"); let splitted = buf.split_off(6); assert_eq!(b"aaabbb", &buf[..]); assert_eq!(b"cccddd", &splitted[..]); buf.unsplit(splitted); assert_eq!(b"aaabbbcccddd", &buf[..]);
Returns an iterator over the bytes contained by the buffer.
Examples
use ntex_bytes::{Buf, Bytes}; let buf = Bytes::from(&b"abc"[..]); let mut iter = buf.iter(); assert_eq!(iter.next().map(|b| *b), Some(b'a')); assert_eq!(iter.next().map(|b| *b), Some(b'b')); assert_eq!(iter.next().map(|b| *b), Some(b'c')); assert_eq!(iter.next(), None);
Methods from Deref<Target = [u8]>
Returns the first element of the slice, or None
if it is empty.
Examples
let v = [10, 40, 30]; assert_eq!(Some(&10), v.first()); let w: &[i32] = &[]; assert_eq!(None, w.first());
Returns the first and all the rest of the elements of the slice, or None
if it is empty.
Examples
let x = &[0, 1, 2]; if let Some((first, elements)) = x.split_first() { assert_eq!(first, &0); assert_eq!(elements, &[1, 2]); }
Returns the last and all the rest of the elements of the slice, or None
if it is empty.
Examples
let x = &[0, 1, 2]; if let Some((last, elements)) = x.split_last() { assert_eq!(last, &2); assert_eq!(elements, &[0, 1]); }
Returns the last element of the slice, or None
if it is empty.
Examples
let v = [10, 40, 30]; assert_eq!(Some(&30), v.last()); let w: &[i32] = &[]; assert_eq!(None, w.last());
1.0.0[src]pub fn get<I>(&self, index: I) -> Option<&<I as SliceIndex<[T]>>::Output> where
I: SliceIndex<[T]>,
pub fn get<I>(&self, index: I) -> Option<&<I as SliceIndex<[T]>>::Output> where
I: SliceIndex<[T]>,
Returns a reference to an element or subslice depending on the type of index.
- If given a position, returns a reference to the element at that
position or
None
if out of bounds. - If given a range, returns the subslice corresponding to that range,
or
None
if out of bounds.
Examples
let v = [10, 40, 30]; assert_eq!(Some(&40), v.get(1)); assert_eq!(Some(&[10, 40][..]), v.get(0..2)); assert_eq!(None, v.get(3)); assert_eq!(None, v.get(0..4));
1.0.0[src]pub unsafe fn get_unchecked<I>(
&self,
index: I
) -> &<I as SliceIndex<[T]>>::Output where
I: SliceIndex<[T]>,
pub unsafe fn get_unchecked<I>(
&self,
index: I
) -> &<I as SliceIndex<[T]>>::Output where
I: SliceIndex<[T]>,
Returns a reference to an element or subslice, without doing bounds checking.
For a safe alternative see get
.
Safety
Calling this method with an out-of-bounds index is undefined behavior even if the resulting reference is not used.
Examples
let x = &[1, 2, 4]; unsafe { assert_eq!(x.get_unchecked(1), &2); }
Returns a raw pointer to the slice’s buffer.
The caller must ensure that the slice outlives the pointer this function returns, or else it will end up pointing to garbage.
The caller must also ensure that the memory the pointer (non-transitively) points to
is never written to (except inside an UnsafeCell
) using this pointer or any pointer
derived from it. If you need to mutate the contents of the slice, use as_mut_ptr
.
Modifying the container referenced by this slice may cause its buffer to be reallocated, which would also make any pointers to it invalid.
Examples
let x = &[1, 2, 4]; let x_ptr = x.as_ptr(); unsafe { for i in 0..x.len() { assert_eq!(x.get_unchecked(i), &*x_ptr.add(i)); } }
Returns the two raw pointers spanning the slice.
The returned range is half-open, which means that the end pointer points one past the last element of the slice. This way, an empty slice is represented by two equal pointers, and the difference between the two pointers represents the size of the slice.
See as_ptr
for warnings on using these pointers. The end pointer
requires extra caution, as it does not point to a valid element in the
slice.
This function is useful for interacting with foreign interfaces which use two pointers to refer to a range of elements in memory, as is common in C++.
It can also be useful to check if a pointer to an element refers to an element of this slice:
let a = [1, 2, 3]; let x = &a[1] as *const _; let y = &5 as *const _; assert!(a.as_ptr_range().contains(&x)); assert!(!a.as_ptr_range().contains(&y));
Returns an iterator over the slice.
Examples
let x = &[1, 2, 4]; let mut iterator = x.iter(); assert_eq!(iterator.next(), Some(&1)); assert_eq!(iterator.next(), Some(&2)); assert_eq!(iterator.next(), Some(&4)); assert_eq!(iterator.next(), None);
Returns an iterator over all contiguous windows of length
size
. The windows overlap. If the slice is shorter than
size
, the iterator returns no values.
