1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
use anchor_lang::{
    prelude::*,
    solana_program::{
        instruction::Instruction,
        program::{get_return_data, invoke_signed},
    },
    AnchorDeserialize, InstructionData,
};
use clockwork_network_program::state::{Fee, Pool, Worker, WorkerAccount};
use clockwork_utils::thread::{SerializableInstruction, ThreadResponse, PAYER_PUBKEY};

use crate::{errors::ClockworkError, state::*};

/// The ID of the pool workers must be a member of to collect fees.
const POOL_ID: u64 = 0;

/// The number of lamports to reimburse the worker with after they've submitted a transaction's worth of exec instructions.
pub const TRANSACTION_BASE_FEE_REIMBURSEMENT: u64 = 5_000;

/// Accounts required by the `thread_exec` instruction.
#[derive(Accounts)]
pub struct ThreadExec<'info> {
    /// The worker's fee account.
    #[account(
        mut,
        seeds = [
            clockwork_network_program::state::SEED_FEE,
            worker.key().as_ref(),
        ],
        bump,
        seeds::program = clockwork_network_program::ID,
        has_one = worker,
    )]
    pub fee: Account<'info, Fee>,

    /// The active worker pool.
    #[account(address = Pool::pubkey(POOL_ID))]
    pub pool: Box<Account<'info, Pool>>,

    /// The signatory.
    #[account(mut)]
    pub signatory: Signer<'info>,

    /// The thread to execute.
    #[account(
        mut,
        seeds = [
            SEED_THREAD,
            thread.authority.as_ref(),
            thread.id.as_slice(),
        ],
        bump = thread.bump,
        constraint = !thread.paused @ ClockworkError::ThreadPaused,
        constraint = thread.next_instruction.is_some(),
        constraint = thread.exec_context.is_some()
    )]
    pub thread: Box<Account<'info, Thread>>,

    /// The worker.
    #[account(address = worker.pubkey())]
    pub worker: Account<'info, Worker>,
}

pub fn handler(ctx: Context<ThreadExec>) -> Result<()> {
    // Get accounts
    let clock = Clock::get().unwrap();
    let fee = &mut ctx.accounts.fee;
    let pool = &ctx.accounts.pool;
    let signatory = &mut ctx.accounts.signatory;
    let thread = &mut ctx.accounts.thread;
    let worker = &ctx.accounts.worker;

    // If the rate limit has been met, exit early.
    if thread.exec_context.unwrap().last_exec_at == clock.slot
        && thread.exec_context.unwrap().execs_since_slot >= thread.rate_limit
    {
        return Err(ClockworkError::RateLimitExeceeded.into());
    }

    // Record the worker's lamports before invoking inner ixs.
    let signatory_lamports_pre = signatory.lamports();

    // Get the instruction to execute.
    // We have already verified that it is not null during account validation.
    let instruction: &mut SerializableInstruction = &mut thread.next_instruction.clone().unwrap();

    // Inject the signatory's pubkey for the Clockwork payer ID.
    for acc in instruction.accounts.iter_mut() {
        if acc.pubkey.eq(&PAYER_PUBKEY) {
            acc.pubkey = signatory.key();
        }
    }

    // Invoke the provided instruction.
    invoke_signed(
        &Instruction::from(&*instruction),
        ctx.remaining_accounts,
        &[&[
            SEED_THREAD,
            thread.authority.as_ref(),
            thread.id.as_slice(),
            &[thread.bump],
        ]],
    )?;

    // Verify the inner instruction did not write data to the signatory address.
    require!(signatory.data_is_empty(), ClockworkError::UnauthorizedWrite);

    // Parse the thread response
    let thread_response: Option<ThreadResponse> = match get_return_data() {
        None => None,
        Some((program_id, return_data)) => {
            require!(
                program_id.eq(&instruction.program_id),
                ClockworkError::InvalidThreadResponse
            );
            ThreadResponse::try_from_slice(return_data.as_slice()).ok()
        }
    };

