pub struct VoteDataHasher(_);
Expand description

Cryptographic hasher for an BCS-serializable #item

Trait Implementations

Returns a copy of the value. Read more

Performs copy-assignment from source. Read more

the seed used to initialize hashing Self before the serialization bytes of the actual value

Write bytes into the hasher.

Finish constructing the HashValue.

Convenience method to compute the hash of a complete byte slice.

Returns the “default value” for a type. Read more

Write a buffer into this writer, returning how many bytes were written. Read more

Flush this output stream, ensuring that all intermediately buffered contents reach their destination. Read more

Like write, except that it writes from a slice of buffers. Read more

🔬 This is a nightly-only experimental API. (can_vector)

Determines if this Writer has an efficient write_vectored implementation. Read more

Attempts to write an entire buffer into this writer. Read more

🔬 This is a nightly-only experimental API. (write_all_vectored)

Attempts to write multiple buffers into this writer. Read more

Writes a formatted string into this writer, returning any error encountered. Read more

Creates a “by reference” adapter for this instance of Write. Read more

Auto Trait Implementations

Blanket Implementations

Gets the TypeId of self. Read more

Immutably borrows from an owned value. Read more

Mutably borrows from an owned value. Read more

Converts self into T using Into<T>. Read more

Converts self into a target type. Read more

Executes the given command directly.

The given command its ANSI escape code will be written and flushed onto Self.

Arguments
  • Command

    The command that you want to execute directly.

Example
use std::io::{Write, stdout};

use crossterm::{Result, ExecutableCommand, style::Print};

 fn main() -> Result<()> {
     // will be executed directly
      stdout()
        .execute(Print("sum:\n".to_string()))?
        .execute(Print(format!("1 + 1= {} ", 1 + 1)))?;

      Ok(())

     // ==== Output ====
     // sum:
     // 1 + 1 = 2
 }

Have a look over at the Command API for more details.

Notes
  • In the case of UNIX and Windows 10, ANSI codes are written to the given ‘writer’.
  • In case of Windows versions lower than 10, a direct WinAPI call will be made. The reason for this is that Windows versions lower than 10 do not support ANSI codes, and can therefore not be written to the given writer. Therefore, there is no difference between execute and queue for those old Windows versions.

Executes the given command directly.

The given command its ANSI escape code will be written and flushed onto Self.

Arguments
  • Command

    The command that you want to execute directly.

Example
use std::io::{Write, stdout};

use crossterm::{Result, ExecutableCommand, style::Print};

 fn main() -> Result<()> {
     // will be executed directly
      stdout()
        .execute(Print("sum:\n".to_string()))?
        .execute(Print(format!("1 + 1= {} ", 1 + 1)))?;

      Ok(())

     // ==== Output ====
     // sum:
     // 1 + 1 = 2
 }

Have a look over at the Command API for more details.

Notes
  • In the case of UNIX and Windows 10, ANSI codes are written to the given ‘writer’.
  • In case of Windows versions lower than 10, a direct WinAPI call will be made. The reason for this is that Windows versions lower than 10 do not support ANSI codes, and can therefore not be written to the given writer. Therefore, there is no difference between execute and queue for those old Windows versions.

Causes self to use its Binary implementation when Debug-formatted.

Causes self to use its Display implementation when Debug-formatted. Read more

Causes self to use its LowerExp implementation when Debug-formatted. Read more

Causes self to use its LowerHex implementation when Debug-formatted. Read more

Causes self to use its Octal implementation when Debug-formatted.

Causes self to use its Pointer implementation when Debug-formatted. Read more

Causes self to use its UpperExp implementation when Debug-formatted. Read more

Causes self to use its UpperHex implementation when Debug-formatted. Read more

Returns the argument unchanged.

Instruments this type with the provided Span, returning an Instrumented wrapper. Read more

Instruments this type with the current Span, returning an Instrumented wrapper. Read more

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

Pipes by value. This is generally the method you want to use. Read more

Borrows self and passes that borrow into the pipe function. Read more

Mutably borrows self and passes that borrow into the pipe function. Read more

Borrows self, then passes self.borrow() into the pipe function. Read more

Mutably borrows self, then passes self.borrow_mut() into the pipe function. Read more

Borrows self, then passes self.as_ref() into the pipe function.

Mutably borrows self, then passes self.as_mut() into the pipe function. Read more

Borrows self, then passes self.deref() into the pipe function.

Mutably borrows self, then passes self.deref_mut() into the pipe function. Read more

Pipes a value into a function that cannot ordinarily be called in suffix position. Read more

Pipes a trait borrow into a function that cannot normally be called in suffix position. Read more

Pipes a trait mutable borrow into a function that cannot normally be called in suffix position. Read more

Pipes a trait borrow into a function that cannot normally be called in suffix position. Read more

Pipes a trait mutable borrow into a function that cannot normally be called in suffix position. Read more

Pipes a dereference into a function that cannot normally be called in suffix position. Read more

Pipes a mutable dereference into a function that cannot normally be called in suffix position. Read more

Pipes a reference into a function that cannot ordinarily be called in suffix position. Read more

Pipes a mutable reference into a function that cannot ordinarily be called in suffix position. Read more

The alignment of pointer.