Panics
Panics if size
is 0.
Examples
let slice = ['r', 'u', 's', 't']; let mut iter = slice.windows(2); assert_eq!(iter.next().unwrap(), &['r', 'u']); assert_eq!(iter.next().unwrap(), &['u', 's']); assert_eq!(iter.next().unwrap(), &['s', 't']); assert!(iter.next().is_none());
If the slice is shorter than size
:
let slice = ['f', 'o', 'o']; let mut iter = slice.windows(4); assert!(iter.next().is_none());
Returns an iterator over chunk_size
elements of the slice at a time, starting at the
beginning of the slice.
The chunks are slices and do not overlap. If chunk_size
does not divide the length of the
slice, then the last chunk will not have length chunk_size
.
See chunks_exact
for a variant of this iterator that returns chunks of always exactly
chunk_size
elements, and rchunks
for the same iterator but starting at the end of the
slice.
Panics
Panics if chunk_size
is 0.
Examples
let slice = ['l', 'o', 'r', 'e', 'm']; let mut iter = slice.chunks(2); assert_eq!(iter.next().unwrap(), &['l', 'o']); assert_eq!(iter.next().unwrap(), &['r', 'e']); assert_eq!(iter.next().unwrap(), &['m']); assert!(iter.next().is_none());
Returns an iterator over chunk_size
elements of the slice at a time, starting at the
beginning of the slice.
The chunks are slices and do not overlap. If chunk_size
does not divide the length of the
slice, then the last up to chunk_size-1
elements will be omitted and can be retrieved
from the remainder
function of the iterator.
Due to each chunk having exactly chunk_size
elements, the compiler can often optimize the
resulting code better than in the case of chunks
.
See chunks
for a variant of this iterator that also returns the remainder as a smaller
chunk, and rchunks_exact
for the same iterator but starting at the end of the slice.
Panics
Panics if chunk_size
is 0.
Examples
let slice = ['l', 'o', 'r', 'e', 'm']; let mut iter = slice.chunks_exact(2); assert_eq!(iter.next().unwrap(), &['l', 'o']); assert_eq!(iter.next().unwrap(), &['r', 'e']); assert!(iter.next().is_none()); assert_eq!(iter.remainder(), &['m']);
🔬 This is a nightly-only experimental API. (slice_as_chunks
)
slice_as_chunks
)Splits the slice into a slice of N
-element arrays,
assuming that there’s no remainder.
Safety
This may only be called when
- The slice splits exactly into
N
-element chunks (akaself.len() % N == 0
). N != 0
.
Examples
#![feature(slice_as_chunks)] let slice: &[char] = &['l', 'o', 'r', 'e', 'm', '!']; let chunks: &[[char; 1]] = // SAFETY: 1-element chunks never have remainder unsafe { slice.as_chunks_unchecked() }; assert_eq!(chunks, &[['l'], ['o'], ['r'], ['e'], ['m'], ['!']]); let chunks: &[[char; 3]] = // SAFETY: The slice length (6) is a multiple of 3 unsafe { slice.as_chunks_unchecked() }; assert_eq!(chunks, &[['l', 'o', 'r'], ['e', 'm', '!']]); // These would be unsound: // let chunks: &[[_; 5]] = slice.as_chunks_unchecked() // The slice length is not a multiple of 5 // let chunks: &[[_; 0]] = slice.as_chunks_unchecked() // Zero-length chunks are never allowed
🔬 This is a nightly-only experimental API. (slice_as_chunks
)
slice_as_chunks
)Splits the slice into a slice of N
-element arrays,
starting at the beginning of the slice,
and a remainder slice with length strictly less than N
.
Panics
Panics if N
is 0. This check will most probably get changed to a compile time
error before this method gets stabilized.
Examples
#![feature(slice_as_chunks)] let slice = ['l', 'o', 'r', 'e', 'm']; let (chunks, remainder) = slice.as_chunks(); assert_eq!(chunks, &[['l', 'o'], ['r', 'e']]); assert_eq!(remainder, &['m']);
🔬 This is a nightly-only experimental API. (slice_as_chunks
)
slice_as_chunks
)Splits the slice into a slice of N
-element arrays,
starting at the end of the slice,
and a remainder slice with length strictly less than N
.
Panics
Panics if N
is 0. This check will most probably get changed to a compile time
error before this method gets stabilized.
Examples
#![feature(slice_as_chunks)] let slice = ['l', 'o', 'r', 'e', 'm']; let (remainder, chunks) = slice.as_rchunks(); assert_eq!(remainder, &['l']); assert_eq!(chunks, &[['o', 'r'], ['e', 'm']]);
🔬 This is a nightly-only experimental API. (array_chunks
)
array_chunks
)Returns an iterator over N
elements of the slice at a time, starting at the
beginning of the slice.
