Struct cranelift_isle::sema::Term

source ·
pub struct Term {
    pub id: TermId,
    pub decl_pos: Pos,
    pub name: Sym,
    pub arg_tys: Vec<TypeId>,
    pub ret_ty: TypeId,
    pub kind: TermKind,
}
Expand description

A term.

Maps parameter types to result types if this is a constructor term, or result types to parameter types if this is an extractor term. Or both if this term can be either a constructor or an extractor.

Fields§

§id: TermId

This term’s id.

§decl_pos: Pos

The source position where this term was declared.

§name: Sym

The name of this term.

§arg_tys: Vec<TypeId>

The parameter types to this term.

§ret_ty: TypeId

The result types of this term.

§kind: TermKind

The kind of this term.

Implementations§

Get this term’s type.

Is this term an enum variant?

Does this term have a constructor?

Examples found in repository?
src/sema.rs (line 1711)
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
    fn check_for_undefined_decls(&self, tyenv: &mut TypeEnv, defs: &ast::Defs) {
        for def in &defs.defs {
            if let ast::Def::Decl(decl) = def {
                let term = self.get_term_by_name(tyenv, &decl.term).unwrap();
                let term = &self.terms[term.index()];
                if !term.has_constructor() && !term.has_extractor() {
                    tyenv.report_error(
                        decl.pos,
                        format!(
                            "no rules, extractor, or external definition for declaration '{}'",
                            decl.term.0
                        ),
                    );
                }
            }
        }
    }

    fn check_for_expr_terms_without_constructors(&self, tyenv: &mut TypeEnv, defs: &ast::Defs) {
        for def in &defs.defs {
            if let ast::Def::Rule(rule) = def {
                rule.expr.terms(&mut |pos, ident| {
                    let term = match self.get_term_by_name(tyenv, ident) {
                        None => {
                            debug_assert!(!tyenv.errors.is_empty());
                            return;
                        }
                        Some(t) => t,
                    };
                    let term = &self.terms[term.index()];
                    if !term.has_constructor() {
                        tyenv.report_error(
                            pos,
                            format!(
                                "term `{}` cannot be used in an expression because \
                                 it does not have a constructor",
                                ident.0
                            ),
                        )
                    }
                });
            }
        }
    }

    fn maybe_implicit_convert_pattern(
        &self,
        tyenv: &mut TypeEnv,
        pattern: &ast::Pattern,
        inner_ty: TypeId,
        outer_ty: TypeId,
    ) -> Option<ast::Pattern> {
        if let Some(converter_term) = self.converters.get(&(inner_ty, outer_ty)) {
            if self.terms[converter_term.index()].has_extractor() {
                // This is a little awkward: we have to
                // convert back to an Ident, to be
                // re-resolved. The pos doesn't matter
                // as it shouldn't result in a lookup
                // failure.
                let converter_term_ident = ast::Ident(
                    tyenv.syms[self.terms[converter_term.index()].name.index()].clone(),
                    pattern.pos(),
                );
                let expanded_pattern = ast::Pattern::Term {
                    sym: converter_term_ident,
                    pos: pattern.pos(),
                    args: vec![pattern.clone()],
                };

                return Some(expanded_pattern);
            }
        }
        None
    }

    fn translate_pattern(
        &self,
        tyenv: &mut TypeEnv,
        pat: &ast::Pattern,
        expected_ty: Option<TypeId>,
        bindings: &mut Bindings,
    ) -> Option<(Pattern, TypeId)> {
        log!("translate_pattern: {:?}", pat);
        log!("translate_pattern: bindings = {:?}", bindings);
        match pat {
            // TODO: flag on primitive type decl indicating it's an integer type?
            &ast::Pattern::ConstInt { val, pos } => {
                let ty = match expected_ty {
                    Some(t) => t,
                    None => {
                        tyenv.report_error(pos, "Need an implied type for an integer constant");
                        return None;
                    }
                };
                if !tyenv.types[ty.index()].is_prim() {
                    tyenv.report_error(
                        pos,
                        format!(
                            "expected non-primitive type {}, but found integer literal '{}'",
                            tyenv.types[ty.index()].name(tyenv),
                            val,
                        ),
                    );
                }
                Some((Pattern::ConstInt(ty, val), ty))
            }
            &ast::Pattern::ConstPrim { ref val, pos } => {
                let val = tyenv.intern_mut(val);
                let const_ty = match tyenv.const_types.get(&val) {
                    Some(ty) => *ty,
                    None => {
                        tyenv.report_error(pos, "Unknown constant");
                        return None;
                    }
                };
                if expected_ty.is_some() && expected_ty != Some(const_ty) {
                    tyenv.report_error(pos, "Type mismatch for constant");
                }
                Some((Pattern::ConstPrim(const_ty, val), const_ty))
            }
            &ast::Pattern::Wildcard { pos } => {
                let ty = match expected_ty {
                    Some(t) => t,
                    None => {
                        tyenv.report_error(pos, "Need an implied type for a wildcard");
                        return None;
                    }
                };
                Some((Pattern::Wildcard(ty), ty))
            }
            &ast::Pattern::And { ref subpats, pos } => {
                let mut expected_ty = expected_ty;
                let mut children = vec![];
                for subpat in subpats {
                    let (subpat, ty) = unwrap_or_continue!(self.translate_pattern(
                        tyenv,
                        subpat,
                        expected_ty,
                        bindings,
                    ));
                    expected_ty = expected_ty.or(Some(ty));

