Expand description
This crate provides a number of conversion traits with more specific semantics than those provided by as
or From
/Into
.
The goal with the traits provided here is to be more specific about what generic code can rely on, as well as provide reasonably self-describing alternatives to the standard From
/Into
traits. For example, the although T: From<U>
might be satisfied, it imposes no restrictions on the kind of conversion being implemented. As such, the traits in this crate try to be very specific about what conversions are allowed. This makes them less generally applicable, but more useful where they do apply.
In addition, From
/Into
requires all conversions to succeed or panic. All conversion traits in this crate define an associated error type, allowing code to react to failed conversions as appropriate.
§Compatibility
conv
is compatible with Rust 1.2 and higher.
§Change Log
§v0.3.2
- Added integer ↔
char
conversions. - Added missing
isize
/usize
→f32
/f64
conversions. - Fixed the error type of
i64
→usize
for 64-bit targets.
§v0.3.1
- Change to
unwrap_ok
for better codegen (thanks bluss). - Fix for Rust breaking change (code in question was dodgy anyway; thanks m4rw3r).
§v0.3.0
- Added an
Error
constraint to allErr
associated types. This will break any user-defined conversions where theErr
type does not implementError
. - Renamed the
Overflow
andUnderflow
errors toPosOverflow
andNegOverflow
respectively. In the context of floating point conversions, “underflow” usually means the value was too close to zero to correctly represent.
§v0.2.1
- Added
ConvUtil::into_as<Dst>
as a shortcut forInto::<Dst>::into
. - Added
#[inline]
attributes. - Added
Saturate::saturate
, which can saturateResult
s arising from over/underflow.
§v0.2.0
- Changed all error types to include the original input as payload. This breaks pretty much everything. Sorry about that. On the bright side, there’s now no downside to using the conversion traits for non-
Copy
types. - Added the normal rounding modes for float → int approximations:
RoundToNearest
,RoundToNegInf
,RoundToPosInf
, andRoundToZero
. ApproxWith
is now subsumed by a pair of extension traits (ConvUtil
andConvAsUtil
), that also have shortcuts forTryInto
andValueInto
so that you can specify the destination type on the method.
§Overview
The following traits are used to define various conversion semantics:
ApproxFrom
/ApproxInto
- approximate conversions, with selectable approximation scheme (seeApproxScheme
).TryFrom
/TryInto
- general, potentially failing value conversions.ValueFrom
/ValueInto
- exact, value-preserving conversions.
When defining a conversion, try to implement the *From
trait variant where possible. When using a conversion, try to depend on the *Into
trait variant where possible. This is because the *Into
traits automatically use *From
implementations, but not the reverse. Implementing *From
and using *Into
ensures conversions work in as many contexts as possible.
These extension methods are provided to help with some common cases:
ConvUtil::approx_as<Dst>
- approximates toDst
with theDefaultApprox
scheme.ConvUtil::approx_as_by<Dst, S>
- approximates toDst
with the schemeS
.ConvUtil::into_as<Dst>
- converts toDst
usingInto::into
.ConvUtil::try_as<Dst>
- converts toDst
usingTryInto::try_into
.ConvUtil::value_as<Dst>
- converts toDst
usingValueInto::value_into
.ConvAsUtil::approx
- approximates to an inferred destination type with theDefaultApprox
scheme.ConvAsUtil::approx_by<S>
- approximates to an inferred destination type with the schemeS
.Saturate::saturate
- saturates on overflow.UnwrapOk::unwrap_ok
- unwraps results from conversions that cannot fail.UnwrapOrInf::unwrap_or_inf
- saturates to ±∞ on failure.UnwrapOrInvalid::unwrap_or_invalid
- substitutes the target type’s “invalid” sentinel value on failure.UnwrapOrSaturate::unwrap_or_saturate
- saturates to the maximum or minimum value of the target type on failure.
A macro is provided to assist in implementing conversions:
If you are implementing your own types, you may also be interested in the traits contained in the misc
module.
