pub enum Type {
    Primitive(TypeIdSymPos),
    Enum {
        name: Sym,
        id: TypeId,
        is_extern: bool,
        is_nodebug: bool,
        variants: Vec<Variant>,
        pos: Pos,
    },
}
Expand description

A type.

Variants§

§

Primitive(TypeIdSymPos)

A primitive, Copy type.

These are always defined externally, and we allow literals of these types to pass through from ISLE source code to the emitted Rust code.

§

Enum

Fields

§name: Sym

The name of this enum.

§id: TypeId

This enum’s type id.

§is_extern: bool

Is this enum defined in external Rust code?

If so, ISLE will not emit a definition for it. If not, then it will emit a Rust definition for it.

§is_nodebug: bool

Whether this type should not derive Debug.

Incompatible with is_extern.

§variants: Vec<Variant>

The different variants for this enum.

§pos: Pos

The ISLE source position where this enum is defined.

A sum type.

Note that enums with only one variant are equivalent to a “struct”.

Implementations§

Get the name of this Type.

Examples found in repository?
src/codegen.rs (line 254)
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
    fn generate_internal_types(&self, code: &mut String) {
        for ty in &self.typeenv.types {
            match ty {
                &Type::Enum {
                    name,
                    is_extern,
                    is_nodebug,
                    ref variants,
                    pos,
                    ..
                } if !is_extern => {
                    let name = &self.typeenv.syms[name.index()];
                    writeln!(
                        code,
                        "\n/// Internal type {}: defined at {}.",
                        name,
                        pos.pretty_print_line(&self.typeenv.filenames[..])
                    )
                    .unwrap();

                    // Generate the `derive`s.
                    let debug_derive = if is_nodebug { "" } else { ", Debug" };
                    if variants.iter().all(|v| v.fields.is_empty()) {
                        writeln!(
                            code,
                            "#[derive(Copy, Clone, PartialEq, Eq{})]",
                            debug_derive
                        )
                        .unwrap();
                    } else {
                        writeln!(code, "#[derive(Clone{})]", debug_derive).unwrap();
                    }

                    writeln!(code, "pub enum {} {{", name).unwrap();
                    for variant in variants {
                        let name = &self.typeenv.syms[variant.name.index()];
                        if variant.fields.is_empty() {
                            writeln!(code, "    {},", name).unwrap();
                        } else {
                            writeln!(code, "    {} {{", name).unwrap();
                            for field in &variant.fields {
                                let name = &self.typeenv.syms[field.name.index()];
                                let ty_name =
                                    self.typeenv.types[field.ty.index()].name(&self.typeenv);
                                writeln!(code, "        {}: {},", name, ty_name).unwrap();
                            }
                            writeln!(code, "    }},").unwrap();
                        }
                    }
                    writeln!(code, "}}").unwrap();
                }
                _ => {}
            }
        }
    }
More examples
Hide additional examples
src/sema.rs (line 1805)
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
    fn translate_pattern(
        &self,
        tyenv: &mut TypeEnv,
        pat: &ast::Pattern,
        expected_ty: Option<TypeId>,
        bindings: &mut Bindings,
    ) -> Option<(Pattern, TypeId)> {
        log!("translate_pattern: {:?}", pat);
        log!("translate_pattern: bindings = {:?}", bindings);
        match pat {
            // TODO: flag on primitive type decl indicating it's an integer type?
            &ast::Pattern::ConstInt { val, pos } => {
                let ty = match expected_ty {
                    Some(t) => t,
                    None => {
                        tyenv.report_error(pos, "Need an implied type for an integer constant");
                        return None;
                    }
                };
                if !tyenv.types[ty.index()].is_prim() {
                    tyenv.report_error(
                        pos,
                        format!(
                            "expected non-primitive type {}, but found integer literal '{}'",
                            tyenv.types[ty.index()].name(tyenv),
                            val,
                        ),
                    );
                }
                Some((Pattern::ConstInt(ty, val), ty))
            }
            &ast::Pattern::ConstPrim { ref val, pos } => {
                let val = tyenv.intern_mut(val);
                let const_ty = match tyenv.const_types.get(&val) {
                    Some(ty) => *ty,
                    None => {
                        tyenv.report_error(pos, "Unknown constant");
                        return None;
                    }
                };
                if expected_ty.is_some() && expected_ty != Some(const_ty) {
                    tyenv.report_error(pos, "Type mismatch for constant");
                }
                Some((Pattern::ConstPrim(const_ty, val), const_ty))
            }
            &ast::Pattern::Wildcard { pos } => {
                let ty = match expected_ty {
                    Some(t) => t,
                    None => {
                        tyenv.report_error(pos, "Need an implied type for a wildcard");
                        return None;
                    }
                };
                Some((Pattern::Wildcard(ty), ty))
            }
            &ast::Pattern::And { ref subpats, pos } => {
                let mut expected_ty = expected_ty;
                let mut children = vec![];
                for subpat in subpats {
                    let (subpat, ty) = unwrap_or_continue!(self.translate_pattern(
                        tyenv,
                        subpat,
                        expected_ty,
                        bindings,
                    ));
                    expected_ty = expected_ty.or(Some(ty));