                    // Normalize nested `And` nodes to a single vector of conjuncts.
                    match subpat {
                        Pattern::And(_, subpat_children) => children.extend(subpat_children),
                        _ => children.push(subpat),
                    }
                }
                if expected_ty.is_none() {
                    tyenv.report_error(pos, "No type for (and ...) form.".to_string());
                    return None;
                }
                let ty = expected_ty.unwrap();
                Some((Pattern::And(ty, children), ty))
            }
            &ast::Pattern::BindPattern {
                ref var,
                ref subpat,
                pos,
            } => {
                // Do the subpattern first so we can resolve the type for sure.
                let (subpat, ty) = self.translate_pattern(tyenv, subpat, expected_ty, bindings)?;

                let name = tyenv.intern_mut(var);
                if bindings.lookup(name).is_some() {
                    tyenv.report_error(
                        pos,
                        format!("Re-bound variable name in LHS pattern: '{}'", var.0),
                    );
                    // Try to keep going.
                }
                let id = bindings.add_var(name, ty);
                Some((Pattern::BindPattern(ty, id, Box::new(subpat)), ty))
            }
            &ast::Pattern::Var { ref var, pos } => {
                // Look up the variable; if it has already been bound,
                // then this becomes a `Var` node (which matches the
                // existing bound value), otherwise it becomes a
                // `BindPattern` with a wildcard subpattern to capture
                // at this location.
                let name = tyenv.intern_mut(var);
                match bindings.lookup(name) {
                    None => {
                        let ty = match expected_ty {
                            Some(ty) => ty,
                            None => {
                                tyenv.report_error(
                                pos,
                                format!("Variable pattern '{}' not allowed in context without explicit type", var.0),
                            );
                                return None;
                            }
                        };
                        let id = bindings.add_var(name, ty);
                        Some((
                            Pattern::BindPattern(ty, id, Box::new(Pattern::Wildcard(ty))),
                            ty,
                        ))
                    }
                    Some(bv) => {
                        let ty = match expected_ty {
                            None => bv.ty,
                            Some(expected_ty) if expected_ty == bv.ty => bv.ty,
                            Some(expected_ty) => {
                                tyenv.report_error(
                            pos,
                            format!(
                                "Mismatched types: pattern expects type '{}' but already-bound var '{}' has type '{}'",
                                tyenv.types[expected_ty.index()].name(tyenv),
                                var.0,
                                tyenv.types[bv.ty.index()].name(tyenv)));
                                bv.ty // Try to keep going for more errors.
                            }
                        };
                        Some((Pattern::Var(ty, bv.id), ty))
                    }
                }
            }
            &ast::Pattern::Term {
                ref sym,
                ref args,
                pos,
            } => {
                // Look up the term.
                let tid = match self.get_term_by_name(tyenv, sym) {
                    Some(t) => t,
                    None => {
                        tyenv.report_error(pos, format!("Unknown term in pattern: '{}'", sym.0));
                        return None;
                    }
                };

                let termdata = &self.terms[tid.index()];

                // Get the return type and arg types. Verify the
                // expected type of this pattern, if any, against the
                // return type of the term. Insert an implicit
                // converter if needed.
                let ret_ty = termdata.ret_ty;
                let ty = match expected_ty {
                    None => ret_ty,
                    Some(expected_ty) if expected_ty == ret_ty => ret_ty,
                    Some(expected_ty) => {
                        // Can we do an implicit type conversion? Look
                        // up the converter term, if any. If one has
                        // been registered, and the term has an
                        // extractor, then build an expanded AST node
                        // right here and recurse on it.
                        if let Some(expanded_pattern) =
                            self.maybe_implicit_convert_pattern(tyenv, pat, ret_ty, expected_ty)
                        {
                            return self.translate_pattern(
                                tyenv,
                                &expanded_pattern,
                                Some(expected_ty),
                                bindings,
                            );
                        }

                        tyenv.report_error(
                            pos,
                            format!(
                                "Mismatched types: pattern expects type '{}' but term has return type '{}'",
                                tyenv.types[expected_ty.index()].name(tyenv),
                                tyenv.types[ret_ty.index()].name(tyenv)));
                        ret_ty // Try to keep going for more errors.
                    }
                };

                termdata.check_args_count(args, tyenv, pos, sym);