    // Grab the next instruction from the thread response.
    let mut close_to = None;
    let mut next_instruction = None;
    if let Some(thread_response) = thread_response {
        close_to = thread_response.close_to;
        next_instruction = thread_response.dynamic_instruction;

        // Update the trigger.
        if let Some(trigger) = thread_response.trigger {
            require!(
                std::mem::discriminant(&thread.trigger) == std::mem::discriminant(&trigger),
                ClockworkError::InvalidTriggerVariant
            );
            thread.trigger = trigger.clone();

            // If the user updates an account trigger, the trigger context is no longer valid.
            // Here we reset the trigger context to zero to re-prime the trigger.
            thread.exec_context = Some(ExecContext {
                trigger_context: match trigger {
                    Trigger::Account {
                        address: _,
                        offset: _,
                        size: _,
                    } => TriggerContext::Account { data_hash: 0 },
                    _ => thread.exec_context.unwrap().trigger_context,
                },
                ..thread.exec_context.unwrap()
            })
        }
    }

    // If there is no dynamic next instruction, get the next instruction from the instruction set.
    let mut exec_index = thread.exec_context.unwrap().exec_index;
    if next_instruction.is_none() {
        if let Some(ix) = thread.instructions.get((exec_index + 1) as usize) {
            next_instruction = Some(ix.clone());
            exec_index = exec_index + 1;
        }
    }

    // Update the next instruction.
    if let Some(close_to) = close_to {
        thread.next_instruction = Some(
            Instruction {
                program_id: crate::ID,
                accounts: crate::accounts::ThreadDelete {
                    authority: thread.key(),
                    close_to,
                    thread: thread.key(),
                }
                .to_account_metas(Some(true)),
                data: crate::instruction::ThreadDelete {}.data(),
            }
            .into(),
        );
    } else {
        thread.next_instruction = next_instruction;
    }

    // Update the exec context.
    let should_reimburse_transaction = clock.slot > thread.exec_context.unwrap().last_exec_at;
    thread.exec_context = Some(ExecContext {
        exec_index,
        // execs_since_reimbursement: thread
        //     .exec_context
        //     .unwrap()
        //     .execs_since_reimbursement
        //     .checked_add(1)
        //     .unwrap(),
        execs_since_slot: if clock.slot == thread.exec_context.unwrap().last_exec_at {
            thread
                .exec_context
                .unwrap()
                .execs_since_slot
                .checked_add(1)
                .unwrap()
        } else {
            1
        },
        last_exec_at: clock.slot,
        ..thread.exec_context.unwrap()
    });

    // Realloc memory for the thread account.
    thread.realloc()?;

    // Reimbursement signatory for lamports paid during inner ix.
    let signatory_lamports_post = signatory.lamports();
    let mut signatory_reimbursement =
        signatory_lamports_pre.saturating_sub(signatory_lamports_post);
    if should_reimburse_transaction {
        signatory_reimbursement = signatory_reimbursement
            .checked_add(TRANSACTION_BASE_FEE_REIMBURSEMENT)
            .unwrap();
    }
    if signatory_reimbursement.gt(&0) {
        **thread.to_account_info().try_borrow_mut_lamports()? = thread
            .to_account_info()
            .lamports()
            .checked_sub(signatory_reimbursement)
            .unwrap();
        **signatory.to_account_info().try_borrow_mut_lamports()? = signatory
            .to_account_info()
            .lamports()
            .checked_add(signatory_reimbursement)
            .unwrap();
    }

    // If the worker is in the pool, debit from the thread account and payout to the worker's fee account.
    if pool.clone().into_inner().workers.contains(&worker.key()) {
        **thread.to_account_info().try_borrow_mut_lamports()? = thread
            .to_account_info()
            .lamports()
            .checked_sub(thread.fee)
            .unwrap();
        **fee.to_account_info().try_borrow_mut_lamports()? = fee
            .to_account_info()
            .lamports()
            .checked_add(thread.fee)
            .unwrap();
    }

    Ok(())
}