                    // Normalize nested `And` nodes to a single vector of conjuncts.
                    match subpat {
                        Pattern::And(_, subpat_children) => children.extend(subpat_children),
                        _ => children.push(subpat),
                    }
                }
                if expected_ty.is_none() {
                    tyenv.report_error(pos, "No type for (and ...) form.".to_string());
                    return None;
                }
                let ty = expected_ty.unwrap();
                Some((Pattern::And(ty, children), ty))
            }
            &ast::Pattern::BindPattern {
                ref var,
                ref subpat,
                pos,
            } => {
                // Do the subpattern first so we can resolve the type for sure.
                let (subpat, ty) = self.translate_pattern(tyenv, subpat, expected_ty, bindings)?;

                let name = tyenv.intern_mut(var);
                if bindings.lookup(name).is_some() {
                    tyenv.report_error(
                        pos,
                        format!("Re-bound variable name in LHS pattern: '{}'", var.0),
                    );
                    // Try to keep going.
                }
                let id = bindings.add_var(name, ty);
                Some((Pattern::BindPattern(ty, id, Box::new(subpat)), ty))
            }
            &ast::Pattern::Var { ref var, pos } => {
                // Look up the variable; if it has already been bound,
                // then this becomes a `Var` node (which matches the
                // existing bound value), otherwise it becomes a
                // `BindPattern` with a wildcard subpattern to capture
                // at this location.
                let name = tyenv.intern_mut(var);
                match bindings.lookup(name) {
                    None => {
                        let ty = match expected_ty {
                            Some(ty) => ty,
                            None => {
                                tyenv.report_error(
                                pos,
                                format!("Variable pattern '{}' not allowed in context without explicit type", var.0),
                            );
                                return None;
                            }
                        };
                        let id = bindings.add_var(name, ty);
                        Some((
                            Pattern::BindPattern(ty, id, Box::new(Pattern::Wildcard(ty))),
                            ty,
                        ))
                    }
                    Some(bv) => {
                        let ty = match expected_ty {
                            None => bv.ty,
                            Some(expected_ty) if expected_ty == bv.ty => bv.ty,
                            Some(expected_ty) => {
                                tyenv.report_error(
                            pos,
                            format!(
                                "Mismatched types: pattern expects type '{}' but already-bound var '{}' has type '{}'",
                                tyenv.types[expected_ty.index()].name(tyenv),
                                var.0,
                                tyenv.types[bv.ty.index()].name(tyenv)));
                                bv.ty // Try to keep going for more errors.
                            }
                        };
                        Some((Pattern::Var(ty, bv.id), ty))
                    }
                }
            }
            &ast::Pattern::Term {
                ref sym,
                ref args,
                pos,
            } => {
                // Look up the term.
                let tid = match self.get_term_by_name(tyenv, sym) {
                    Some(t) => t,
                    None => {
                        tyenv.report_error(pos, format!("Unknown term in pattern: '{}'", sym.0));
                        return None;
                    }
                };

                let termdata = &self.terms[tid.index()];

                // Get the return type and arg types. Verify the
                // expected type of this pattern, if any, against the
                // return type of the term. Insert an implicit
                // converter if needed.
                let ret_ty = termdata.ret_ty;
                let ty = match expected_ty {
                    None => ret_ty,
                    Some(expected_ty) if expected_ty == ret_ty => ret_ty,
                    Some(expected_ty) => {
                        // Can we do an implicit type conversion? Look
                        // up the converter term, if any. If one has
                        // been registered, and the term has an
                        // extractor, then build an expanded AST node
                        // right here and recurse on it.
                        if let Some(expanded_pattern) =
                            self.maybe_implicit_convert_pattern(tyenv, pat, ret_ty, expected_ty)
                        {
                            return self.translate_pattern(
                                tyenv,
                                &expanded_pattern,
                                Some(expected_ty),
                                bindings,
                            );
                        }

                        tyenv.report_error(
                            pos,
                            format!(
                                "Mismatched types: pattern expects type '{}' but term has return type '{}'",
                                tyenv.types[expected_ty.index()].name(tyenv),
                                tyenv.types[ret_ty.index()].name(tyenv)));
                        ret_ty // Try to keep going for more errors.
                    }
                };

                termdata.check_args_count(args, tyenv, pos, sym);

                match &termdata.kind {
                    TermKind::EnumVariant { .. } => {}
                    TermKind::Decl {
                        extractor_kind: Some(ExtractorKind::ExternalExtractor { .. }),
                        ..
                    } => {}
                    TermKind::Decl {
                        extractor_kind: Some(ExtractorKind::InternalExtractor { ref template }),
                        ..
                    } => {
                        // Expand the extractor macro! We create a map
                        // from macro args to AST pattern trees and
                        // then evaluate the template with these
                        // substitutions.
                        log!("internal extractor macro args = {:?}", args);
                        let pat = template.subst_macro_args(&args)?;
                        return self.translate_pattern(tyenv, &pat, expected_ty, bindings);
                    }
                    TermKind::Decl {
                        extractor_kind: None,
                        ..
                    } => {
                        tyenv.report_error(
                            pos,
                            format!(
                                "Cannot use term '{}' that does not have a defined extractor in a \
                                 left-hand side pattern",
                                sym.0
                            ),
                        );
                    }
                }

                let subpats = self.translate_args(args, termdata, tyenv, bindings);
                Some((Pattern::Term(ty, tid, subpats), ty))
            }
            &ast::Pattern::MacroArg { .. } => unreachable!(),
        }
    }

    fn translate_args(
        &self,
        args: &Vec<ast::Pattern>,
        termdata: &Term,
        tyenv: &mut TypeEnv,
        bindings: &mut Bindings,
    ) -> Vec<Pattern> {
        args.iter()
            .zip(termdata.arg_tys.iter())
            .filter_map(|(arg, &arg_ty)| self.translate_pattern(tyenv, arg, Some(arg_ty), bindings))
            .map(|(subpat, _)| subpat)
            .collect()
    }

