pub enum Pattern {
    BindPattern(TypeIdVarIdBox<Pattern>),
    Var(TypeIdVarId),
    ConstInt(TypeIdi128),
    ConstPrim(TypeIdSym),
    Term(TypeIdTermIdVec<Pattern>),
    Wildcard(TypeId),
    And(TypeIdVec<Pattern>),
}
Expand description

A left-hand side pattern of some rule.

Variants§

§

BindPattern(TypeIdVarIdBox<Pattern>)

Bind a variable of the given type from the current value.

Keep matching on the value with the subpattern.

§

Var(TypeIdVarId)

Match the current value against an already bound variable with the given type.

§

ConstInt(TypeIdi128)

Match the current value against a constant integer of the given integer type.

§

ConstPrim(TypeIdSym)

Match the current value against a constant primitive value of the given primitive type.

§

Term(TypeIdTermIdVec<Pattern>)

Match the current value against the given extractor term with the given arguments.

§

Wildcard(TypeId)

Match anything of the given type successfully.

§

And(TypeIdVec<Pattern>)

Match all of the following patterns of the given type.

Implementations§

Get this pattern’s type.

Examples found in repository?
src/sema.rs (line 633)
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
    pub fn visit<V: PatternVisitor>(
        &self,
        visitor: &mut V,
        input: V::PatternId,
        termenv: &TermEnv,
        vars: &mut HashMap<VarId, V::PatternId>,
    ) {
        match self {
            &Pattern::BindPattern(_ty, var, ref subpat) => {
                // Bind the appropriate variable and recurse.
                assert!(!vars.contains_key(&var));
                vars.insert(var, input);
                subpat.visit(visitor, input, termenv, vars);
            }
            &Pattern::Var(ty, var) => {
                // Assert that the value matches the existing bound var.
                let var_val = vars
                    .get(&var)
                    .copied()
                    .expect("Variable should already be bound");
                visitor.add_match_equal(input, var_val, ty);
            }
            &Pattern::ConstInt(ty, value) => visitor.add_match_int(input, ty, value),
            &Pattern::ConstPrim(ty, value) => visitor.add_match_prim(input, ty, value),
            &Pattern::Term(ty, term, ref args) => {
                // Determine whether the term has an external extractor or not.
                let termdata = &termenv.terms[term.index()];
                let arg_values = match &termdata.kind {
                    TermKind::EnumVariant { variant } => {
                        visitor.add_match_variant(input, ty, &termdata.arg_tys, *variant)
                    }
                    TermKind::Decl {
                        extractor_kind: None,
                        ..
                    } => {
                        panic!("Pattern invocation of undefined term body")
                    }
                    TermKind::Decl {
                        extractor_kind: Some(ExtractorKind::InternalExtractor { .. }),
                        ..
                    } => {
                        panic!("Should have been expanded away")
                    }
                    TermKind::Decl {
                        multi,
                        extractor_kind: Some(ExtractorKind::ExternalExtractor { infallible, .. }),
                        ..
                    } => {
                        // Evaluate all `input` args.
                        let output_tys = args.iter().map(|arg| arg.ty()).collect();

                        // Invoke the extractor.
                        visitor.add_extract(
                            input,
                            termdata.ret_ty,
                            output_tys,
                            term,
                            *infallible && !*multi,
                            *multi,
                        )
                    }
                };
                for (pat, val) in args.iter().zip(arg_values) {
                    pat.visit(visitor, val, termenv, vars);
                }
            }
            &Pattern::And(_ty, ref children) => {
                for child in children {
                    child.visit(visitor, input, termenv, vars);
                }
            }
            &Pattern::Wildcard(_ty) => {
                // Nothing!
            }
        }
    }

Recursively visit every sub-pattern.

Examples found in repository?
src/sema.rs (line 596)
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
    pub fn visit<V: PatternVisitor>(
        &self,
        visitor: &mut V,
        input: V::PatternId,
        termenv: &TermEnv,
        vars: &mut HashMap<VarId, V::PatternId>,
    ) {
        match self {
            &Pattern::BindPattern(_ty, var, ref subpat) => {
                // Bind the appropriate variable and recurse.
                assert!(!vars.contains_key(&var));
                vars.insert(var, input);
                subpat.visit(visitor, input, termenv, vars);
            }
            &Pattern::Var(ty, var) => {
                // Assert that the value matches the existing bound var.
                let var_val = vars
                    .get(&var)
                    .copied()
                    .expect("Variable should already be bound");
                visitor.add_match_equal(input, var_val, ty);
            }
            &Pattern::ConstInt(ty, value) => visitor.add_match_int(input, ty, value),
            &Pattern::ConstPrim(ty, value) => visitor.add_match_prim(input, ty, value),
            &Pattern::Term(ty, term, ref args) => {
                // Determine whether the term has an external extractor or not.
                let termdata = &termenv.terms[term.index()];
                let arg_values = match &termdata.kind {
                    TermKind::EnumVariant { variant } => {
                        visitor.add_match_variant(input, ty, &termdata.arg_tys, *variant)
                    }
                    TermKind::Decl {
                        extractor_kind: None,
                        ..
                    } => {
                        panic!("Pattern invocation of undefined term body")
                    }
                    TermKind::Decl {
                        extractor_kind: Some(ExtractorKind::InternalExtractor { .. }),
                        ..
                    } => {
                        panic!("Should have been expanded away")
                    }
                    TermKind::Decl {
                        multi,
                        extractor_kind: Some(ExtractorKind::ExternalExtractor { infallible, .. }),
                        ..
                    } => {
                        // Evaluate all `input` args.
                        let output_tys = args.iter().map(|arg| arg.ty()).collect();