                match &termdata.kind {
                    TermKind::EnumVariant { .. } => {}
                    TermKind::Decl {
                        extractor_kind: Some(ExtractorKind::ExternalExtractor { .. }),
                        ..
                    } => {}
                    TermKind::Decl {
                        extractor_kind: Some(ExtractorKind::InternalExtractor { ref template }),
                        ..
                    } => {
                        // Expand the extractor macro! We create a map
                        // from macro args to AST pattern trees and
                        // then evaluate the template with these
                        // substitutions.
                        log!("internal extractor macro args = {:?}", args);
                        let pat = template.subst_macro_args(&args)?;
                        return self.translate_pattern(tyenv, &pat, expected_ty, bindings);
                    }
                    TermKind::Decl {
                        extractor_kind: None,
                        ..
                    } => {
                        tyenv.report_error(
                            pos,
                            format!(
                                "Cannot use term '{}' that does not have a defined extractor in a \
                                 left-hand side pattern",
                                sym.0
                            ),
                        );
                    }
                }

                let subpats = self.translate_args(args, termdata, tyenv, bindings);
                Some((Pattern::Term(ty, tid, subpats), ty))
            }
            &ast::Pattern::MacroArg { .. } => unreachable!(),
        }
    }

    fn translate_args(
        &self,
        args: &Vec<ast::Pattern>,
        termdata: &Term,
        tyenv: &mut TypeEnv,
        bindings: &mut Bindings,
    ) -> Vec<Pattern> {
        args.iter()
            .zip(termdata.arg_tys.iter())
            .filter_map(|(arg, &arg_ty)| self.translate_pattern(tyenv, arg, Some(arg_ty), bindings))
            .map(|(subpat, _)| subpat)
            .collect()
    }

    fn maybe_implicit_convert_expr(
        &self,
        tyenv: &mut TypeEnv,
        expr: &ast::Expr,
        inner_ty: TypeId,
        outer_ty: TypeId,
    ) -> Option<ast::Expr> {
        // Is there a converter for this type mismatch?
        if let Some(converter_term) = self.converters.get(&(inner_ty, outer_ty)) {
            if self.terms[converter_term.index()].has_constructor() {
                let converter_ident = ast::Ident(
                    tyenv.syms[self.terms[converter_term.index()].name.index()].clone(),
                    expr.pos(),
                );
                return Some(ast::Expr::Term {
                    sym: converter_ident,
                    pos: expr.pos(),
                    args: vec![expr.clone()],
                });
            }
        }
        None
    }
More examples
Hide additional examples
src/codegen.rs (line 346)
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
    fn generate_internal_term_constructors(&self, code: &mut String) {
        for (&termid, trie) in self.functions_by_term {
            let termdata = &self.termenv.terms[termid.index()];

            // Skip terms that are enum variants or that have external
            // constructors/extractors.
            if !termdata.has_constructor() || termdata.has_external_constructor() {
                continue;
            }

            let sig = termdata.constructor_sig(self.typeenv).unwrap();

            let args = sig
                .param_tys
                .iter()
                .enumerate()
                .map(|(i, &ty)| format!("arg{}: {}", i, self.type_name(ty, true)))
                .collect::<Vec<_>>()
                .join(", ");
            assert_eq!(sig.ret_tys.len(), 1);
            let ret = self.type_name(sig.ret_tys[0], false);
            let ret = if sig.multi {
                format!("impl ContextIter<Context = C, Output = {}>", ret)
            } else {
                ret
            };

            writeln!(
                code,
                "\n// Generated as internal constructor for term {}.",
                self.typeenv.syms[termdata.name.index()],
            )
            .unwrap();
            writeln!(
                code,
                "pub fn {}<C: Context>(ctx: &mut C, {}) -> Option<{}> {{",
                sig.func_name, args, ret,
            )
            .unwrap();

            if sig.multi {
                writeln!(code, "let mut returns = ConstructorVec::new();").unwrap();
            }

            let mut body_ctx: BodyContext = Default::default();
            let returned = self.generate_body(
                code,
                /* depth = */ 0,
                trie,
                "    ",
                &mut body_ctx,
                sig.multi,
            );
            if !returned {
                if sig.multi {
                    writeln!(
                        code,
                        "    return Some(ContextIterWrapper::from(returns.into_iter()));"
                    )
                    .unwrap();
                } else {
                    writeln!(code, "    return None;").unwrap();
                }
            }

            writeln!(code, "}}").unwrap();
        }
    }

Does this term have an extractor?

Examples found in repository?
src/sema.rs (line 1711)
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
    fn check_for_undefined_decls(&self, tyenv: &mut TypeEnv, defs: &ast::Defs) {
        for def in &defs.defs {
            if let ast::Def::Decl(decl) = def {
                let term = self.get_term_by_name(tyenv, &decl.term).unwrap();
                let term = &self.terms[term.index()];
                if !term.has_constructor() && !term.has_extractor() {
                    tyenv.report_error(
                        decl.pos,
                        format!(
                            "no rules, extractor, or external definition for declaration '{}'",
                            decl.term.0
                        ),
                    );
                }
            }
        }
    }

    fn check_for_expr_terms_without_constructors(&self, tyenv: &mut TypeEnv, defs: &ast::Defs) {
        for def in &defs.defs {
            if let ast::Def::Rule(rule) = def {
                rule.expr.terms(&mut |pos, ident| {
                    let term = match self.get_term_by_name(tyenv, ident) {
                        None => {
                            debug_assert!(!tyenv.errors.is_empty());
                            return;
                        }
                        Some(t) => t,
                    };
                    let term = &self.terms[term.index()];
                    if !term.has_constructor() {
                        tyenv.report_error(
                            pos,
                            format!(
                                "term `{}` cannot be used in an expression because \
                                 it does not have a constructor",
                                ident.0
                            ),
                        )
                    }
                });
            }
        }
    }