    fn maybe_implicit_convert_expr(
        &self,
        tyenv: &mut TypeEnv,
        expr: &ast::Expr,
        inner_ty: TypeId,
        outer_ty: TypeId,
    ) -> Option<ast::Expr> {
        // Is there a converter for this type mismatch?
        if let Some(converter_term) = self.converters.get(&(inner_ty, outer_ty)) {
            if self.terms[converter_term.index()].has_constructor() {
                let converter_ident = ast::Ident(
                    tyenv.syms[self.terms[converter_term.index()].name.index()].clone(),
                    expr.pos(),
                );
                return Some(ast::Expr::Term {
                    sym: converter_ident,
                    pos: expr.pos(),
                    args: vec![expr.clone()],
                });
            }
        }
        None
    }

    fn translate_expr(
        &self,
        tyenv: &mut TypeEnv,
        expr: &ast::Expr,
        ty: Option<TypeId>,
        bindings: &mut Bindings,
        pure: bool,
    ) -> Option<Expr> {
        log!("translate_expr: {:?}", expr);
        match expr {
            &ast::Expr::Term {
                ref sym,
                ref args,
                pos,
            } => {
                // Look up the term.
                let name = tyenv.intern_mut(&sym);
                let tid = match self.term_map.get(&name) {
                    Some(&t) => t,
                    None => {
                        // Maybe this was actually a variable binding and the user has placed
                        // parens around it by mistake? (See #4775.)
                        if bindings.lookup(name).is_some() {
                            tyenv.report_error(
                                pos,
                                format!(
                                    "Unknown term in expression: '{}'. Variable binding under this name exists; try removing the parens?", sym.0));
                        } else {
                            tyenv.report_error(
                                pos,
                                format!("Unknown term in expression: '{}'", sym.0),
                            );
                        }
                        return None;
                    }
                };
                let termdata = &self.terms[tid.index()];

                // Get the return type and arg types. Verify the
                // expected type of this pattern, if any, against the
                // return type of the term, and determine whether we
                // are doing an implicit conversion. Report an error
                // if types don't match and no conversion is possible.
                let ret_ty = termdata.ret_ty;
                let ty = if ty.is_some() && ret_ty != ty.unwrap() {
                    // Is there a converter for this type mismatch?
                    if let Some(expanded_expr) =
                        self.maybe_implicit_convert_expr(tyenv, expr, ret_ty, ty.unwrap())
                    {
                        return self.translate_expr(tyenv, &expanded_expr, ty, bindings, pure);
                    }

                    tyenv.report_error(
                        pos,
                        format!("Mismatched types: expression expects type '{}' but term has return type '{}'",
                                tyenv.types[ty.unwrap().index()].name(tyenv),
                                tyenv.types[ret_ty.index()].name(tyenv)));

                    // Keep going, to discover more errors.
                    ret_ty
                } else {
                    ret_ty
                };

                // Check that the term's constructor is pure.
                if pure {
                    if let TermKind::Decl { pure: false, .. } = &termdata.kind {
                        tyenv.report_error(
                            pos,
                            format!(
                                "Used non-pure constructor '{}' in pure expression context",
                                sym.0
                            ),
                        );
                    }
                }

                termdata.check_args_count(args, tyenv, pos, sym);

                // Resolve subexpressions.
                let subexprs = args
                    .iter()
                    .zip(termdata.arg_tys.iter())
                    .filter_map(|(arg, &arg_ty)| {
                        self.translate_expr(tyenv, arg, Some(arg_ty), bindings, pure)
                    })
                    .collect();

                Some(Expr::Term(ty, tid, subexprs))
            }
            &ast::Expr::Var { ref name, pos } => {
                let sym = tyenv.intern_mut(name);
                // Look through bindings, innermost (most recent) first.
                let bv = match bindings.lookup(sym) {
                    None => {
                        tyenv.report_error(pos, format!("Unknown variable '{}'", name.0));
                        return None;
                    }
                    Some(bv) => bv,
                };

                // Verify type. Maybe do an implicit conversion.
                if ty.is_some() && bv.ty != ty.unwrap() {
                    // Is there a converter for this type mismatch?
                    if let Some(expanded_expr) =
                        self.maybe_implicit_convert_expr(tyenv, expr, bv.ty, ty.unwrap())
                    {
                        return self.translate_expr(tyenv, &expanded_expr, ty, bindings, pure);
                    }

                    tyenv.report_error(
                        pos,
                        format!(
                            "Variable '{}' has type {} but we need {} in context",
                            name.0,
                            tyenv.types[bv.ty.index()].name(tyenv),
                            tyenv.types[ty.unwrap().index()].name(tyenv)
                        ),
                    );
                }

                Some(Expr::Var(bv.ty, bv.id))
            }
            &ast::Expr::ConstInt { val, pos } => {
                if ty.is_none() {
                    tyenv.report_error(
                        pos,
                        "integer literal in a context that needs an explicit type".to_string(),
                    );
                    return None;
                }
                let ty = ty.unwrap();

                if !tyenv.types[ty.index()].is_prim() {
                    tyenv.report_error(
                        pos,
                        format!(
                            "expected non-primitive type {}, but found integer literal '{}'",
                            tyenv.types[ty.index()].name(tyenv),
                            val,
                        ),
                    );
                }
                Some(Expr::ConstInt(ty, val))
            }
            &ast::Expr::ConstPrim { ref val, pos } => {
                let val = tyenv.intern_mut(val);
                let const_ty = match tyenv.const_types.get(&val) {
                    Some(ty) => *ty,
                    None => {
                        tyenv.report_error(pos, "Unknown constant");
                        return None;
                    }
                };
                if ty.is_some() && const_ty != ty.unwrap() {
                    tyenv.report_error(
                        pos,
                        format!(
                            "Constant '{}' has wrong type: expected {}, but is actually {}",
                            tyenv.syms[val.index()],
                            tyenv.types[ty.unwrap().index()].name(tyenv),
                            tyenv.types[const_ty.index()].name(tyenv)
                        ),
                    );
                    return None;
                }
                Some(Expr::ConstPrim(const_ty, val))
            }
            &ast::Expr::Let {
                ref defs,
                ref body,
                pos,
            } => {
                let orig_binding_len = bindings.seen.len();