The chunks are array references and do not overlap. If N
does not divide the
length of the slice, then the last up to N-1
elements will be omitted and can be
retrieved from the remainder
function of the iterator.
This method is the const generic equivalent of chunks_exact
.
Panics
Panics if N
is 0. This check will most probably get changed to a compile time
error before this method gets stabilized.
Examples
#![feature(array_chunks)] let slice = ['l', 'o', 'r', 'e', 'm']; let mut iter = slice.array_chunks(); assert_eq!(iter.next().unwrap(), &['l', 'o']); assert_eq!(iter.next().unwrap(), &['r', 'e']); assert!(iter.next().is_none()); assert_eq!(iter.remainder(), &['m']);
🔬 This is a nightly-only experimental API. (array_windows
)
array_windows
)Returns an iterator over overlapping windows of N
elements of a slice,
starting at the beginning of the slice.
This is the const generic equivalent of windows
.
If N
is greater than the size of the slice, it will return no windows.
Panics
Panics if N
is 0. This check will most probably get changed to a compile time
error before this method gets stabilized.
Examples
#![feature(array_windows)] let slice = [0, 1, 2, 3]; let mut iter = slice.array_windows(); assert_eq!(iter.next().unwrap(), &[0, 1]); assert_eq!(iter.next().unwrap(), &[1, 2]); assert_eq!(iter.next().unwrap(), &[2, 3]); assert!(iter.next().is_none());
Returns an iterator over chunk_size
elements of the slice at a time, starting at the end
of the slice.
The chunks are slices and do not overlap. If chunk_size
does not divide the length of the
slice, then the last chunk will not have length chunk_size
.
See rchunks_exact
for a variant of this iterator that returns chunks of always exactly
chunk_size
elements, and chunks
for the same iterator but starting at the beginning
of the slice.
Panics
Panics if chunk_size
is 0.
Examples
let slice = ['l', 'o', 'r', 'e', 'm']; let mut iter = slice.rchunks(2); assert_eq!(iter.next().unwrap(), &['e', 'm']); assert_eq!(iter.next().unwrap(), &['o', 'r']); assert_eq!(iter.next().unwrap(), &['l']); assert!(iter.next().is_none());
Returns an iterator over chunk_size
elements of the slice at a time, starting at the
end of the slice.
The chunks are slices and do not overlap. If chunk_size
does not divide the length of the
slice, then the last up to chunk_size-1
elements will be omitted and can be retrieved
from the remainder
function of the iterator.
Due to each chunk having exactly chunk_size
elements, the compiler can often optimize the
resulting code better than in the case of chunks
.
See rchunks
for a variant of this iterator that also returns the remainder as a smaller
chunk, and chunks_exact
for the same iterator but starting at the beginning of the
slice.
Panics
Panics if chunk_size
is 0.
Examples
let slice = ['l', 'o', 'r', 'e', 'm']; let mut iter = slice.rchunks_exact(2); assert_eq!(iter.next().unwrap(), &['e', 'm']); assert_eq!(iter.next().unwrap(), &['o', 'r']); assert!(iter.next().is_none()); assert_eq!(iter.remainder(), &['l']);
🔬 This is a nightly-only experimental API. (slice_group_by
)
slice_group_by
)Returns an iterator over the slice producing non-overlapping runs of elements using the predicate to separate them.
The predicate is called on two elements following themselves,
it means the predicate is called on slice[0]
and slice[1]
then on slice[1]
and slice[2]
and so on.
Examples
#![feature(slice_group_by)] let slice = &[1, 1, 1, 3, 3, 2, 2, 2]; let mut iter = slice.group_by(|a, b| a == b); assert_eq!(iter.next(), Some(&[1, 1, 1][..])); assert_eq!(iter.next(), Some(&[3, 3][..])); assert_eq!(iter.next(), Some(&[2, 2, 2][..])); assert_eq!(iter.next(), None);
This method can be used to extract the sorted subslices:
#![feature(slice_group_by)] let slice = &[1, 1, 2, 3, 2, 3, 2, 3, 4]; let mut iter = slice.group_by(|a, b| a <= b); assert_eq!(iter.next(), Some(&[1, 1, 2, 3][..])); assert_eq!(iter.next(), Some(&[2, 3][..])); assert_eq!(iter.next(), Some(&[2, 3, 4][..])); assert_eq!(iter.next(), None);
Divides one slice into two at an index.
The first will contain all indices from [0, mid)
(excluding
the index mid
itself) and the second will contain all
indices from [mid, len)
(excluding the index len
itself).
Panics
Panics if mid > len
.