                        // Invoke the extractor.
                        visitor.add_extract(
                            input,
                            termdata.ret_ty,
                            output_tys,
                            term,
                            *infallible && !*multi,
                            *multi,
                        )
                    }
                };
                for (pat, val) in args.iter().zip(arg_values) {
                    pat.visit(visitor, val, termenv, vars);
                }
            }
            &Pattern::And(_ty, ref children) => {
                for child in children {
                    child.visit(visitor, input, termenv, vars);
                }
            }
            &Pattern::Wildcard(_ty) => {
                // Nothing!
            }
        }
    }
}

/// Visitor interface for [Expr]s. Visitors can return an arbitrary identifier for each
/// subexpression, which is threaded through to subsequent calls into the visitor.
pub trait ExprVisitor {
    /// The type of subexpression identifiers.
    type ExprId: Copy;

    /// Construct a constant integer.
    fn add_const_int(&mut self, ty: TypeId, val: i128) -> Self::ExprId;
    /// Construct a primitive constant.
    fn add_const_prim(&mut self, ty: TypeId, val: Sym) -> Self::ExprId;

    /// Construct an enum variant with the given `inputs` assigned to the variant's fields in order.
    fn add_create_variant(
        &mut self,
        inputs: Vec<(Self::ExprId, TypeId)>,
        ty: TypeId,
        variant: VariantId,
    ) -> Self::ExprId;

    /// Call an external constructor with the given `inputs` as arguments.
    fn add_construct(
        &mut self,
        inputs: Vec<(Self::ExprId, TypeId)>,
        ty: TypeId,
        term: TermId,
        infallible: bool,
        multi: bool,
    ) -> Self::ExprId;
}

impl Expr {
    /// Get this expression's type.
    pub fn ty(&self) -> TypeId {
        match self {
            &Self::Term(t, ..) => t,
            &Self::Var(t, ..) => t,
            &Self::ConstInt(t, ..) => t,
            &Self::ConstPrim(t, ..) => t,
            &Self::Let { ty: t, .. } => t,
        }
    }

    /// Recursively visit every subexpression.
    pub fn visit<V: ExprVisitor>(
        &self,
        visitor: &mut V,
        termenv: &TermEnv,
        vars: &HashMap<VarId, V::ExprId>,
    ) -> V::ExprId {
        log!("Expr::visit: expr {:?}", self);
        match self {
            &Expr::ConstInt(ty, val) => visitor.add_const_int(ty, val),
            &Expr::ConstPrim(ty, val) => visitor.add_const_prim(ty, val),
            &Expr::Let {
                ty: _ty,
                ref bindings,
                ref body,
            } => {
                let mut vars = vars.clone();
                for &(var, _var_ty, ref var_expr) in bindings {
                    let var_value = var_expr.visit(visitor, termenv, &vars);
                    vars.insert(var, var_value);
                }
                body.visit(visitor, termenv, &vars)
            }
            &Expr::Var(_ty, var_id) => *vars.get(&var_id).unwrap(),
            &Expr::Term(ty, term, ref arg_exprs) => {
                let termdata = &termenv.terms[term.index()];
                let arg_values_tys = arg_exprs
                    .iter()
                    .map(|arg_expr| arg_expr.visit(visitor, termenv, vars))
                    .zip(termdata.arg_tys.iter().copied())
                    .collect();
                match &termdata.kind {
                    TermKind::EnumVariant { variant } => {
                        visitor.add_create_variant(arg_values_tys, ty, *variant)
                    }
                    TermKind::Decl {
                        constructor_kind: Some(ConstructorKind::InternalConstructor),
                        multi,
                        ..
                    } => {
                        visitor.add_construct(
                            arg_values_tys,
                            ty,
                            term,
                            /* infallible = */ false,
                            *multi,
                        )
                    }
                    TermKind::Decl {
                        constructor_kind: Some(ConstructorKind::ExternalConstructor { .. }),
                        pure,
                        multi,
                        ..
                    } => {
                        visitor.add_construct(
                            arg_values_tys,
                            ty,
                            term,
                            /* infallible = */ !pure,
                            *multi,
                        )
                    }
                    TermKind::Decl {
                        constructor_kind: None,
                        ..
                    } => panic!("Should have been caught by typechecking"),
                }
            }
        }
    }

    fn visit_in_rule<V: RuleVisitor>(
        &self,
        visitor: &mut V,
        termenv: &TermEnv,
        vars: &HashMap<VarId, <V::PatternVisitor as PatternVisitor>::PatternId>,
    ) -> V::Expr {
        let var_exprs = vars
            .iter()
            .map(|(&var, &val)| (var, visitor.pattern_as_expr(val)))
            .collect();
        visitor.add_expr(|visitor| VisitedExpr {
            ty: self.ty(),
            value: self.visit(visitor, termenv, &var_exprs),
        })
    }
}