                // For each new binding...
                let mut let_defs = vec![];
                for def in defs {
                    // Check that the given variable name does not already exist.
                    let name = tyenv.intern_mut(&def.var);

                    // Look up the type.
                    let tid = match tyenv.get_type_by_name(&def.ty) {
                        Some(tid) => tid,
                        None => {
                            tyenv.report_error(
                                pos,
                                format!("Unknown type {} for variable '{}'", def.ty.0, def.var.0),
                            );
                            continue;
                        }
                    };

                    // Evaluate the variable's value.
                    let val = Box::new(unwrap_or_continue!(self.translate_expr(
                        tyenv,
                        &def.val,
                        Some(tid),
                        bindings,
                        pure
                    )));

                    // Bind the var with the given type.
                    let id = bindings.add_var(name, tid);
                    let_defs.push((id, tid, val));
                }

                // Evaluate the body, expecting the type of the overall let-expr.
                let body = Box::new(self.translate_expr(tyenv, body, ty, bindings, pure)?);
                let body_ty = body.ty();

                // Pop the bindings.
                bindings.seen.truncate(orig_binding_len);

                Some(Expr::Let {
                    ty: body_ty,
                    bindings: let_defs,
                    body,
                })
            }
        }
    }

Get the position where this type was defined.

Examples found in repository?
src/sema.rs (line 915)
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
    pub fn from_ast(defs: &ast::Defs) -> Result<TypeEnv, Errors> {
        let mut tyenv = TypeEnv {
            filenames: defs.filenames.clone(),
            file_texts: defs.file_texts.clone(),
            syms: vec![],
            sym_map: StableMap::new(),
            types: vec![],
            type_map: StableMap::new(),
            const_types: StableMap::new(),
            errors: vec![],
        };

        // Traverse defs, assigning type IDs to type names. We'll fill
        // in types on a second pass.
        for def in &defs.defs {
            match def {
                &ast::Def::Type(ref td) => {
                    let tid = TypeId(tyenv.type_map.len());
                    let name = tyenv.intern_mut(&td.name);

                    if let Some(existing) = tyenv.type_map.get(&name).copied() {
                        tyenv.report_error(
                            td.pos,
                            format!("Type with name '{}' defined more than once", td.name.0),
                        );
                        let pos = unwrap_or_continue!(tyenv.types.get(existing.index())).pos();
                        tyenv.report_error(
                            pos,
                            format!("Type with name '{}' already defined here", td.name.0),
                        );
                        continue;
                    }

                    tyenv.type_map.insert(name, tid);
                }
                _ => {}
            }
        }

        // Now lower AST nodes to type definitions, raising errors
        // where typenames of fields are undefined or field names are
        // duplicated.
        for def in &defs.defs {
            match def {
                &ast::Def::Type(ref td) => {
                    let tid = tyenv.types.len();
                    if let Some(ty) = tyenv.type_from_ast(TypeId(tid), td) {
                        tyenv.types.push(ty);
                    }
                }
                _ => {}
            }
        }

        // Now collect types for extern constants.
        for def in &defs.defs {
            match def {
                &ast::Def::Extern(ast::Extern::Const {
                    ref name,
                    ref ty,
                    pos,
                }) => {
                    let ty = match tyenv.get_type_by_name(ty) {
                        Some(ty) => ty,
                        None => {
                            tyenv.report_error(pos, "Unknown type for constant");
                            continue;
                        }
                    };
                    let name = tyenv.intern_mut(name);
                    tyenv.const_types.insert(name, ty);
                }
                _ => {}
            }
        }

        tyenv.return_errors()?;

        Ok(tyenv)
    }

Is this a primitive type?

Examples found in repository?
src/codegen.rs (line 285)
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
    fn ty_prim(&self, ty: TypeId) -> bool {
        self.typeenv.types[ty.index()].is_prim()
    }

    fn value_binder(&self, value: &Value, is_ref: bool, ty: TypeId) -> String {
        let prim = self.ty_prim(ty);
        if prim || !is_ref {
            format!("{}", self.value_name(value))
        } else {
            format!("ref {}", self.value_name(value))
        }
    }

    fn value_by_ref(&self, value: &Value, ctx: &BodyContext) -> String {
        let raw_name = self.value_name(value);
        let &(is_ref, ty) = ctx.values.get(value).unwrap();
        let prim = self.ty_prim(ty);
        if is_ref || prim {
            raw_name
        } else {
            format!("&{}", raw_name)
        }
    }

    fn value_by_val(&self, value: &Value, ctx: &BodyContext) -> String {
        let raw_name = self.value_name(value);
        let &(is_ref, _) = ctx.values.get(value).unwrap();
        if is_ref {
            format!("{}.clone()", raw_name)
        } else {
            raw_name
        }
    }

    fn define_val(&self, value: &Value, ctx: &mut BodyContext, is_ref: bool, ty: TypeId) {
        let is_ref = !self.ty_prim(ty) && is_ref;
        ctx.values.insert(value.clone(), (is_ref, ty));
    }

    fn const_int(&self, val: i128, ty: TypeId) -> String {
        let is_bool = match &self.typeenv.types[ty.index()] {
            &Type::Primitive(_, name, _) => &self.typeenv.syms[name.index()] == "bool",
            _ => unreachable!(),
        };
        if is_bool {
            format!("{}", val != 0)
        } else {
            let ty_name = self.type_name(ty, /* by_ref = */ false);
            if ty_name == "i128" {
                format!("{}i128", val)
            } else {
                format!("{}i128 as {}", val, ty_name)
            }
        }
    }

    fn generate_internal_term_constructors(&self, code: &mut String) {
        for (&termid, trie) in self.functions_by_term {
            let termdata = &self.termenv.terms[termid.index()];