Examples
let v = [1, 2, 3, 4, 5, 6]; { let (left, right) = v.split_at(0); assert_eq!(left, []); assert_eq!(right, [1, 2, 3, 4, 5, 6]); } { let (left, right) = v.split_at(2); assert_eq!(left, [1, 2]); assert_eq!(right, [3, 4, 5, 6]); } { let (left, right) = v.split_at(6); assert_eq!(left, [1, 2, 3, 4, 5, 6]); assert_eq!(right, []); }
Returns an iterator over subslices separated by elements that match
pred
. The matched element is not contained in the subslices.
Examples
let slice = [10, 40, 33, 20]; let mut iter = slice.split(|num| num % 3 == 0); assert_eq!(iter.next().unwrap(), &[10, 40]); assert_eq!(iter.next().unwrap(), &[20]); assert!(iter.next().is_none());
If the first element is matched, an empty slice will be the first item returned by the iterator. Similarly, if the last element in the slice is matched, an empty slice will be the last item returned by the iterator:
let slice = [10, 40, 33]; let mut iter = slice.split(|num| num % 3 == 0); assert_eq!(iter.next().unwrap(), &[10, 40]); assert_eq!(iter.next().unwrap(), &[]); assert!(iter.next().is_none());
If two matched elements are directly adjacent, an empty slice will be present between them:
let slice = [10, 6, 33, 20]; let mut iter = slice.split(|num| num % 3 == 0); assert_eq!(iter.next().unwrap(), &[10]); assert_eq!(iter.next().unwrap(), &[]); assert_eq!(iter.next().unwrap(), &[20]); assert!(iter.next().is_none());
1.51.0[src]pub fn split_inclusive<F>(&self, pred: F) -> SplitInclusive<'_, T, F> where
F: FnMut(&T) -> bool,
pub fn split_inclusive<F>(&self, pred: F) -> SplitInclusive<'_, T, F> where
F: FnMut(&T) -> bool,
Returns an iterator over subslices separated by elements that match
pred
. The matched element is contained in the end of the previous
subslice as a terminator.
Examples
let slice = [10, 40, 33, 20]; let mut iter = slice.split_inclusive(|num| num % 3 == 0); assert_eq!(iter.next().unwrap(), &[10, 40, 33]); assert_eq!(iter.next().unwrap(), &[20]); assert!(iter.next().is_none());
If the last element of the slice is matched, that element will be considered the terminator of the preceding slice. That slice will be the last item returned by the iterator.
let slice = [3, 10, 40, 33]; let mut iter = slice.split_inclusive(|num| num % 3 == 0); assert_eq!(iter.next().unwrap(), &[3]); assert_eq!(iter.next().unwrap(), &[10, 40, 33]); assert!(iter.next().is_none());
Returns an iterator over subslices separated by elements that match
pred
, starting at the end of the slice and working backwards.
The matched element is not contained in the subslices.
Examples
let slice = [11, 22, 33, 0, 44, 55]; let mut iter = slice.rsplit(|num| *num == 0); assert_eq!(iter.next().unwrap(), &[44, 55]); assert_eq!(iter.next().unwrap(), &[11, 22, 33]); assert_eq!(iter.next(), None);
As with split()
, if the first or last element is matched, an empty
slice will be the first (or last) item returned by the iterator.
let v = &[0, 1, 1, 2, 3, 5, 8]; let mut it = v.rsplit(|n| *n % 2 == 0); assert_eq!(it.next().unwrap(), &[]); assert_eq!(it.next().unwrap(), &[3, 5]); assert_eq!(it.next().unwrap(), &[1, 1]); assert_eq!(it.next().unwrap(), &[]); assert_eq!(it.next(), None);
Returns an iterator over subslices separated by elements that match
pred
, limited to returning at most n
items. The matched element is
not contained in the subslices.
The last element returned, if any, will contain the remainder of the slice.
Examples
Print the slice split once by numbers divisible by 3 (i.e., [10, 40]
,
[20, 60, 50]
):
let v = [10, 40, 30, 20, 60, 50]; for group in v.splitn(2, |num| *num % 3 == 0) { println!("{:?}", group); }
Returns an iterator over subslices separated by elements that match
pred
limited to returning at most n
items. This starts at the end of
the slice and works backwards. The matched element is not contained in
the subslices.
The last element returned, if any, will contain the remainder of the slice.
Examples
Print the slice split once, starting from the end, by numbers divisible
by 3 (i.e., [50]
, [10, 40, 30, 20]
):
let v = [10, 40, 30, 20, 60, 50]; for group in v.rsplitn(2, |num| *num % 3 == 0) { println!("{:?}", group); }
Returns true
if the slice contains an element with the given value.
Examples
let v = [10, 40, 30]; assert!(v.contains(&30)); assert!(!v.contains(&50));
If you do not have a &T
, but some other value that you can compare
with one (for example, String
implements PartialEq<str>
), you can
use iter().any
:
let v = [String::from("hello"), String::from("world")]; // slice of `String` assert!(v.iter().any(|e| e == "hello")); // search with `&str` assert!(!v.iter().any(|e| e == "hi"));
Returns true
if needle
is a prefix of the slice.
