cairo_vm::with_std::fmt

Trait Octal

1.0.0 · Source
pub trait Octal {
    // Required method
    fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>;
}
Expand description

o formatting.

The Octal trait should format its output as a number in base-8.

For primitive signed integers (i8 to i128, and isize), negative values are formatted as the two’s complement representation.

The alternate flag, #, adds a 0o in front of the output.

For more information on formatters, see the module-level documentation.

§Examples

Basic usage with i32:

let x = 42; // 42 is '52' in octal

assert_eq!(format!("{x:o}"), "52");
assert_eq!(format!("{x:#o}"), "0o52");

assert_eq!(format!("{:o}", -16), "37777777760");

Implementing Octal on a type:

use std::fmt;

struct Length(i32);

impl fmt::Octal for Length {
    fn fmt(&self, f: &mut fmt::Formatter<'_>) -> fmt::Result {
        let val = self.0;

        fmt::Octal::fmt(&val, f) // delegate to i32's implementation
    }
}

let l = Length(9);

assert_eq!(format!("l as octal is: {l:o}"), "l as octal is: 11");

assert_eq!(format!("l as octal is: {l:#06o}"), "l as octal is: 0o0011");

Required Methods§

1.0.0 · Source

fn fmt(&self, f: &mut Formatter<'_>) -> Result<(), Error>

Formats the value using the given formatter.

§Errors

This function should return Err if, and only if, the provided Formatter returns Err. String formatting is considered an infallible operation; this function only returns a Result because writing to the underlying stream might fail and it must provide a way to propagate the fact that an error has occurred back up the stack.

Implementors§

1.0.0 · Source§

impl Octal for i8

1.0.0 · Source§

impl Octal for i16

1.0.0 · Source§

impl Octal for i32

1.0.0 · Source§

impl Octal for i64

1.0.0 · Source§

impl Octal for i128

1.0.0 · Source§

impl Octal for isize

1.0.0 · Source§

impl Octal for u8

1.0.0 · Source§

impl Octal for u16

1.0.0 · Source§

impl Octal for u32

1.0.0 · Source§

impl Octal for u64

1.0.0 · Source§

impl Octal for u128

1.0.0 · Source§

impl Octal for usize

Source§

impl Octal for BigInt

Source§

impl Octal for BigUint

Source§

impl<'a, T, O> Octal for Domain<'a, Const, T, O>
where O: BitOrder, T: BitStore,

Source§

impl<A, O> Octal for BitArray<A, O>
where O: BitOrder, A: BitViewSized,

Source§

impl<O> Octal for I16<O>
where O: ByteOrder,

Source§

impl<O> Octal for I32<O>
where O: ByteOrder,

Source§

impl<O> Octal for I64<O>
where O: ByteOrder,

Source§

impl<O> Octal for I128<O>
where O: ByteOrder,

Source§

impl<O> Octal for U16<O>
where O: ByteOrder,

Source§

impl<O> Octal for U32<O>
where O: ByteOrder,

Source§

impl<O> Octal for U64<O>
where O: ByteOrder,

Source§

impl<O> Octal for U128<O>
where O: ByteOrder,

1.0.0 · Source§

impl<T> Octal for &T
where T: Octal + ?Sized,

1.0.0 · Source§

impl<T> Octal for &mut T
where T: Octal + ?Sized,

1.28.0 · Source§

impl<T> Octal for cairo_vm::with_std::num::NonZero<T>

1.74.0 · Source§

impl<T> Octal for Saturating<T>
where T: Octal,

1.11.0 · Source§

impl<T> Octal for cairo_vm::with_std::num::Wrapping<T>
where T: Octal,

Source§

impl<T> Octal for crypto_bigint::non_zero::NonZero<T>
where T: Octal + Zero,

Source§

impl<T> Octal for crypto_bigint::wrapping::Wrapping<T>
where T: Octal,

Source§

impl<T> Octal for FmtBinary<T>
where T: Binary + Octal,

Source§

impl<T> Octal for FmtDisplay<T>
where T: Display + Octal,

Source§

impl<T> Octal for FmtList<T>
where &'a T: for<'a> IntoIterator, <&'a T as IntoIterator>::Item: for<'a> Octal,

Source§

impl<T> Octal for FmtLowerExp<T>
where T: LowerExp + Octal,

Source§

impl<T> Octal for FmtLowerHex<T>
where T: LowerHex + Octal,

Source§

impl<T> Octal for FmtOctal<T>
where T: Octal,

Source§

impl<T> Octal for FmtPointer<T>
where T: Pointer + Octal,

Source§

impl<T> Octal for FmtUpperExp<T>
where T: UpperExp + Octal,

Source§

impl<T> Octal for FmtUpperHex<T>
where T: UpperHex + Octal,

Source§

impl<T, O> Octal for BitBox<T, O>
where O: BitOrder, T: BitStore,

Source§

impl<T, O> Octal for BitSlice<T, O>
where T: BitStore, O: BitOrder,

§Bit-Slice Rendering

This implementation prints the contents of a &BitSlice in one of binary, octal, or hexadecimal. It is important to note that this does not render the raw underlying memory! They render the semantically-ordered contents of the bit-slice as numerals. This distinction matters if you use type parameters that differ from those presumed by your debugger (which is usually <u8, Msb0>).

The output separates the T elements as individual list items, and renders each element as a base- 2, 8, or 16 numeric string. When walking an element, the bits traversed by the bit-slice are considered to be stored in most-significant-bit-first ordering. This means that index [0] is the high bit of the left-most digit, and index [n] is the low bit of the right-most digit, in a given printed word.

In order to render according to expectations of the Arabic numeral system, an element being transcribed is chunked into digits from the least-significant end of its rendered form. This is most noticeable in octal, which will always have a smaller ceiling on the left-most digit in a printed word, while the right-most digit in that word is able to use the full 0 ..= 7 numeral range.

§Examples
use bitvec::prelude::*;

let data = [
  0b000000_10u8,
// digits print LTR
  0b10_001_101,
// significance is computed RTL
  0b01_000000,
];
let bits = &data.view_bits::<Msb0>()[6 .. 18];

assert_eq!(format!("{:b}", bits), "[10, 10001101, 01]");
assert_eq!(format!("{:o}", bits), "[2, 215, 1]");
assert_eq!(format!("{:X}", bits), "[2, 8D, 1]");

The {:#} format modifier causes the standard 0b, 0o, or 0x prefix to be applied to each printed word. The other format specifiers are not interpreted by this implementation, and apply to the entire rendered text, not to individual words.

Source§

impl<T, O> Octal for BitVec<T, O>
where O: BitOrder, T: BitStore,