    fn maybe_implicit_convert_pattern(
        &self,
        tyenv: &mut TypeEnv,
        pattern: &ast::Pattern,
        inner_ty: TypeId,
        outer_ty: TypeId,
    ) -> Option<ast::Pattern> {
        if let Some(converter_term) = self.converters.get(&(inner_ty, outer_ty)) {
            if self.terms[converter_term.index()].has_extractor() {
                // This is a little awkward: we have to
                // convert back to an Ident, to be
                // re-resolved. The pos doesn't matter
                // as it shouldn't result in a lookup
                // failure.
                let converter_term_ident = ast::Ident(
                    tyenv.syms[self.terms[converter_term.index()].name.index()].clone(),
                    pattern.pos(),
                );
                let expanded_pattern = ast::Pattern::Term {
                    sym: converter_term_ident,
                    pos: pattern.pos(),
                    args: vec![pattern.clone()],
                };

                return Some(expanded_pattern);
            }
        }
        None
    }

Is this term’s extractor external?

Examples found in repository?
src/codegen.rs (line 171)
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
    fn generate_ctx_trait(&self, code: &mut String) {
        writeln!(code, "").unwrap();
        writeln!(
            code,
            "/// Context during lowering: an implementation of this trait"
        )
        .unwrap();
        writeln!(
            code,
            "/// must be provided with all external constructors and extractors."
        )
        .unwrap();
        writeln!(
            code,
            "/// A mutable borrow is passed along through all lowering logic."
        )
        .unwrap();
        writeln!(code, "pub trait Context {{").unwrap();
        for term in &self.termenv.terms {
            if term.has_external_extractor() {
                let ext_sig = term.extractor_sig(self.typeenv).unwrap();
                self.generate_trait_sig(code, "    ", &ext_sig);
            }
            if term.has_external_constructor() {
                let ext_sig = term.constructor_sig(self.typeenv).unwrap();
                self.generate_trait_sig(code, "    ", &ext_sig);
            }
        }
        writeln!(code, "}}").unwrap();
        writeln!(
            code,
            r#"
           pub trait ContextIter {{
               type Context;
               type Output;
               fn next(&mut self, ctx: &mut Self::Context) -> Option<Self::Output>;
           }}

           pub struct ContextIterWrapper<Item, I: Iterator < Item = Item>, C: Context> {{
               iter: I,
               _ctx: PhantomData<C>,
           }}
           impl<Item, I: Iterator<Item = Item>, C: Context> From<I> for ContextIterWrapper<Item, I, C> {{
               fn from(iter: I) -> Self {{
                   Self {{ iter, _ctx: PhantomData }}
               }}
           }}
           impl<Item, I: Iterator<Item = Item>, C: Context> ContextIter for ContextIterWrapper<Item, I, C> {{
               type Context = C;
               type Output = Item;
               fn next(&mut self, _ctx: &mut Self::Context) -> Option<Self::Output> {{
                   self.iter.next()
               }}
           }}
           "#,
        )
            .unwrap();
    }

Is this term’s constructor external?

Examples found in repository?
src/codegen.rs (line 175)
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
    fn generate_ctx_trait(&self, code: &mut String) {
        writeln!(code, "").unwrap();
        writeln!(
            code,
            "/// Context during lowering: an implementation of this trait"
        )
        .unwrap();
        writeln!(
            code,
            "/// must be provided with all external constructors and extractors."
        )
        .unwrap();
        writeln!(
            code,
            "/// A mutable borrow is passed along through all lowering logic."
        )
        .unwrap();
        writeln!(code, "pub trait Context {{").unwrap();
        for term in &self.termenv.terms {
            if term.has_external_extractor() {
                let ext_sig = term.extractor_sig(self.typeenv).unwrap();
                self.generate_trait_sig(code, "    ", &ext_sig);
            }
            if term.has_external_constructor() {
                let ext_sig = term.constructor_sig(self.typeenv).unwrap();
                self.generate_trait_sig(code, "    ", &ext_sig);
            }
        }
        writeln!(code, "}}").unwrap();
        writeln!(
            code,
            r#"
           pub trait ContextIter {{
               type Context;
               type Output;
               fn next(&mut self, ctx: &mut Self::Context) -> Option<Self::Output>;
           }}

           pub struct ContextIterWrapper<Item, I: Iterator < Item = Item>, C: Context> {{
               iter: I,
               _ctx: PhantomData<C>,
           }}
           impl<Item, I: Iterator<Item = Item>, C: Context> From<I> for ContextIterWrapper<Item, I, C> {{
               fn from(iter: I) -> Self {{
                   Self {{ iter, _ctx: PhantomData }}
               }}
           }}
           impl<Item, I: Iterator<Item = Item>, C: Context> ContextIter for ContextIterWrapper<Item, I, C> {{
               type Context = C;
               type Output = Item;
               fn next(&mut self, _ctx: &mut Self::Context) -> Option<Self::Output> {{
                   self.iter.next()
               }}
           }}
           "#,
        )
            .unwrap();
    }

    fn generate_internal_types(&self, code: &mut String) {
        for ty in &self.typeenv.types {
            match ty {
                &Type::Enum {
                    name,
                    is_extern,
                    is_nodebug,
                    ref variants,
                    pos,
                    ..
                } if !is_extern => {
                    let name = &self.typeenv.syms[name.index()];
                    writeln!(
                        code,
                        "\n/// Internal type {}: defined at {}.",
                        name,
                        pos.pretty_print_line(&self.typeenv.filenames[..])
                    )
                    .unwrap();