§Provided Implementations
The crate provides several blanket implementations:
*From<A> for A
(all types can be converted from and into themselves).*Into<Dst> for Src where Dst: *From<Src>
(*From
implementations imply a matching*Into
implementation).
Conversions for the builtin numeric (integer and floating point) types are provided. In general, ValueFrom
conversions exist for all pairs except for float → integer (since such a conversion is generally unlikely to exactly succeed) and f64 → f32
(for the same reason). ApproxFrom
conversions with the DefaultApprox
scheme exist between all pairs. ApproxFrom
with the Wrapping
scheme exist between integers.
§Errors
A number of error types are defined in the errors
module. Generally, conversions use whichever error type most narrowly defines the kinds of failures that can occur. For example:
ValueFrom<u8> for u16
cannot possibly fail, and as such it usesNoError
.ValueFrom<i8> for u16
can only fail with a negative overflow, thus it uses theNegOverflow
type.ValueFrom<i32> for u16
can overflow in either direction, hence it usesRangeError
.- Finally,
ApproxFrom<f32> for u16
can overflow (positive or negative), or attempt to convert NaN;FloatError
covers those three cases.
Because there are numerous error types, the GeneralError
enum is provided. From<E, T> for GeneralError<T>
exists for each error type E<T>
defined by this crate (even for NoError
!), allowing errors to be translated automatically by try!
. In fact, all errors can be “expanded” to all more general forms (e.g. NoError
→ NegOverflow
, PosOverflow
→ RangeError
→ FloatError
).
Aside from NoError
, the various error types wrap the input value that you attempted to convert. This is so that non-Copy
types do not need to be pre-emptively cloned prior to conversion, just in case the conversion fails. A downside is that this means there are many, many incompatible error types.
To help alleviate this, there is also GeneralErrorKind
, which is simply GeneralError<T>
without the payload, and all errors can be converted into it directly.
The reason for not just using GeneralErrorKind
in the first place is to statically reduce the number of potential error cases you need to deal with. It also allows the Unwrap*
extension traits to be defined without the possibility for runtime failure (e.g. you cannot use unwrap_or_saturate
with a FloatError
, because what do you do if the error is NotANumber
; saturate to max or to min? Or panic?).
§Examples
// This *cannot* fail, so we can use `unwrap_ok` to discard the `Result`.
assert_eq!(u8::value_from(0u8).unwrap_ok(), 0u8);
// This *can* fail. Specifically, it can overflow toward negative infinity.
assert_eq!(u8::value_from(0i8), Ok(0u8));
assert_eq!(u8::value_from(-1i8), Err(NegOverflow(-1)));
// This can overflow in *either* direction; hence the change to `RangeError`.
assert_eq!(u8::value_from(-1i16), Err(RangeError::NegOverflow(-1)));
assert_eq!(u8::value_from(0i16), Ok(0u8));
assert_eq!(u8::value_from(256i16), Err(RangeError::PosOverflow(256)));
// We can use the extension traits to simplify this a little.
assert_eq!(u8::value_from(-1i16).unwrap_or_saturate(), 0u8);
assert_eq!(u8::value_from(0i16).unwrap_or_saturate(), 0u8);
assert_eq!(u8::value_from(256i16).unwrap_or_saturate(), 255u8);
// Obviously, all integers can be "approximated" using the default scheme (it
// doesn't *do* anything), but they can *also* be approximated with the
// `Wrapping` scheme.
assert_eq!(
<u8 as ApproxFrom<_, DefaultApprox>>::approx_from(400u16),
Err(PosOverflow(400)));
assert_eq!(
<u8 as ApproxFrom<_, Wrapping>>::approx_from(400u16),
Ok(144u8));
// This is rather inconvenient; as such, there are a number of convenience
// extension methods available via `ConvUtil` and `ConvAsUtil`.
assert_eq!(400u16.approx(), Err::<u8, _>(PosOverflow(400)));
assert_eq!(400u16.approx_by::<Wrapping>(), Ok::<u8, _>(144u8));
assert_eq!(400u16.approx_as::<u8>(), Err(PosOverflow(400)));
assert_eq!(400u16.approx_as_by::<u8, Wrapping>(), Ok(144));
// Integer -> float conversions *can* fail due to limited precision.