            // Skip terms that are enum variants or that have external
            // constructors/extractors.
            if !termdata.has_constructor() || termdata.has_external_constructor() {
                continue;
            }

            let sig = termdata.constructor_sig(self.typeenv).unwrap();

            let args = sig
                .param_tys
                .iter()
                .enumerate()
                .map(|(i, &ty)| format!("arg{}: {}", i, self.type_name(ty, true)))
                .collect::<Vec<_>>()
                .join(", ");
            assert_eq!(sig.ret_tys.len(), 1);
            let ret = self.type_name(sig.ret_tys[0], false);
            let ret = if sig.multi {
                format!("impl ContextIter<Context = C, Output = {}>", ret)
            } else {
                ret
            };

            writeln!(
                code,
                "\n// Generated as internal constructor for term {}.",
                self.typeenv.syms[termdata.name.index()],
            )
            .unwrap();
            writeln!(
                code,
                "pub fn {}<C: Context>(ctx: &mut C, {}) -> Option<{}> {{",
                sig.func_name, args, ret,
            )
            .unwrap();

            if sig.multi {
                writeln!(code, "let mut returns = ConstructorVec::new();").unwrap();
            }

            let mut body_ctx: BodyContext = Default::default();
            let returned = self.generate_body(
                code,
                /* depth = */ 0,
                trie,
                "    ",
                &mut body_ctx,
                sig.multi,
            );
            if !returned {
                if sig.multi {
                    writeln!(
                        code,
                        "    return Some(ContextIterWrapper::from(returns.into_iter()));"
                    )
                    .unwrap();
                } else {
                    writeln!(code, "    return None;").unwrap();
                }
            }

            writeln!(code, "}}").unwrap();
        }
    }

    fn generate_expr_inst(
        &self,
        code: &mut String,
        id: InstId,
        inst: &ExprInst,
        indent: &str,
        ctx: &mut BodyContext,
        returns: &mut Vec<(usize, String)>,
    ) -> bool {
        log!("generate_expr_inst: {:?}", inst);
        let mut new_scope = false;
        match inst {
            &ExprInst::ConstInt { ty, val } => {
                let value = Value::Expr {
                    inst: id,
                    output: 0,
                };
                self.define_val(&value, ctx, /* is_ref = */ false, ty);
                let name = self.value_name(&value);
                let ty_name = self.type_name(ty, /* by_ref = */ false);
                writeln!(
                    code,
                    "{}let {}: {} = {};",
                    indent,
                    name,
                    ty_name,
                    self.const_int(val, ty)
                )
                .unwrap();
            }
            &ExprInst::ConstPrim { ty, val } => {
                let value = Value::Expr {
                    inst: id,
                    output: 0,
                };
                self.define_val(&value, ctx, /* is_ref = */ false, ty);
                let name = self.value_name(&value);
                let ty_name = self.type_name(ty, /* by_ref = */ false);
                writeln!(
                    code,
                    "{}let {}: {} = {};",
                    indent,
                    name,
                    ty_name,
                    self.typeenv.syms[val.index()],
                )
                .unwrap();
            }
            &ExprInst::CreateVariant {
                ref inputs,
                ty,
                variant,
            } => {
                let variantinfo = match &self.typeenv.types[ty.index()] {
                    &Type::Primitive(..) => panic!("CreateVariant with primitive type"),
                    &Type::Enum { ref variants, .. } => &variants[variant.index()],
                };
                let mut input_fields = vec![];
                for ((input_value, _), field) in inputs.iter().zip(variantinfo.fields.iter()) {
                    let field_name = &self.typeenv.syms[field.name.index()];
                    let value_expr = self.value_by_val(input_value, ctx);
                    input_fields.push(format!("{}: {}", field_name, value_expr));
                }

                let output = Value::Expr {
                    inst: id,
                    output: 0,
                };
                let outputname = self.value_name(&output);
                let full_variant_name = format!(
                    "{}::{}",
                    self.type_name(ty, false),
                    self.typeenv.syms[variantinfo.name.index()]
                );
                if input_fields.is_empty() {
                    writeln!(
                        code,
                        "{}let {} = {};",
                        indent, outputname, full_variant_name
                    )
                    .unwrap();
                } else {
                    writeln!(
                        code,
                        "{}let {} = {} {{",
                        indent, outputname, full_variant_name
                    )
                    .unwrap();
                    for input_field in input_fields {
                        writeln!(code, "{}    {},", indent, input_field).unwrap();
                    }
                    writeln!(code, "{}}};", indent).unwrap();
                }
                self.define_val(&output, ctx, /* is_ref = */ false, ty);
            }
            &ExprInst::Construct {
                ref inputs,
                term,
                infallible,
                multi,
                ..
            } => {
                let mut input_exprs = vec![];
                for (input_value, input_ty) in inputs {
                    let value_expr = if self.typeenv.types[input_ty.index()].is_prim() {
                        self.value_by_val(input_value, ctx)
                    } else {
                        self.value_by_ref(input_value, ctx)
                    };
                    input_exprs.push(value_expr);
                }

                let output = Value::Expr {
                    inst: id,
                    output: 0,
                };
                let outputname = self.value_name(&output);
                let termdata = &self.termenv.terms[term.index()];
                let sig = termdata.constructor_sig(self.typeenv).unwrap();
                assert_eq!(input_exprs.len(), sig.param_tys.len());