                    // Generate the `derive`s.
                    let debug_derive = if is_nodebug { "" } else { ", Debug" };
                    if variants.iter().all(|v| v.fields.is_empty()) {
                        writeln!(
                            code,
                            "#[derive(Copy, Clone, PartialEq, Eq{})]",
                            debug_derive
                        )
                        .unwrap();
                    } else {
                        writeln!(code, "#[derive(Clone{})]", debug_derive).unwrap();
                    }

                    writeln!(code, "pub enum {} {{", name).unwrap();
                    for variant in variants {
                        let name = &self.typeenv.syms[variant.name.index()];
                        if variant.fields.is_empty() {
                            writeln!(code, "    {},", name).unwrap();
                        } else {
                            writeln!(code, "    {} {{", name).unwrap();
                            for field in &variant.fields {
                                let name = &self.typeenv.syms[field.name.index()];
                                let ty_name =
                                    self.typeenv.types[field.ty.index()].name(&self.typeenv);
                                writeln!(code, "        {}: {},", name, ty_name).unwrap();
                            }
                            writeln!(code, "    }},").unwrap();
                        }
                    }
                    writeln!(code, "}}").unwrap();
                }
                _ => {}
            }
        }
    }

    fn type_name(&self, typeid: TypeId, by_ref: bool) -> String {
        match &self.typeenv.types[typeid.index()] {
            &Type::Primitive(_, sym, _) => self.typeenv.syms[sym.index()].clone(),
            &Type::Enum { name, .. } => {
                let r = if by_ref { "&" } else { "" };
                format!("{}{}", r, self.typeenv.syms[name.index()])
            }
        }
    }

    fn value_name(&self, value: &Value) -> String {
        match value {
            &Value::Pattern { inst, output } => format!("pattern{}_{}", inst.index(), output),
            &Value::Expr { inst, output } => format!("expr{}_{}", inst.index(), output),
        }
    }

    fn ty_prim(&self, ty: TypeId) -> bool {
        self.typeenv.types[ty.index()].is_prim()
    }

    fn value_binder(&self, value: &Value, is_ref: bool, ty: TypeId) -> String {
        let prim = self.ty_prim(ty);
        if prim || !is_ref {
            format!("{}", self.value_name(value))
        } else {
            format!("ref {}", self.value_name(value))
        }
    }

    fn value_by_ref(&self, value: &Value, ctx: &BodyContext) -> String {
        let raw_name = self.value_name(value);
        let &(is_ref, ty) = ctx.values.get(value).unwrap();
        let prim = self.ty_prim(ty);
        if is_ref || prim {
            raw_name
        } else {
            format!("&{}", raw_name)
        }
    }

    fn value_by_val(&self, value: &Value, ctx: &BodyContext) -> String {
        let raw_name = self.value_name(value);
        let &(is_ref, _) = ctx.values.get(value).unwrap();
        if is_ref {
            format!("{}.clone()", raw_name)
        } else {
            raw_name
        }
    }

    fn define_val(&self, value: &Value, ctx: &mut BodyContext, is_ref: bool, ty: TypeId) {
        let is_ref = !self.ty_prim(ty) && is_ref;
        ctx.values.insert(value.clone(), (is_ref, ty));
    }

    fn const_int(&self, val: i128, ty: TypeId) -> String {
        let is_bool = match &self.typeenv.types[ty.index()] {
            &Type::Primitive(_, name, _) => &self.typeenv.syms[name.index()] == "bool",
            _ => unreachable!(),
        };
        if is_bool {
            format!("{}", val != 0)
        } else {
            let ty_name = self.type_name(ty, /* by_ref = */ false);
            if ty_name == "i128" {
                format!("{}i128", val)
            } else {
                format!("{}i128 as {}", val, ty_name)
            }
        }
    }

    fn generate_internal_term_constructors(&self, code: &mut String) {
        for (&termid, trie) in self.functions_by_term {
            let termdata = &self.termenv.terms[termid.index()];