/// Information about an expression after it has been fully visited in [RuleVisitor::add_expr].
#[derive(Clone, Copy)]
pub struct VisitedExpr<V: ExprVisitor> {
    /// The type of the top-level expression.
    pub ty: TypeId,
    /// The identifier returned by the visitor for the top-level expression.
    pub value: V::ExprId,
}

/// Visitor interface for [Rule]s. Visitors must be able to visit patterns by implementing
/// [PatternVisitor], and to visit expressions by providing a type that implements [ExprVisitor].
pub trait RuleVisitor {
    /// The type of pattern visitors constructed by [RuleVisitor::add_pattern].
    type PatternVisitor: PatternVisitor;
    /// The type of expression visitors constructed by [RuleVisitor::add_expr].
    type ExprVisitor: ExprVisitor;
    /// The type returned from [RuleVisitor::add_expr], which may be exchanged for a subpattern
    /// identifier using [RuleVisitor::expr_as_pattern].
    type Expr;

    /// Visit one of the arguments to the top-level pattern.
    fn add_arg(
        &mut self,
        index: usize,
        ty: TypeId,
    ) -> <Self::PatternVisitor as PatternVisitor>::PatternId;

    /// Visit a pattern, used once for the rule's left-hand side and once for each if-let. You can
    /// determine which part of the rule the pattern comes from based on whether the `PatternId`
    /// passed to the first call to this visitor came from `add_arg` or `expr_as_pattern`.
    fn add_pattern<F>(&mut self, visitor: F)
    where
        F: FnOnce(&mut Self::PatternVisitor);

    /// Visit an expression, used once for each if-let and once for the rule's right-hand side.
    fn add_expr<F>(&mut self, visitor: F) -> Self::Expr
    where
        F: FnOnce(&mut Self::ExprVisitor) -> VisitedExpr<Self::ExprVisitor>;

    /// Given an expression from [RuleVisitor::add_expr], return an identifier that can be used with
    /// a pattern visitor in [RuleVisitor::add_pattern].
    fn expr_as_pattern(
        &mut self,
        expr: Self::Expr,
    ) -> <Self::PatternVisitor as PatternVisitor>::PatternId;

    /// Given an identifier from the pattern visitor, return an identifier that can be used with
    /// the expression visitor.
    fn pattern_as_expr(
        &mut self,
        pattern: <Self::PatternVisitor as PatternVisitor>::PatternId,
    ) -> <Self::ExprVisitor as ExprVisitor>::ExprId;
}

impl Rule {
    /// Recursively visit every pattern and expression in this rule. Returns the [RuleVisitor::Expr]
    /// that was returned from [RuleVisitor::add_expr] when that function was called on the rule's
    /// right-hand side.
    pub fn visit<V: RuleVisitor>(&self, visitor: &mut V, termenv: &TermEnv) -> V::Expr {
        let mut vars = HashMap::new();

        // Visit the pattern, starting from the root input value.
        let termdata = &termenv.terms[self.root_term.index()];
        for (i, (subpat, &arg_ty)) in self.args.iter().zip(termdata.arg_tys.iter()).enumerate() {
            let value = visitor.add_arg(i, arg_ty);
            visitor.add_pattern(|visitor| subpat.visit(visitor, value, termenv, &mut vars));
        }

        // Visit the `if-let` clauses, using `V::ExprVisitor` for the sub-exprs (right-hand sides).
        for iflet in self.iflets.iter() {
            let subexpr = iflet.rhs.visit_in_rule(visitor, termenv, &vars);
            let value = visitor.expr_as_pattern(subexpr);
            visitor.add_pattern(|visitor| iflet.lhs.visit(visitor, value, termenv, &mut vars));
        }

        // Visit the rule's right-hand side, making use of the bound variables from the pattern.
        self.rhs.visit_in_rule(visitor, termenv, &vars)
    }

Trait Implementations§

Returns a copy of the value. Read more
Performs copy-assignment from source. Read more
Formats the value using the given formatter. Read more
This method tests for self and other values to be equal, and is used by ==.
This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.

Auto Trait Implementations§

Blanket Implementations§

Gets the TypeId of self. Read more
Immutably borrows from an owned value. Read more
Mutably borrows from an owned value. Read more

Returns the argument unchanged.

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

The resulting type after obtaining ownership.
Creates owned data from borrowed data, usually by cloning. Read more
Uses borrowed data to replace owned data, usually by cloning. Read more
The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.