                if !multi {
                    let fallible_try = if infallible { "" } else { "?" };
                    writeln!(
                        code,
                        "{}let {} = {}(ctx, {}){};",
                        indent,
                        outputname,
                        sig.full_name,
                        input_exprs.join(", "),
                        fallible_try,
                    )
                    .unwrap();
                } else {
                    writeln!(
                        code,
                        "{}let mut it = {}(ctx, {})?;",
                        indent,
                        sig.full_name,
                        input_exprs.join(", "),
                    )
                    .unwrap();
                    writeln!(
                        code,
                        "{}while let Some({}) = it.next(ctx) {{",
                        indent, outputname,
                    )
                    .unwrap();
                    new_scope = true;
                }
                self.define_val(&output, ctx, /* is_ref = */ false, termdata.ret_ty);
            }
            &ExprInst::Return {
                index, ref value, ..
            } => {
                let value_expr = self.value_by_val(value, ctx);
                returns.push((index, value_expr));
            }
        }

        new_scope
    }
More examples
Hide additional examples
src/sema.rs (line 1800)
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
    fn translate_pattern(
        &self,
        tyenv: &mut TypeEnv,
        pat: &ast::Pattern,
        expected_ty: Option<TypeId>,
        bindings: &mut Bindings,
    ) -> Option<(Pattern, TypeId)> {
        log!("translate_pattern: {:?}", pat);
        log!("translate_pattern: bindings = {:?}", bindings);
        match pat {
            // TODO: flag on primitive type decl indicating it's an integer type?
            &ast::Pattern::ConstInt { val, pos } => {
                let ty = match expected_ty {
                    Some(t) => t,
                    None => {
                        tyenv.report_error(pos, "Need an implied type for an integer constant");
                        return None;
                    }
                };
                if !tyenv.types[ty.index()].is_prim() {
                    tyenv.report_error(
                        pos,
                        format!(
                            "expected non-primitive type {}, but found integer literal '{}'",
                            tyenv.types[ty.index()].name(tyenv),
                            val,
                        ),
                    );
                }
                Some((Pattern::ConstInt(ty, val), ty))
            }
            &ast::Pattern::ConstPrim { ref val, pos } => {
                let val = tyenv.intern_mut(val);
                let const_ty = match tyenv.const_types.get(&val) {
                    Some(ty) => *ty,
                    None => {
                        tyenv.report_error(pos, "Unknown constant");
                        return None;
                    }
                };
                if expected_ty.is_some() && expected_ty != Some(const_ty) {
                    tyenv.report_error(pos, "Type mismatch for constant");
                }
                Some((Pattern::ConstPrim(const_ty, val), const_ty))
            }
            &ast::Pattern::Wildcard { pos } => {
                let ty = match expected_ty {
                    Some(t) => t,
                    None => {
                        tyenv.report_error(pos, "Need an implied type for a wildcard");
                        return None;
                    }
                };
                Some((Pattern::Wildcard(ty), ty))
            }
            &ast::Pattern::And { ref subpats, pos } => {
                let mut expected_ty = expected_ty;
                let mut children = vec![];
                for subpat in subpats {
                    let (subpat, ty) = unwrap_or_continue!(self.translate_pattern(
                        tyenv,
                        subpat,
                        expected_ty,
                        bindings,
                    ));
                    expected_ty = expected_ty.or(Some(ty));

                    // Normalize nested `And` nodes to a single vector of conjuncts.
                    match subpat {
                        Pattern::And(_, subpat_children) => children.extend(subpat_children),
                        _ => children.push(subpat),
                    }
                }
                if expected_ty.is_none() {
                    tyenv.report_error(pos, "No type for (and ...) form.".to_string());
                    return None;
                }
                let ty = expected_ty.unwrap();
                Some((Pattern::And(ty, children), ty))
            }
            &ast::Pattern::BindPattern {
                ref var,
                ref subpat,
                pos,
            } => {
                // Do the subpattern first so we can resolve the type for sure.
                let (subpat, ty) = self.translate_pattern(tyenv, subpat, expected_ty, bindings)?;

                let name = tyenv.intern_mut(var);
                if bindings.lookup(name).is_some() {
                    tyenv.report_error(
                        pos,
                        format!("Re-bound variable name in LHS pattern: '{}'", var.0),
                    );
                    // Try to keep going.
                }
                let id = bindings.add_var(name, ty);
                Some((Pattern::BindPattern(ty, id, Box::new(subpat)), ty))
            }
            &ast::Pattern::Var { ref var, pos } => {
                // Look up the variable; if it has already been bound,
                // then this becomes a `Var` node (which matches the
                // existing bound value), otherwise it becomes a
                // `BindPattern` with a wildcard subpattern to capture
                // at this location.
                let name = tyenv.intern_mut(var);
                match bindings.lookup(name) {
                    None => {
                        let ty = match expected_ty {
                            Some(ty) => ty,
                            None => {
                                tyenv.report_error(
                                pos,
                                format!("Variable pattern '{}' not allowed in context without explicit type", var.0),
                            );
                                return None;
                            }
                        };
                        let id = bindings.add_var(name, ty);
                        Some((
                            Pattern::BindPattern(ty, id, Box::new(Pattern::Wildcard(ty))),
                            ty,
                        ))
                    }
                    Some(bv) => {
                        let ty = match expected_ty {
                            None => bv.ty,
                            Some(expected_ty) if expected_ty == bv.ty => bv.ty,
                            Some(expected_ty) => {
                                tyenv.report_error(
                            pos,
                            format!(
                                "Mismatched types: pattern expects type '{}' but already-bound var '{}' has type '{}'",
                                tyenv.types[expected_ty.index()].name(tyenv),
                                var.0,
                                tyenv.types[bv.ty.index()].name(tyenv)));
                                bv.ty // Try to keep going for more errors.
                            }
                        };
                        Some((Pattern::Var(ty, bv.id), ty))
                    }
                }
            }
            &ast::Pattern::Term {
                ref sym,
                ref args,
                pos,
            } => {
                // Look up the term.
                let tid = match self.get_term_by_name(tyenv, sym) {
                    Some(t) => t,
                    None => {
                        tyenv.report_error(pos, format!("Unknown term in pattern: '{}'", sym.0));
                        return None;
                    }
                };

                let termdata = &self.terms[tid.index()];