Examples
let v = [10, 40, 30]; assert!(v.starts_with(&[10])); assert!(v.starts_with(&[10, 40])); assert!(!v.starts_with(&[50])); assert!(!v.starts_with(&[10, 50]));
Always returns true
if needle
is an empty slice:
let v = &[10, 40, 30]; assert!(v.starts_with(&[])); let v: &[u8] = &[]; assert!(v.starts_with(&[]));
Returns true
if needle
is a suffix of the slice.
Examples
let v = [10, 40, 30]; assert!(v.ends_with(&[30])); assert!(v.ends_with(&[40, 30])); assert!(!v.ends_with(&[50])); assert!(!v.ends_with(&[50, 30]));
Always returns true
if needle
is an empty slice:
let v = &[10, 40, 30]; assert!(v.ends_with(&[])); let v: &[u8] = &[]; assert!(v.ends_with(&[]));
1.51.0[src]pub fn strip_prefix<P>(&self, prefix: &P) -> Option<&[T]> where
T: PartialEq<T>,
P: SlicePattern<Item = T> + ?Sized,
pub fn strip_prefix<P>(&self, prefix: &P) -> Option<&[T]> where
T: PartialEq<T>,
P: SlicePattern<Item = T> + ?Sized,
Returns a subslice with the prefix removed.
If the slice starts with prefix
, returns the subslice after the prefix, wrapped in Some
.
If prefix
is empty, simply returns the original slice.
If the slice does not start with prefix
, returns None
.
Examples
let v = &[10, 40, 30]; assert_eq!(v.strip_prefix(&[10]), Some(&[40, 30][..])); assert_eq!(v.strip_prefix(&[10, 40]), Some(&[30][..])); assert_eq!(v.strip_prefix(&[50]), None); assert_eq!(v.strip_prefix(&[10, 50]), None); let prefix : &str = "he"; assert_eq!(b"hello".strip_prefix(prefix.as_bytes()), Some(b"llo".as_ref()));
1.51.0[src]pub fn strip_suffix<P>(&self, suffix: &P) -> Option<&[T]> where
T: PartialEq<T>,
P: SlicePattern<Item = T> + ?Sized,
pub fn strip_suffix<P>(&self, suffix: &P) -> Option<&[T]> where
T: PartialEq<T>,
P: SlicePattern<Item = T> + ?Sized,
Returns a subslice with the suffix removed.
If the slice ends with suffix
, returns the subslice before the suffix, wrapped in Some
.
If suffix
is empty, simply returns the original slice.
If the slice does not end with suffix
, returns None
.
Examples
let v = &[10, 40, 30]; assert_eq!(v.strip_suffix(&[30]), Some(&[10, 40][..])); assert_eq!(v.strip_suffix(&[40, 30]), Some(&[10][..])); assert_eq!(v.strip_suffix(&[50]), None); assert_eq!(v.strip_suffix(&[50, 30]), None);
Binary searches this sorted slice for a given element.
If the value is found then Result::Ok
is returned, containing the
index of the matching element. If there are multiple matches, then any
one of the matches could be returned. The index is chosen
deterministically, but is subject to change in future versions of Rust.
If the value is not found then Result::Err
is returned, containing
the index where a matching element could be inserted while maintaining
sorted order.
See also binary_search_by
, binary_search_by_key
, and partition_point
.
Examples
Looks up a series of four elements. The first is found, with a
uniquely determined position; the second and third are not
found; the fourth could match any position in [1, 4]
.
let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]; assert_eq!(s.binary_search(&13), Ok(9)); assert_eq!(s.binary_search(&4), Err(7)); assert_eq!(s.binary_search(&100), Err(13)); let r = s.binary_search(&1); assert!(match r { Ok(1..=4) => true, _ => false, });
If you want to insert an item to a sorted vector, while maintaining sort order:
let mut s = vec![0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]; let num = 42; let idx = s.binary_search(&num).unwrap_or_else(|x| x); s.insert(idx, num); assert_eq!(s, [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 42, 55]);
Binary searches this sorted slice with a comparator function.
The comparator function should implement an order consistent
with the sort order of the underlying slice, returning an
order code that indicates whether its argument is Less
,
Equal
or Greater
the desired target.
If the value is found then Result::Ok
is returned, containing the
index of the matching element. If there are multiple matches, then any
one of the matches could be returned. The index is chosen
deterministically, but is subject to change in future versions of Rust.
If the value is not found then Result::Err
is returned, containing
the index where a matching element could be inserted while maintaining
sorted order.
See also binary_search
, binary_search_by_key
, and partition_point
.