The type for initializers.

Initializes a with the given initializer. Read more

Dereferences the given pointer. Read more

Mutably dereferences the given pointer. Read more

Drops the object pointed to by the given pointer. Read more

Queues the given command for further execution.

Queued commands will be executed in the following cases:

  • When flush is called manually on the given type implementing io::Write.
  • The terminal will flush automatically if the buffer is full.
  • Each line is flushed in case of stdout, because it is line buffered.
Arguments
  • Command

    The command that you want to queue for later execution.

Examples
use std::io::{Write, stdout};

use crossterm::{Result, QueueableCommand, style::Print};

 fn main() -> Result<()> {
    let mut stdout = stdout();

    // `Print` will executed executed when `flush` is called.
    stdout
        .queue(Print("foo 1\n".to_string()))?
        .queue(Print("foo 2".to_string()))?;

    // some other code (no execution happening here) ...

    // when calling `flush` on `stdout`, all commands will be written to the stdout and therefore executed.
    stdout.flush()?;

    Ok(())

    // ==== Output ====
    // foo 1
    // foo 2
}

Have a look over at the Command API for more details.

Notes
  • In the case of UNIX and Windows 10, ANSI codes are written to the given ‘writer’.
  • In case of Windows versions lower than 10, a direct WinAPI call will be made. The reason for this is that Windows versions lower than 10 do not support ANSI codes, and can therefore not be written to the given writer. Therefore, there is no difference between execute and queue for those old Windows versions.

Queues the given command for further execution.

Queued commands will be executed in the following cases:

  • When flush is called manually on the given type implementing io::Write.
  • The terminal will flush automatically if the buffer is full.
  • Each line is flushed in case of stdout, because it is line buffered.
Arguments
  • Command

    The command that you want to queue for later execution.

Examples
use std::io::{Write, stdout};

use crossterm::{Result, QueueableCommand, style::Print};

 fn main() -> Result<()> {
    let mut stdout = stdout();

    // `Print` will executed executed when `flush` is called.
    stdout
        .queue(Print("foo 1\n".to_string()))?
        .queue(Print("foo 2".to_string()))?;

    // some other code (no execution happening here) ...

    // when calling `flush` on `stdout`, all commands will be written to the stdout and therefore executed.
    stdout.flush()?;

    Ok(())

    // ==== Output ====
    // foo 1
    // foo 2
}

Have a look over at the Command API for more details.

Notes
  • In the case of UNIX and Windows 10, ANSI codes are written to the given ‘writer’.
  • In case of Windows versions lower than 10, a direct WinAPI call will be made. The reason for this is that Windows versions lower than 10 do not support ANSI codes, and can therefore not be written to the given writer. Therefore, there is no difference between execute and queue for those old Windows versions.

Should always be Self

Immutable access to a value. Read more

Mutable access to a value. Read more

Immutable access to the Borrow<B> of a value. Read more

Mutable access to the BorrowMut<B> of a value. Read more

Immutable access to the AsRef<R> view of a value. Read more

Mutable access to the AsMut<R> view of a value. Read more

Immutable access to the Deref::Target of a value. Read more

Mutable access to the Deref::Target of a value. Read more

Calls .tap() only in debug builds, and is erased in release builds.

Calls .tap_mut() only in debug builds, and is erased in release builds. Read more

Calls .tap_borrow() only in debug builds, and is erased in release builds. Read more

Calls .tap_borrow_mut() only in debug builds, and is erased in release builds. Read more

Calls .tap_ref() only in debug builds, and is erased in release builds. Read more

Calls .tap_ref_mut() only in debug builds, and is erased in release builds. Read more

Calls .tap_deref() only in debug builds, and is erased in release builds. Read more

Calls .tap_deref_mut() only in debug builds, and is erased in release builds. Read more

Provides immutable access for inspection. Read more

Calls tap in debug builds, and does nothing in release builds.

Provides mutable access for modification. Read more

Calls tap_mut in debug builds, and does nothing in release builds.

Provides immutable access to the reference for inspection.

Calls tap_ref in debug builds, and does nothing in release builds.

Provides mutable access to the reference for modification.

Calls tap_ref_mut in debug builds, and does nothing in release builds.

Provides immutable access to the borrow for inspection. Read more

Calls tap_borrow in debug builds, and does nothing in release builds.

Provides mutable access to the borrow for modification.

Calls tap_borrow_mut in debug builds, and does nothing in release builds. Read more

Immutably dereferences self for inspection.

Calls tap_deref in debug builds, and does nothing in release builds.

Mutably dereferences self for modification.

Calls tap_deref_mut in debug builds, and does nothing in release builds. Read more

The resulting type after obtaining ownership.

Creates owned data from borrowed data, usually by cloning. Read more

Uses borrowed data to replace owned data, usually by cloning. Read more

Attempts to convert self into T using TryInto<T>. Read more

Attempts to convert self into a target type. Read more

The type returned in the event of a conversion error.

Performs the conversion.

The type returned in the event of a conversion error.

Performs the conversion.

Attaches the provided Subscriber to this type, returning a WithDispatch wrapper. Read more

Attaches the current default Subscriber to this type, returning a WithDispatch wrapper. Read more