                // Get the return type and arg types. Verify the
                // expected type of this pattern, if any, against the
                // return type of the term. Insert an implicit
                // converter if needed.
                let ret_ty = termdata.ret_ty;
                let ty = match expected_ty {
                    None => ret_ty,
                    Some(expected_ty) if expected_ty == ret_ty => ret_ty,
                    Some(expected_ty) => {
                        // Can we do an implicit type conversion? Look
                        // up the converter term, if any. If one has
                        // been registered, and the term has an
                        // extractor, then build an expanded AST node
                        // right here and recurse on it.
                        if let Some(expanded_pattern) =
                            self.maybe_implicit_convert_pattern(tyenv, pat, ret_ty, expected_ty)
                        {
                            return self.translate_pattern(
                                tyenv,
                                &expanded_pattern,
                                Some(expected_ty),
                                bindings,
                            );
                        }

                        tyenv.report_error(
                            pos,
                            format!(
                                "Mismatched types: pattern expects type '{}' but term has return type '{}'",
                                tyenv.types[expected_ty.index()].name(tyenv),
                                tyenv.types[ret_ty.index()].name(tyenv)));
                        ret_ty // Try to keep going for more errors.
                    }
                };

                termdata.check_args_count(args, tyenv, pos, sym);

                match &termdata.kind {
                    TermKind::EnumVariant { .. } => {}
                    TermKind::Decl {
                        extractor_kind: Some(ExtractorKind::ExternalExtractor { .. }),
                        ..
                    } => {}
                    TermKind::Decl {
                        extractor_kind: Some(ExtractorKind::InternalExtractor { ref template }),
                        ..
                    } => {
                        // Expand the extractor macro! We create a map
                        // from macro args to AST pattern trees and
                        // then evaluate the template with these
                        // substitutions.
                        log!("internal extractor macro args = {:?}", args);
                        let pat = template.subst_macro_args(&args)?;
                        return self.translate_pattern(tyenv, &pat, expected_ty, bindings);
                    }
                    TermKind::Decl {
                        extractor_kind: None,
                        ..
                    } => {
                        tyenv.report_error(
                            pos,
                            format!(
                                "Cannot use term '{}' that does not have a defined extractor in a \
                                 left-hand side pattern",
                                sym.0
                            ),
                        );
                    }
                }

                let subpats = self.translate_args(args, termdata, tyenv, bindings);
                Some((Pattern::Term(ty, tid, subpats), ty))
            }
            &ast::Pattern::MacroArg { .. } => unreachable!(),
        }
    }

    fn translate_args(
        &self,
        args: &Vec<ast::Pattern>,
        termdata: &Term,
        tyenv: &mut TypeEnv,
        bindings: &mut Bindings,
    ) -> Vec<Pattern> {
        args.iter()
            .zip(termdata.arg_tys.iter())
            .filter_map(|(arg, &arg_ty)| self.translate_pattern(tyenv, arg, Some(arg_ty), bindings))
            .map(|(subpat, _)| subpat)
            .collect()
    }

    fn maybe_implicit_convert_expr(
        &self,
        tyenv: &mut TypeEnv,
        expr: &ast::Expr,
        inner_ty: TypeId,
        outer_ty: TypeId,
    ) -> Option<ast::Expr> {
        // Is there a converter for this type mismatch?
        if let Some(converter_term) = self.converters.get(&(inner_ty, outer_ty)) {
            if self.terms[converter_term.index()].has_constructor() {
                let converter_ident = ast::Ident(
                    tyenv.syms[self.terms[converter_term.index()].name.index()].clone(),
                    expr.pos(),
                );
                return Some(ast::Expr::Term {
                    sym: converter_ident,
                    pos: expr.pos(),
                    args: vec![expr.clone()],
                });
            }
        }
        None
    }

    fn translate_expr(
        &self,
        tyenv: &mut TypeEnv,
        expr: &ast::Expr,
        ty: Option<TypeId>,
        bindings: &mut Bindings,
        pure: bool,
    ) -> Option<Expr> {
        log!("translate_expr: {:?}", expr);
        match expr {
            &ast::Expr::Term {
                ref sym,
                ref args,
                pos,
            } => {
                // Look up the term.
                let name = tyenv.intern_mut(&sym);
                let tid = match self.term_map.get(&name) {
                    Some(&t) => t,
                    None => {
                        // Maybe this was actually a variable binding and the user has placed
                        // parens around it by mistake? (See #4775.)
                        if bindings.lookup(name).is_some() {
                            tyenv.report_error(
                                pos,
                                format!(
                                    "Unknown term in expression: '{}'. Variable binding under this name exists; try removing the parens?", sym.0));
                        } else {
                            tyenv.report_error(
                                pos,
                                format!("Unknown term in expression: '{}'", sym.0),
                            );
                        }
                        return None;
                    }
                };
                let termdata = &self.terms[tid.index()];

                // Get the return type and arg types. Verify the
                // expected type of this pattern, if any, against the
                // return type of the term, and determine whether we
                // are doing an implicit conversion. Report an error
                // if types don't match and no conversion is possible.
                let ret_ty = termdata.ret_ty;
                let ty = if ty.is_some() && ret_ty != ty.unwrap() {
                    // Is there a converter for this type mismatch?
                    if let Some(expanded_expr) =
                        self.maybe_implicit_convert_expr(tyenv, expr, ret_ty, ty.unwrap())
                    {
                        return self.translate_expr(tyenv, &expanded_expr, ty, bindings, pure);
                    }

                    tyenv.report_error(
                        pos,
                        format!("Mismatched types: expression expects type '{}' but term has return type '{}'",
                                tyenv.types[ty.unwrap().index()].name(tyenv),
                                tyenv.types[ret_ty.index()].name(tyenv)));