Examples
Looks up a series of four elements. The first is found, with a
uniquely determined position; the second and third are not
found; the fourth could match any position in [1, 4]
.
let s = [0, 1, 1, 1, 1, 2, 3, 5, 8, 13, 21, 34, 55]; let seek = 13; assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Ok(9)); let seek = 4; assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(7)); let seek = 100; assert_eq!(s.binary_search_by(|probe| probe.cmp(&seek)), Err(13)); let seek = 1; let r = s.binary_search_by(|probe| probe.cmp(&seek)); assert!(match r { Ok(1..=4) => true, _ => false, });
Binary searches this sorted slice with a key extraction function.
Assumes that the slice is sorted by the key, for instance with
sort_by_key
using the same key extraction function.
If the value is found then Result::Ok
is returned, containing the
index of the matching element. If there are multiple matches, then any
one of the matches could be returned. The index is chosen
deterministically, but is subject to change in future versions of Rust.
If the value is not found then Result::Err
is returned, containing
the index where a matching element could be inserted while maintaining
sorted order.
See also binary_search
, binary_search_by
, and partition_point
.
Examples
Looks up a series of four elements in a slice of pairs sorted by
their second elements. The first is found, with a uniquely
determined position; the second and third are not found; the
fourth could match any position in [1, 4]
.
let s = [(0, 0), (2, 1), (4, 1), (5, 1), (3, 1), (1, 2), (2, 3), (4, 5), (5, 8), (3, 13), (1, 21), (2, 34), (4, 55)]; assert_eq!(s.binary_search_by_key(&13, |&(a, b)| b), Ok(9)); assert_eq!(s.binary_search_by_key(&4, |&(a, b)| b), Err(7)); assert_eq!(s.binary_search_by_key(&100, |&(a, b)| b), Err(13)); let r = s.binary_search_by_key(&1, |&(a, b)| b); assert!(match r { Ok(1..=4) => true, _ => false, });
Transmute the slice to a slice of another type, ensuring alignment of the types is maintained.
This method splits the slice into three distinct slices: prefix, correctly aligned middle slice of a new type, and the suffix slice. The method may make the middle slice the greatest length possible for a given type and input slice, but only your algorithm’s performance should depend on that, not its correctness. It is permissible for all of the input data to be returned as the prefix or suffix slice.
This method has no purpose when either input element T
or output element U
are
zero-sized and will return the original slice without splitting anything.
Safety
This method is essentially a transmute
with respect to the elements in the returned
middle slice, so all the usual caveats pertaining to transmute::<T, U>
also apply here.
Examples
Basic usage:
unsafe { let bytes: [u8; 7] = [1, 2, 3, 4, 5, 6, 7]; let (prefix, shorts, suffix) = bytes.align_to::<u16>(); // less_efficient_algorithm_for_bytes(prefix); // more_efficient_algorithm_for_aligned_shorts(shorts); // less_efficient_algorithm_for_bytes(suffix); }
🔬 This is a nightly-only experimental API. (is_sorted
)
new API
🔬 This is a nightly-only experimental API. (is_sorted
)
new API
Checks if the elements of this slice are sorted.
That is, for each element a
and its following element b
, a <= b
must hold. If the
slice yields exactly zero or one element, true
is returned.
Note that if Self::Item
is only PartialOrd
, but not Ord
, the above definition
implies that this function returns false
if any two consecutive items are not
comparable.
Examples
#![feature(is_sorted)] let empty: [i32; 0] = []; assert!([1, 2, 2, 9].is_sorted()); assert!(![1, 3, 2, 4].is_sorted()); assert!([0].is_sorted()); assert!(empty.is_sorted()); assert!(![0.0, 1.0, f32::NAN].is_sorted());
🔬 This is a nightly-only experimental API. (is_sorted
)
new API
🔬 This is a nightly-only experimental API. (is_sorted
)
new API
Checks if the elements of this slice are sorted using the given comparator function.
Instead of using PartialOrd::partial_cmp
, this function uses the given compare
function to determine the ordering of two elements. Apart from that, it’s equivalent to
is_sorted
; see its documentation for more information.
🔬 This is a nightly-only experimental API. (is_sorted
)
new API
🔬 This is a nightly-only experimental API. (is_sorted
)
new API
Checks if the elements of this slice are sorted using the given key extraction function.
Instead of comparing the slice’s elements directly, this function compares the keys of the
elements, as determined by f
. Apart from that, it’s equivalent to is_sorted
; see its
documentation for more information.
Examples
#![feature(is_sorted)] assert!(["c", "bb", "aaa"].is_sorted_by_key(|s| s.len())); assert!(![-2i32, -1, 0, 3].is_sorted_by_key(|n| n.abs()));
Returns the index of the partition point according to the given predicate (the index of the first element of the second partition).
The slice is assumed to be partitioned according to the given predicate. This means that all elements for which the predicate returns true are at the start of the slice and all elements for which the predicate returns false are at the end. For example, [7, 15, 3, 5, 4, 12, 6] is a partitioned under the predicate x % 2 != 0 (all odd numbers are at the start, all even at the end).