            // Skip terms that are enum variants or that have external
            // constructors/extractors.
            if !termdata.has_constructor() || termdata.has_external_constructor() {
                continue;
            }

            let sig = termdata.constructor_sig(self.typeenv).unwrap();

            let args = sig
                .param_tys
                .iter()
                .enumerate()
                .map(|(i, &ty)| format!("arg{}: {}", i, self.type_name(ty, true)))
                .collect::<Vec<_>>()
                .join(", ");
            assert_eq!(sig.ret_tys.len(), 1);
            let ret = self.type_name(sig.ret_tys[0], false);
            let ret = if sig.multi {
                format!("impl ContextIter<Context = C, Output = {}>", ret)
            } else {
                ret
            };

            writeln!(
                code,
                "\n// Generated as internal constructor for term {}.",
                self.typeenv.syms[termdata.name.index()],
            )
            .unwrap();
            writeln!(
                code,
                "pub fn {}<C: Context>(ctx: &mut C, {}) -> Option<{}> {{",
                sig.func_name, args, ret,
            )
            .unwrap();

            if sig.multi {
                writeln!(code, "let mut returns = ConstructorVec::new();").unwrap();
            }

            let mut body_ctx: BodyContext = Default::default();
            let returned = self.generate_body(
                code,
                /* depth = */ 0,
                trie,
                "    ",
                &mut body_ctx,
                sig.multi,
            );
            if !returned {
                if sig.multi {
                    writeln!(
                        code,
                        "    return Some(ContextIterWrapper::from(returns.into_iter()));"
                    )
                    .unwrap();
                } else {
                    writeln!(code, "    return None;").unwrap();
                }
            }

            writeln!(code, "}}").unwrap();
        }
    }

Get this term’s extractor’s external function signature, if any.

Examples found in repository?
src/codegen.rs (line 172)
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
    fn generate_ctx_trait(&self, code: &mut String) {
        writeln!(code, "").unwrap();
        writeln!(
            code,
            "/// Context during lowering: an implementation of this trait"
        )
        .unwrap();
        writeln!(
            code,
            "/// must be provided with all external constructors and extractors."
        )
        .unwrap();
        writeln!(
            code,
            "/// A mutable borrow is passed along through all lowering logic."
        )
        .unwrap();
        writeln!(code, "pub trait Context {{").unwrap();
        for term in &self.termenv.terms {
            if term.has_external_extractor() {
                let ext_sig = term.extractor_sig(self.typeenv).unwrap();
                self.generate_trait_sig(code, "    ", &ext_sig);
            }
            if term.has_external_constructor() {
                let ext_sig = term.constructor_sig(self.typeenv).unwrap();
                self.generate_trait_sig(code, "    ", &ext_sig);
            }
        }
        writeln!(code, "}}").unwrap();
        writeln!(
            code,
            r#"
           pub trait ContextIter {{
               type Context;
               type Output;
               fn next(&mut self, ctx: &mut Self::Context) -> Option<Self::Output>;
           }}

           pub struct ContextIterWrapper<Item, I: Iterator < Item = Item>, C: Context> {{
               iter: I,
               _ctx: PhantomData<C>,
           }}
           impl<Item, I: Iterator<Item = Item>, C: Context> From<I> for ContextIterWrapper<Item, I, C> {{
               fn from(iter: I) -> Self {{
                   Self {{ iter, _ctx: PhantomData }}
               }}
           }}
           impl<Item, I: Iterator<Item = Item>, C: Context> ContextIter for ContextIterWrapper<Item, I, C> {{
               type Context = C;
               type Output = Item;
               fn next(&mut self, _ctx: &mut Self::Context) -> Option<Self::Output> {{
                   self.iter.next()
               }}
           }}
           "#,
        )
            .unwrap();
    }

    fn generate_internal_types(&self, code: &mut String) {
        for ty in &self.typeenv.types {
            match ty {
                &Type::Enum {
                    name,
                    is_extern,
                    is_nodebug,
                    ref variants,
                    pos,
                    ..
                } if !is_extern => {
                    let name = &self.typeenv.syms[name.index()];
                    writeln!(
                        code,
                        "\n/// Internal type {}: defined at {}.",
                        name,
                        pos.pretty_print_line(&self.typeenv.filenames[..])
                    )
                    .unwrap();

                    // Generate the `derive`s.
                    let debug_derive = if is_nodebug { "" } else { ", Debug" };
                    if variants.iter().all(|v| v.fields.is_empty()) {
                        writeln!(
                            code,
                            "#[derive(Copy, Clone, PartialEq, Eq{})]",
                            debug_derive
                        )
                        .unwrap();
                    } else {
                        writeln!(code, "#[derive(Clone{})]", debug_derive).unwrap();
                    }

                    writeln!(code, "pub enum {} {{", name).unwrap();
                    for variant in variants {
                        let name = &self.typeenv.syms[variant.name.index()];
                        if variant.fields.is_empty() {
                            writeln!(code, "    {},", name).unwrap();
                        } else {
                            writeln!(code, "    {} {{", name).unwrap();
                            for field in &variant.fields {
                                let name = &self.typeenv.syms[field.name.index()];
                                let ty_name =
                                    self.typeenv.types[field.ty.index()].name(&self.typeenv);
                                writeln!(code, "        {}: {},", name, ty_name).unwrap();
                            }
                            writeln!(code, "    }},").unwrap();
                        }
                    }
                    writeln!(code, "}}").unwrap();
                }
                _ => {}
            }
        }
    }

