Trait cookie_factory::lib::std::iter::FromIterator

1.0.0 · source ·
pub trait FromIterator<A>: Sized {
    // Required method
    fn from_iter<T>(iter: T) -> Self
       where T: IntoIterator<Item = A>;
}
Expand description

Conversion from an Iterator.

By implementing FromIterator for a type, you define how it will be created from an iterator. This is common for types which describe a collection of some kind.

If you want to create a collection from the contents of an iterator, the Iterator::collect() method is preferred. However, when you need to specify the container type, FromIterator::from_iter() can be more readable than using a turbofish (e.g. ::<Vec<_>>()). See the Iterator::collect() documentation for more examples of its use.

See also: IntoIterator.

§Examples

Basic usage:

let five_fives = std::iter::repeat(5).take(5);

let v = Vec::from_iter(five_fives);

assert_eq!(v, vec![5, 5, 5, 5, 5]);

Using Iterator::collect() to implicitly use FromIterator:

let five_fives = std::iter::repeat(5).take(5);

let v: Vec<i32> = five_fives.collect();

assert_eq!(v, vec![5, 5, 5, 5, 5]);

Using FromIterator::from_iter() as a more readable alternative to Iterator::collect():

use std::collections::VecDeque;
let first = (0..10).collect::<VecDeque<i32>>();
let second = VecDeque::from_iter(0..10);

assert_eq!(first, second);

Implementing FromIterator for your type:

// A sample collection, that's just a wrapper over Vec<T>
#[derive(Debug)]
struct MyCollection(Vec<i32>);

// Let's give it some methods so we can create one and add things
// to it.
impl MyCollection {
    fn new() -> MyCollection {
        MyCollection(Vec::new())
    }

    fn add(&mut self, elem: i32) {
        self.0.push(elem);
    }
}

// and we'll implement FromIterator
impl FromIterator<i32> for MyCollection {
    fn from_iter<I: IntoIterator<Item=i32>>(iter: I) -> Self {
        let mut c = MyCollection::new();

        for i in iter {
            c.add(i);
        }

        c
    }
}

// Now we can make a new iterator...
let iter = (0..5).into_iter();

// ... and make a MyCollection out of it
let c = MyCollection::from_iter(iter);

assert_eq!(c.0, vec![0, 1, 2, 3, 4]);

// collect works too!

let iter = (0..5).into_iter();
let c: MyCollection = iter.collect();

assert_eq!(c.0, vec![0, 1, 2, 3, 4]);

Required Methods§

source

fn from_iter<T>(iter: T) -> Self
where T: IntoIterator<Item = A>,

Creates a value from an iterator.

See the module-level documentation for more.

§Examples
let five_fives = std::iter::repeat(5).take(5);

let v = Vec::from_iter(five_fives);

assert_eq!(v, vec![5, 5, 5, 5, 5]);

Object Safety§

This trait is not object safe.

Implementors§

source§

impl FromIterator<char> for String

1.23.0 · source§

impl FromIterator<()> for ()

Collapses all unit items from an iterator into one.

This is more useful when combined with higher-level abstractions, like collecting to a Result<(), E> where you only care about errors:

use std::io::*;
let data = vec![1, 2, 3, 4, 5];
let res: Result<()> = data.iter()
    .map(|x| writeln!(stdout(), "{x}"))
    .collect();
assert!(res.is_ok());
1.45.0 · source§

impl FromIterator<Box<str>> for String

1.4.0 · source§

impl FromIterator<String> for String

1.52.0 · source§

impl FromIterator<OsString> for OsString

1.17.0 · source§

impl<'a> FromIterator<&'a char> for String

source§

impl<'a> FromIterator<&'a str> for String

1.52.0 · source§

impl<'a> FromIterator<&'a OsStr> for OsString

1.19.0 · source§

impl<'a> FromIterator<Cow<'a, str>> for String

1.52.0 · source§

impl<'a> FromIterator<Cow<'a, OsStr>> for OsString

1.12.0 · source§

impl<'a> FromIterator<char> for Cow<'a, str>

1.12.0 · source§

impl<'a> FromIterator<String> for Cow<'a, str>

1.12.0 · source§

impl<'a, 'b> FromIterator<&'b str> for Cow<'a, str>

source§

impl<'a, T> FromIterator<T> for Cow<'a, [T]>
where T: Clone,

source§

impl<A, E, V> FromIterator<Result<A, E>> for Result<V, E>
where V: FromIterator<A>,