                    // Keep going, to discover more errors.
                    ret_ty
                } else {
                    ret_ty
                };

                // Check that the term's constructor is pure.
                if pure {
                    if let TermKind::Decl { pure: false, .. } = &termdata.kind {
                        tyenv.report_error(
                            pos,
                            format!(
                                "Used non-pure constructor '{}' in pure expression context",
                                sym.0
                            ),
                        );
                    }
                }

                termdata.check_args_count(args, tyenv, pos, sym);

                // Resolve subexpressions.
                let subexprs = args
                    .iter()
                    .zip(termdata.arg_tys.iter())
                    .filter_map(|(arg, &arg_ty)| {
                        self.translate_expr(tyenv, arg, Some(arg_ty), bindings, pure)
                    })
                    .collect();

                Some(Expr::Term(ty, tid, subexprs))
            }
            &ast::Expr::Var { ref name, pos } => {
                let sym = tyenv.intern_mut(name);
                // Look through bindings, innermost (most recent) first.
                let bv = match bindings.lookup(sym) {
                    None => {
                        tyenv.report_error(pos, format!("Unknown variable '{}'", name.0));
                        return None;
                    }
                    Some(bv) => bv,
                };

                // Verify type. Maybe do an implicit conversion.
                if ty.is_some() && bv.ty != ty.unwrap() {
                    // Is there a converter for this type mismatch?
                    if let Some(expanded_expr) =
                        self.maybe_implicit_convert_expr(tyenv, expr, bv.ty, ty.unwrap())
                    {
                        return self.translate_expr(tyenv, &expanded_expr, ty, bindings, pure);
                    }

                    tyenv.report_error(
                        pos,
                        format!(
                            "Variable '{}' has type {} but we need {} in context",
                            name.0,
                            tyenv.types[bv.ty.index()].name(tyenv),
                            tyenv.types[ty.unwrap().index()].name(tyenv)
                        ),
                    );
                }

                Some(Expr::Var(bv.ty, bv.id))
            }
            &ast::Expr::ConstInt { val, pos } => {
                if ty.is_none() {
                    tyenv.report_error(
                        pos,
                        "integer literal in a context that needs an explicit type".to_string(),
                    );
                    return None;
                }
                let ty = ty.unwrap();

                if !tyenv.types[ty.index()].is_prim() {
                    tyenv.report_error(
                        pos,
                        format!(
                            "expected non-primitive type {}, but found integer literal '{}'",
                            tyenv.types[ty.index()].name(tyenv),
                            val,
                        ),
                    );
                }
                Some(Expr::ConstInt(ty, val))
            }
            &ast::Expr::ConstPrim { ref val, pos } => {
                let val = tyenv.intern_mut(val);
                let const_ty = match tyenv.const_types.get(&val) {
                    Some(ty) => *ty,
                    None => {
                        tyenv.report_error(pos, "Unknown constant");
                        return None;
                    }
                };
                if ty.is_some() && const_ty != ty.unwrap() {
                    tyenv.report_error(
                        pos,
                        format!(
                            "Constant '{}' has wrong type: expected {}, but is actually {}",
                            tyenv.syms[val.index()],
                            tyenv.types[ty.unwrap().index()].name(tyenv),
                            tyenv.types[const_ty.index()].name(tyenv)
                        ),
                    );
                    return None;
                }
                Some(Expr::ConstPrim(const_ty, val))
            }
            &ast::Expr::Let {
                ref defs,
                ref body,
                pos,
            } => {
                let orig_binding_len = bindings.seen.len();

                // For each new binding...
                let mut let_defs = vec![];
                for def in defs {
                    // Check that the given variable name does not already exist.
                    let name = tyenv.intern_mut(&def.var);

                    // Look up the type.
                    let tid = match tyenv.get_type_by_name(&def.ty) {
                        Some(tid) => tid,
                        None => {
                            tyenv.report_error(
                                pos,
                                format!("Unknown type {} for variable '{}'", def.ty.0, def.var.0),
                            );
                            continue;
                        }
                    };

                    // Evaluate the variable's value.
                    let val = Box::new(unwrap_or_continue!(self.translate_expr(
                        tyenv,
                        &def.val,
                        Some(tid),
                        bindings,
                        pure
                    )));

                    // Bind the var with the given type.
                    let id = bindings.add_var(name, tid);
                    let_defs.push((id, tid, val));
                }

                // Evaluate the body, expecting the type of the overall let-expr.
                let body = Box::new(self.translate_expr(tyenv, body, ty, bindings, pure)?);
                let body_ty = body.ty();

                // Pop the bindings.
                bindings.seen.truncate(orig_binding_len);

                Some(Expr::Let {
                    ty: body_ty,
                    bindings: let_defs,
                    body,
                })
            }
        }
    }

Trait Implementations§

Returns a copy of the value. Read more
Performs copy-assignment from source. Read more
Formats the value using the given formatter. Read more
This method tests for self and other values to be equal, and is used by ==.
This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.

Auto Trait Implementations§

Blanket Implementations§

Gets the TypeId of self. Read more
Immutably borrows from an owned value. Read more
Mutably borrows from an owned value. Read more

Returns the argument unchanged.

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

The resulting type after obtaining ownership.
Creates owned data from borrowed data, usually by cloning. Read more
Uses borrowed data to replace owned data, usually by cloning. Read more
The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.