    fn type_name(&self, typeid: TypeId, by_ref: bool) -> String {
        match &self.typeenv.types[typeid.index()] {
            &Type::Primitive(_, sym, _) => self.typeenv.syms[sym.index()].clone(),
            &Type::Enum { name, .. } => {
                let r = if by_ref { "&" } else { "" };
                format!("{}{}", r, self.typeenv.syms[name.index()])
            }
        }
    }

    fn value_name(&self, value: &Value) -> String {
        match value {
            &Value::Pattern { inst, output } => format!("pattern{}_{}", inst.index(), output),
            &Value::Expr { inst, output } => format!("expr{}_{}", inst.index(), output),
        }
    }

    fn ty_prim(&self, ty: TypeId) -> bool {
        self.typeenv.types[ty.index()].is_prim()
    }

    fn value_binder(&self, value: &Value, is_ref: bool, ty: TypeId) -> String {
        let prim = self.ty_prim(ty);
        if prim || !is_ref {
            format!("{}", self.value_name(value))
        } else {
            format!("ref {}", self.value_name(value))
        }
    }

    fn value_by_ref(&self, value: &Value, ctx: &BodyContext) -> String {
        let raw_name = self.value_name(value);
        let &(is_ref, ty) = ctx.values.get(value).unwrap();
        let prim = self.ty_prim(ty);
        if is_ref || prim {
            raw_name
        } else {
            format!("&{}", raw_name)
        }
    }

    fn value_by_val(&self, value: &Value, ctx: &BodyContext) -> String {
        let raw_name = self.value_name(value);
        let &(is_ref, _) = ctx.values.get(value).unwrap();
        if is_ref {
            format!("{}.clone()", raw_name)
        } else {
            raw_name
        }
    }

    fn define_val(&self, value: &Value, ctx: &mut BodyContext, is_ref: bool, ty: TypeId) {
        let is_ref = !self.ty_prim(ty) && is_ref;
        ctx.values.insert(value.clone(), (is_ref, ty));
    }

    fn const_int(&self, val: i128, ty: TypeId) -> String {
        let is_bool = match &self.typeenv.types[ty.index()] {
            &Type::Primitive(_, name, _) => &self.typeenv.syms[name.index()] == "bool",
            _ => unreachable!(),
        };
        if is_bool {
            format!("{}", val != 0)
        } else {
            let ty_name = self.type_name(ty, /* by_ref = */ false);
            if ty_name == "i128" {
                format!("{}i128", val)
            } else {
                format!("{}i128 as {}", val, ty_name)
            }
        }
    }

    fn generate_internal_term_constructors(&self, code: &mut String) {
        for (&termid, trie) in self.functions_by_term {
            let termdata = &self.termenv.terms[termid.index()];

            // Skip terms that are enum variants or that have external
            // constructors/extractors.
            if !termdata.has_constructor() || termdata.has_external_constructor() {
                continue;
            }

            let sig = termdata.constructor_sig(self.typeenv).unwrap();

            let args = sig
                .param_tys
                .iter()
                .enumerate()
                .map(|(i, &ty)| format!("arg{}: {}", i, self.type_name(ty, true)))
                .collect::<Vec<_>>()
                .join(", ");
            assert_eq!(sig.ret_tys.len(), 1);
            let ret = self.type_name(sig.ret_tys[0], false);
            let ret = if sig.multi {
                format!("impl ContextIter<Context = C, Output = {}>", ret)
            } else {
                ret
            };

            writeln!(
                code,
                "\n// Generated as internal constructor for term {}.",
                self.typeenv.syms[termdata.name.index()],
            )
            .unwrap();
            writeln!(
                code,
                "pub fn {}<C: Context>(ctx: &mut C, {}) -> Option<{}> {{",
                sig.func_name, args, ret,
            )
            .unwrap();

            if sig.multi {
                writeln!(code, "let mut returns = ConstructorVec::new();").unwrap();
            }

            let mut body_ctx: BodyContext = Default::default();
            let returned = self.generate_body(
                code,
                /* depth = */ 0,
                trie,
                "    ",
                &mut body_ctx,
                sig.multi,
            );
            if !returned {
                if sig.multi {
                    writeln!(
                        code,
                        "    return Some(ContextIterWrapper::from(returns.into_iter()));"
                    )
                    .unwrap();
                } else {
                    writeln!(code, "    return None;").unwrap();
                }
            }