source§

impl<A, V> FromIterator<Option<A>> for Option<V>
where V: FromIterator<A>,

source§

impl<F> FromIterator<F> for JoinAll<F>
where F: Future,

source§

impl<F> FromIterator<F> for TryJoinAll<F>
where F: TryFuture,

source§

impl<Fut> FromIterator<Fut> for futures_util::future::select_all::SelectAll<Fut>
where Fut: Future + Unpin,

source§

impl<Fut> FromIterator<Fut> for SelectOk<Fut>
where Fut: TryFuture + Unpin,

source§

impl<Fut> FromIterator<Fut> for FuturesOrdered<Fut>
where Fut: Future,

source§

impl<Fut> FromIterator<Fut> for FuturesUnordered<Fut>

1.32.0 · source§

impl<I> FromIterator<I> for Box<[I]>

source§

impl<K, V> FromIterator<(K, V)> for BTreeMap<K, V>
where K: Ord,

source§

impl<K, V, S> FromIterator<(K, V)> for HashMap<K, V, S>
where K: Eq + Hash, S: BuildHasher + Default,

source§

impl<P> FromIterator<P> for PathBuf
where P: AsRef<Path>,

source§

impl<St> FromIterator<St> for futures_util::stream::select_all::SelectAll<St>
where St: Stream + Unpin,

source§

impl<T> FromIterator<(usize, T)> for Slab<T>

Create a slab from an iterator of key-value pairs.

If the iterator produces duplicate keys, the previous value is replaced with the later one. The keys does not need to be sorted beforehand, and this function always takes O(n) time. Note that the returned slab will use space proportional to the largest key, so don’t use Slab with untrusted keys.

§Examples


let vec = vec![(2,'a'), (6,'b'), (7,'c')];
let slab = vec.into_iter().collect::<Slab<char>>();
assert_eq!(slab.len(), 3);
assert!(slab.capacity() >= 8);
assert_eq!(slab[2], 'a');

With duplicate and unsorted keys:


let vec = vec![(20,'a'), (10,'b'), (11,'c'), (10,'d')];
let slab = vec.into_iter().collect::<Slab<char>>();
assert_eq!(slab.len(), 3);
assert_eq!(slab[10], 'd');
source§

impl<T> FromIterator<T> for BinaryHeap<T>
where T: Ord,

source§

impl<T> FromIterator<T> for BTreeSet<T>
where T: Ord,

source§

impl<T> FromIterator<T> for LinkedList<T>

source§

impl<T> FromIterator<T> for VecDeque<T>

1.37.0 · source§

impl<T> FromIterator<T> for Rc<[T]>

1.37.0 · source§

impl<T> FromIterator<T> for Arc<[T]>

source§

impl<T> FromIterator<T> for Vec<T>

Collects an iterator into a Vec, commonly called via Iterator::collect()

§Allocation behavior

In general Vec does not guarantee any particular growth or allocation strategy. That also applies to this trait impl.

Note: This section covers implementation details and is therefore exempt from stability guarantees.

Vec may use any or none of the following strategies, depending on the supplied iterator:

  • preallocate based on Iterator::size_hint()
    • and panic if the number of items is outside the provided lower/upper bounds
  • use an amortized growth strategy similar to pushing one item at a time
  • perform the iteration in-place on the original allocation backing the iterator

The last case warrants some attention. It is an optimization that in many cases reduces peak memory consumption and improves cache locality. But when big, short-lived allocations are created, only a small fraction of their items get collected, no further use is made of the spare capacity and the resulting Vec is moved into a longer-lived structure, then this can lead to the large allocations having their lifetimes unnecessarily extended which can result in increased memory footprint.

In cases where this is an issue, the excess capacity can be discarded with Vec::shrink_to(), Vec::shrink_to_fit() or by collecting into Box<[T]> instead, which additionally reduces the size of the long-lived struct.

static LONG_LIVED: Mutex<Vec<Vec<u16>>> = Mutex::new(Vec::new());

for i in 0..10 {
    let big_temporary: Vec<u16> = (0..1024).collect();
    // discard most items
    let mut result: Vec<_> = big_temporary.into_iter().filter(|i| i % 100 == 0).collect();
    // without this a lot of unused capacity might be moved into the global
    result.shrink_to_fit();
    LONG_LIVED.lock().unwrap().push(result);
}
source§

impl<T, S> FromIterator<T> for HashSet<T, S>
where T: Eq + Hash, S: BuildHasher + Default,