If this slice is not partitioned, the returned result is unspecified and meaningless, as this method performs a kind of binary search.
See also binary_search
, binary_search_by
, and binary_search_by_key
.
Examples
let v = [1, 2, 3, 3, 5, 6, 7]; let i = v.partition_point(|&x| x < 5); assert_eq!(i, 4); assert!(v[..i].iter().all(|&x| x < 5)); assert!(v[i..].iter().all(|&x| !(x < 5)));
Checks if all bytes in this slice are within the ASCII range.
Checks that two slices are an ASCII case-insensitive match.
Same as to_ascii_lowercase(a) == to_ascii_lowercase(b)
,
but without allocating and copying temporaries.
🔬 This is a nightly-only experimental API. (inherent_ascii_escape
)
inherent_ascii_escape
)Returns an iterator that produces an escaped version of this slice, treating it as an ASCII string.
Examples
#![feature(inherent_ascii_escape)] let s = b"0\t\r\n'\"\\\x9d"; let escaped = s.escape_ascii().to_string(); assert_eq!(escaped, "0\\t\\r\\n\\'\\\"\\\\\\x9d");
Copies self
into a new Vec
.
Examples
let s = [10, 40, 30]; let x = s.to_vec(); // Here, `s` and `x` can be modified independently.
🔬 This is a nightly-only experimental API. (allocator_api
)
allocator_api
)Copies self
into a new Vec
with an allocator.
Examples
#![feature(allocator_api)] use std::alloc::System; let s = [10, 40, 30]; let x = s.to_vec_in(System); // Here, `s` and `x` can be modified independently.
Flattens a slice of T
into a single value Self::Output
.
Examples
assert_eq!(["hello", "world"].concat(), "helloworld"); assert_eq!([[1, 2], [3, 4]].concat(), [1, 2, 3, 4]);
Flattens a slice of T
into a single value Self::Output
, placing a
given separator between each.
Examples
assert_eq!(["hello", "world"].join(" "), "hello world"); assert_eq!([[1, 2], [3, 4]].join(&0), [1, 2, 0, 3, 4]); assert_eq!([[1, 2], [3, 4]].join(&[0, 0][..]), [1, 2, 0, 0, 3, 4]);
1.0.0[src]pub fn connect<Separator>(
&self,
sep: Separator
) -> <[T] as Join<Separator>>::Outputⓘ where
[T]: Join<Separator>,
👎 Deprecated since 1.3.0: renamed to join
pub fn connect<Separator>(
&self,
sep: Separator
) -> <[T] as Join<Separator>>::Outputⓘ where
[T]: Join<Separator>,
renamed to join
Flattens a slice of T
into a single value Self::Output
, placing a
given separator between each.
Examples
assert_eq!(["hello", "world"].connect(" "), "hello world"); assert_eq!([[1, 2], [3, 4]].connect(&0), [1, 2, 0, 3, 4]);
Returns a vector containing a copy of this slice where each byte is mapped to its ASCII upper case equivalent.
ASCII letters ‘a’ to ‘z’ are mapped to ‘A’ to ‘Z’, but non-ASCII letters are unchanged.
To uppercase the value in-place, use make_ascii_uppercase
.
Returns a vector containing a copy of this slice where each byte is mapped to its ASCII lower case equivalent.
ASCII letters ‘A’ to ‘Z’ are mapped to ‘a’ to ‘z’, but non-ASCII letters are unchanged.
To lowercase the value in-place, use make_ascii_lowercase
.
