Expand description
A library for Cargo build scripts to compile a set of C/C++/assembly/CUDA files into a static archive for Cargo to link into the crate being built. This crate does not compile code itself; it calls out to the default compiler for the platform. This crate will automatically detect situations such as cross compilation and various environment variables and will build code appropriately.
§Example
First, you’ll want to both add a build script for your crate (build.rs
) and
also add this crate to your Cargo.toml
via:
[build-dependencies]
cc = "1.0"
Next up, you’ll want to write a build script like so:
// build.rs
cc::Build::new()
.file("foo.c")
.file("bar.c")
.compile("foo");
And that’s it! Running cargo build
should take care of the rest and your Rust
application will now have the C files foo.c
and bar.c
compiled into a file
named libfoo.a
. If the C files contain
void foo_function(void) { ... }
and
int32_t bar_function(int32_t x) { ... }
you can call them from Rust by declaring them in your Rust code like so:
extern "C" {
fn foo_function();
fn bar_function(x: i32) -> i32;
}
pub fn call() {
unsafe {
foo_function();
bar_function(42);
}
}
fn main() {
call();
}
See the Rustonomicon for more details.
§External configuration via environment variables
To control the programs and flags used for building, the builder can set a number of different environment variables.
CFLAGS
- a series of space separated flags passed to compilers. Note that individual flags cannot currently contain spaces, so doing something like:-L=foo\ bar
is not possible.CC
- the actual C compiler used. Note that this is used as an exact executable name, so (for example) no extra flags can be passed inside this variable, and the builder must ensure that there aren’t any trailing spaces. This compiler must understand the-c
flag. For certainTARGET
s, it also is assumed to know about other flags (most common is-fPIC
).AR
- thear
(archiver) executable to use to build the static library.CRATE_CC_NO_DEFAULTS
- the default compiler flags may cause conflicts in some cross compiling scenarios. Setting this variable will disable the generation of default compiler flags.CC_ENABLE_DEBUG_OUTPUT
- if set, compiler command invocations and exit codes will be logged to stdout. This is useful for debugging build script issues, but can be overly verbose for normal use.CC_SHELL_ESCAPED_FLAGS
- if set,*FLAGS
will be parsed as if they were shell arguments (similar tomake
andcmake
) rather than splitting them on each space. For example, withCFLAGS='a "b c"'
, the compiler will be invoked with 2 arguments -a
andb c
- rather than 3:a
,"b
andc"
.CXX...
- see C++ Support.CC_FORCE_DISABLE
- If set,cc
will never run anyCommand
s, and methods that would return anError
. This is intended for use by third-party build systems which want to be absolutely sure that they are in control of building all dependencies. Note that operations that returnTool
s such asBuild::get_compiler
may produce less accurate results as in some casescc
runs commands in order to locate compilers. Additionally, this does nothing to prevent users from runningTool::to_command
and executing theCommand
themselves.//!
Furthermore, projects using this crate may specify custom environment variables
to be inspected, for example via the Build::try_flags_from_environment
function. Consult the project’s own documentation or its use of the cc
crate
for any additional variables it may use.
Each of these variables can also be supplied with certain prefixes and suffixes, in the following prioritized order:
<var>_<target>
- for example,CC_x86_64-unknown-linux-gnu
<var>_<target_with_underscores>
- for example,CC_x86_64_unknown_linux_gnu
<build-kind>_<var>
- for example,HOST_CC
orTARGET_CFLAGS
<var>
- a plainCC
,AR
as above.
If none of these variables exist, cc-rs uses built-in defaults.
In addition to the above optional environment variables, cc-rs
has some
functions with hard requirements on some variables supplied by cargo’s
build-script driver that it has the TARGET
, OUT_DIR
, OPT_LEVEL
,
and HOST
variables.
§Optional features
§Parallel
Currently cc-rs supports parallel compilation (think make -jN
) but this
feature is turned off by default. To enable cc-rs to compile C/C++ in parallel,
you can change your dependency to:
[build-dependencies]
cc = { version = "1.0", features = ["parallel"] }
By default cc-rs will limit parallelism to $NUM_JOBS
, or if not present it
will limit it to the number of cpus on the machine. If you are using cargo,
use -jN
option of build
, test
and run
commands as $NUM_JOBS
is supplied by cargo.
§Compile-time Requirements
To work properly this crate needs access to a C compiler when the build script is being run. This crate does not ship a C compiler with it. The compiler required varies per platform, but there are three broad categories:
- Unix platforms require
cc
to be the C compiler. This can be found by installing cc/clang on Linux distributions and Xcode on macOS, for example. - Windows platforms targeting MSVC (e.g. your target triple ends in
-msvc
) require Visual Studio to be installed.cc-rs
attempts to locate it, and if it fails,cl.exe
is expected to be available inPATH
. This can be set up by running the appropriate developer tools shell. - Windows platforms targeting MinGW (e.g. your target triple ends in
-gnu
) requirecc
to be available inPATH
. We recommend the MinGW-w64 distribution. You may also acquire it via MSYS2, as explained here. Make sure to install the appropriate architecture corresponding to your installation of rustc. GCC from older MinGW project is compatible only with 32-bit rust compiler.
§C++ support
cc-rs
supports C++ libraries compilation by using the cpp
method on
Build
:
cc::Build::new()
.cpp(true) // Switch to C++ library compilation.
.file("foo.cpp")
.compile("foo");
For C++ libraries, the CXX
and CXXFLAGS
environment variables are used instead of CC
and CFLAGS
.
The C++ standard library may be linked to the crate target. By default it’s libc++
for macOS, FreeBSD, and OpenBSD, libc++_shared
for Android, nothing for MSVC, and libstdc++
for anything else. It can be changed in one of two ways:
- by using the
cpp_link_stdlib
method onBuild
:
cc::Build::new()
.cpp(true)
.file("foo.cpp")
.cpp_link_stdlib("stdc++") // use libstdc++
.compile("foo");
- by setting the
CXXSTDLIB
environment variable.
In particular, for Android you may want to use c++_static
if you have at most one shared library.
Remember that C++ does name mangling so extern "C"
might be required to enable Rust linker to find your functions.
§CUDA C++ support
cc-rs
also supports compiling CUDA C++ libraries by using the cuda
method
on Build
:
cc::Build::new()
// Switch to CUDA C++ library compilation using NVCC.
.cuda(true)
.cudart("static")
// Generate code for Maxwell (GTX 970, 980, 980 Ti, Titan X).
.flag("-gencode").flag("arch=compute_52,code=sm_52")
// Generate code for Maxwell (Jetson TX1).
.flag("-gencode").flag("arch=compute_53,code=sm_53")
// Generate code for Pascal (GTX 1070, 1080, 1080 Ti, Titan Xp).
.flag("-gencode").flag("arch=compute_61,code=sm_61")
// Generate code for Pascal (Tesla P100).
.flag("-gencode").flag("arch=compute_60,code=sm_60")
// Generate code for Pascal (Jetson TX2).
.flag("-gencode").flag("arch=compute_62,code=sm_62")
// Generate code in parallel
.flag("-t0")
.file("bar.cu")
.compile("bar");
Modules§
- A helper module to looking for windows-specific tools:
Structs§
- A builder for compilation of a native library.
- Represents an internal error that occurred, with an explanation.
- Configuration used to represent an invocation of a C compiler.