// Once the continuous range of exactly representable integers is exceeded, the
// provided implementations fail with overflow errors.
assert_eq!(f32::value_from(16_777_216i32), Ok(16_777_216.0f32));
assert_eq!(f32::value_from(16_777_217i32), Err(RangeError::PosOverflow(16_777_217)));
// Float -> integer conversions have to be done using approximations. Although
// exact conversions are *possible*, "advertising" this with an implementation
// is misleading.
//
// Note that `DefaultApprox` for float -> integer uses whatever rounding
// mode is currently active (*i.e.* whatever `as` would do).
assert_eq!(41.0f32.approx(), Ok(41u8));
assert_eq!(41.3f32.approx(), Ok(41u8));
assert_eq!(41.5f32.approx(), Ok(41u8));
assert_eq!(41.8f32.approx(), Ok(41u8));
assert_eq!(42.0f32.approx(), Ok(42u8));
assert_eq!(255.0f32.approx(), Ok(255u8));
assert_eq!(256.0f32.approx(), Err::<u8, _>(FloatError::PosOverflow(256.0)));
// Sometimes, it can be useful to saturate the conversion from float to
// integer directly, then account for NaN as input separately. The `Saturate`
// extension trait exists for this reason.
assert_eq!((-23.0f32).approx_as::<u8>().saturate(), Ok(0));
assert_eq!(302.0f32.approx_as::<u8>().saturate(), Ok(255u8));
assert!(std::f32::NAN.approx_as::<u8>().saturate().is_err());
// If you really don't care about the specific kind of error, you can just rely
// on automatic conversion to `GeneralErrorKind`.
fn too_many_errors() -> Result<(), GeneralErrorKind> {
assert_eq!({let r: u8 = try!(0u8.value_into()); r}, 0u8);
assert_eq!({let r: u8 = try!(0i8.value_into()); r}, 0u8);
assert_eq!({let r: u8 = try!(0i16.value_into()); r}, 0u8);
assert_eq!({let r: u8 = try!(0.0f32.approx()); r}, 0u8);
Ok(())
}
Re-exports§
pub use errors::NoError;
pub use errors::GeneralError;
pub use errors::GeneralErrorKind;
pub use errors::Unrepresentable;
pub use errors::NegOverflow;
pub use errors::PosOverflow;
pub use errors::FloatError;
pub use errors::RangeError;
pub use errors::RangeErrorKind;
pub use errors::Saturate;
pub use errors::UnwrapOk;
pub use errors::UnwrapOrInf;
pub use errors::UnwrapOrInvalid;
pub use errors::UnwrapOrSaturate;
Modules§
- This module defines the various error types that can be produced by a failed conversion.
- This module provides convenience macros to help with implementing the conversion traits.
- This module defines some additional traits not directly tied to conversions.
- Publicly re-exports the most generally useful set of items.
Macros§
- See the documentation for the
macros
module for details.
Enums§
- The “default” approximation scheme. This scheme does whatever would generally be expected of a lossy conversion, assuming no additional context or instruction is given.
- This scheme is used to convert a value by rounding it to the nearest representable value, with ties rounding away from zero.
- This scheme is used to convert a value by rounding it toward negative infinity to the nearest representable value.
- This scheme is used to convert a value by rounding it toward positive infinity to the nearest representable value.
- This scheme is used to convert a value by rounding it toward zero to the nearest representable value.
- This scheme is used to convert a value by “wrapping” it into a narrower range.
Traits§
- This trait is used to perform a conversion that is permitted to approximate the result, but not to wrap or saturate the result to fit into the destination type’s representable range.
- This is the dual of
ApproxFrom
; see that trait for information. - This trait is used to mark approximation scheme types.
- This extension trait exists to simplify using various conversions.
- This extension trait exists to simplify using various conversions.
- This trait is used to perform a conversion between different semantic types which might fail.
- This is the dual of
TryFrom
; see that trait for information. - This trait is used to perform an exact, value-preserving conversion.
- This is the dual of
ValueFrom
; see that trait for information.