Trait Implementations
Returns the number of bytes between the current position and the end of the buffer. Read more
Returns a slice starting at the current position and of length between 0
and Buf::remaining()
. Note that this can return shorter slice (this allows
non-continuous internal representation). Read more
Fills dst
with potentially multiple slices starting at self
’s
current position. Read more
Returns true if there are any more bytes to consume Read more
Gets an unsigned 16 bit integer from self
in big-endian byte order. Read more
Gets an unsigned 16 bit integer from self
in little-endian byte order. Read more
Gets a signed 16 bit integer from self
in big-endian byte order. Read more
Gets a signed 16 bit integer from self
in little-endian byte order. Read more
Gets an unsigned 32 bit integer from self
in the big-endian byte order. Read more
Gets an unsigned 32 bit integer from self
in the little-endian byte order. Read more
Gets a signed 32 bit integer from self
in big-endian byte order. Read more
Gets a signed 32 bit integer from self
in little-endian byte order. Read more
Gets an unsigned 64 bit integer from self
in big-endian byte order. Read more
Gets an unsigned 64 bit integer from self
in little-endian byte order. Read more
Gets a signed 64 bit integer from self
in big-endian byte order. Read more
Gets a signed 64 bit integer from self
in little-endian byte order. Read more
Gets an unsigned 128 bit integer from self
in big-endian byte order. Read more
Gets an unsigned 128 bit integer from self
in little-endian byte order. Read more
Gets a signed 128 bit integer from self
in big-endian byte order. Read more
Gets a signed 128 bit integer from self
in little-endian byte order. Read more
Gets an unsigned n-byte integer from self
in big-endian byte order. Read more
Gets an unsigned n-byte integer from self
in little-endian byte order. Read more
Gets a signed n-byte integer from self
in big-endian byte order. Read more
Gets a signed n-byte integer from self
in little-endian byte order. Read more
Gets an IEEE754 single-precision (4 bytes) floating point number from
self
in big-endian byte order. Read more
Gets an IEEE754 single-precision (4 bytes) floating point number from
self
in little-endian byte order. Read more
Gets an IEEE754 double-precision (8 bytes) floating point number from
self
in big-endian byte order. Read more
Gets an IEEE754 double-precision (8 bytes) floating point number from
self
in little-endian byte order. Read more
Consumes len
bytes inside self and returns new instance of Bytes
with this data. Read more
Creates an adaptor which will read at most limit
bytes from self
. Read more
Creates an adaptor which will chain this buffer with another. Read more
Returns the number of bytes between the current position and the end of the buffer. Read more
Returns a slice starting at the current position and of length between 0
and Buf::remaining()
. Note that this can return shorter slice (this allows
non-continuous internal representation). Read more
Returns true if there are any more bytes to consume Read more
Gets an unsigned 16 bit integer from self
in big-endian byte order. Read more
Gets an unsigned 16 bit integer from self
in little-endian byte order. Read more
Gets a signed 16 bit integer from self
in big-endian byte order. Read more
Gets a signed 16 bit integer from self
in little-endian byte order. Read more
Gets an unsigned 32 bit integer from self
in the big-endian byte order. Read more
Gets an unsigned 32 bit integer from self
in the little-endian byte order. Read more
Gets a signed 32 bit integer from self
in big-endian byte order. Read more
Gets a signed 32 bit integer from self
in little-endian byte order. Read more
Gets an unsigned 64 bit integer from self
in big-endian byte order. Read more
Gets an unsigned 64 bit integer from self
in little-endian byte order. Read more
Gets a signed 64 bit integer from self
in big-endian byte order. Read more
Gets a signed 64 bit integer from self
in little-endian byte order. Read more
Gets an unsigned 128 bit integer from self
in big-endian byte order. Read more
Gets an unsigned 128 bit integer from self
in little-endian byte order. Read more
Gets a signed 128 bit integer from self
in big-endian byte order. Read more
Gets a signed 128 bit integer from self
in little-endian byte order. Read more
Gets an unsigned n-byte integer from self
in big-endian byte order. Read more
Gets an unsigned n-byte integer from self
in little-endian byte order. Read more
Gets a signed n-byte integer from self
in big-endian byte order. Read more
Gets a signed n-byte integer from self
in little-endian byte order. Read more
Gets an IEEE754 single-precision (4 bytes) floating point number from
self
in big-endian byte order. Read more
Gets an IEEE754 single-precision (4 bytes) floating point number from
self
in little-endian byte order. Read more
Gets an IEEE754 double-precision (8 bytes) floating point number from
self
in big-endian byte order. Read more
Gets an IEEE754 double-precision (8 bytes) floating point number from
self
in little-endian byte order. Read more
pub fn deserialize<D>(
deserializer: D
) -> Result<Bytes, <D as Deserializer<'de>>::Error> where
D: Deserializer<'de>,
pub fn deserialize<D>(
deserializer: D
) -> Result<Bytes, <D as Deserializer<'de>>::Error> where
D: Deserializer<'de>,
Deserialize this value from the given Serde deserializer. Read more
Extends a collection with the contents of an iterator. Read more
extend_one
)Extends a collection with exactly one element.
extend_one
)Reserves capacity in a collection for the given number of additional elements. Read more
Extends a collection with the contents of an iterator. Read more
extend_one
)Extends a collection with exactly one element.
extend_one
)Reserves capacity in a collection for the given number of additional elements. Read more
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
This method returns an ordering between self
and other
values if one exists. Read more
This method tests less than (for self
and other
) and is used by the <
operator. Read more
This method tests less than or equal to (for self
and other
) and is used by the <=
operator. Read more
This method tests greater than (for self
and other
) and is used by the >
operator. Read more
pub fn serialize<S>(
&self,
serializer: S
) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error> where
S: Serializer,
pub fn serialize<S>(
&self,
serializer: S
) -> Result<<S as Serializer>::Ok, <S as Serializer>::Error> where
S: Serializer,
Serialize this value into the given Serde serializer. Read more
Auto Trait Implementations
impl RefUnwindSafe for Bytes
impl UnwindSafe for Bytes
Blanket Implementations
Mutably borrows from an owned value. Read more