            writeln!(code, "}}").unwrap();
        }
    }

    fn generate_expr_inst(
        &self,
        code: &mut String,
        id: InstId,
        inst: &ExprInst,
        indent: &str,
        ctx: &mut BodyContext,
        returns: &mut Vec<(usize, String)>,
    ) -> bool {
        log!("generate_expr_inst: {:?}", inst);
        let mut new_scope = false;
        match inst {
            &ExprInst::ConstInt { ty, val } => {
                let value = Value::Expr {
                    inst: id,
                    output: 0,
                };
                self.define_val(&value, ctx, /* is_ref = */ false, ty);
                let name = self.value_name(&value);
                let ty_name = self.type_name(ty, /* by_ref = */ false);
                writeln!(
                    code,
                    "{}let {}: {} = {};",
                    indent,
                    name,
                    ty_name,
                    self.const_int(val, ty)
                )
                .unwrap();
            }
            &ExprInst::ConstPrim { ty, val } => {
                let value = Value::Expr {
                    inst: id,
                    output: 0,
                };
                self.define_val(&value, ctx, /* is_ref = */ false, ty);
                let name = self.value_name(&value);
                let ty_name = self.type_name(ty, /* by_ref = */ false);
                writeln!(
                    code,
                    "{}let {}: {} = {};",
                    indent,
                    name,
                    ty_name,
                    self.typeenv.syms[val.index()],
                )
                .unwrap();
            }
            &ExprInst::CreateVariant {
                ref inputs,
                ty,
                variant,
            } => {
                let variantinfo = match &self.typeenv.types[ty.index()] {
                    &Type::Primitive(..) => panic!("CreateVariant with primitive type"),
                    &Type::Enum { ref variants, .. } => &variants[variant.index()],
                };
                let mut input_fields = vec![];
                for ((input_value, _), field) in inputs.iter().zip(variantinfo.fields.iter()) {
                    let field_name = &self.typeenv.syms[field.name.index()];
                    let value_expr = self.value_by_val(input_value, ctx);
                    input_fields.push(format!("{}: {}", field_name, value_expr));
                }

                let output = Value::Expr {
                    inst: id,
                    output: 0,
                };
                let outputname = self.value_name(&output);
                let full_variant_name = format!(
                    "{}::{}",
                    self.type_name(ty, false),
                    self.typeenv.syms[variantinfo.name.index()]
                );
                if input_fields.is_empty() {
                    writeln!(
                        code,
                        "{}let {} = {};",
                        indent, outputname, full_variant_name
                    )
                    .unwrap();
                } else {
                    writeln!(
                        code,
                        "{}let {} = {} {{",
                        indent, outputname, full_variant_name
                    )
                    .unwrap();
                    for input_field in input_fields {
                        writeln!(code, "{}    {},", indent, input_field).unwrap();
                    }
                    writeln!(code, "{}}};", indent).unwrap();
                }
                self.define_val(&output, ctx, /* is_ref = */ false, ty);
            }
            &ExprInst::Construct {
                ref inputs,
                term,
                infallible,
                multi,
                ..
            } => {
                let mut input_exprs = vec![];
                for (input_value, input_ty) in inputs {
                    let value_expr = if self.typeenv.types[input_ty.index()].is_prim() {
                        self.value_by_val(input_value, ctx)
                    } else {
                        self.value_by_ref(input_value, ctx)
                    };
                    input_exprs.push(value_expr);
                }

                let output = Value::Expr {
                    inst: id,
                    output: 0,
                };
                let outputname = self.value_name(&output);
                let termdata = &self.termenv.terms[term.index()];
                let sig = termdata.constructor_sig(self.typeenv).unwrap();
                assert_eq!(input_exprs.len(), sig.param_tys.len());

                if !multi {
                    let fallible_try = if infallible { "" } else { "?" };
                    writeln!(
                        code,
                        "{}let {} = {}(ctx, {}){};",
                        indent,
                        outputname,
                        sig.full_name,
                        input_exprs.join(", "),
                        fallible_try,
                    )
                    .unwrap();
                } else {
                    writeln!(
                        code,
                        "{}let mut it = {}(ctx, {})?;",
                        indent,
                        sig.full_name,
                        input_exprs.join(", "),
                    )
                    .unwrap();
                    writeln!(
                        code,
                        "{}while let Some({}) = it.next(ctx) {{",
                        indent, outputname,
                    )
                    .unwrap();
                    new_scope = true;
                }
                self.define_val(&output, ctx, /* is_ref = */ false, termdata.ret_ty);
            }
            &ExprInst::Return {
                index, ref value, ..
            } => {
                let value_expr = self.value_by_val(value, ctx);
                returns.push((index, value_expr));
            }
        }

        new_scope
    }

    fn match_variant_binders(
        &self,
        variant: &Variant,
        arg_tys: &[TypeId],
        id: InstId,
        ctx: &mut BodyContext,
    ) -> Vec<String> {
        arg_tys
            .iter()
            .zip(variant.fields.iter())
            .enumerate()
            .map(|(i, (&ty, field))| {
                let value = Value::Pattern {
                    inst: id,
                    output: i,
                };
                let valuename = self.value_binder(&value, /* is_ref = */ true, ty);
                let fieldname = &self.typeenv.syms[field.name.index()];
                self.define_val(&value, ctx, /* is_ref = */ true, field.ty);
                format!("{}: {}", fieldname, valuename)
            })
            .collect::<Vec<_>>()
    }

    /// Returns a `bool` indicating whether this pattern inst is
    /// infallible, and the number of scopes opened.
    fn generate_pattern_inst(
        &self,
        code: &mut String,
        id: InstId,
        inst: &PatternInst,
        indent: &str,
        ctx: &mut BodyContext,
    ) -> (bool, usize) {
        match inst {
            &PatternInst::Arg { index, ty } => {
                let output = Value::Pattern {
                    inst: id,
                    output: 0,
                };
                let outputname = self.value_name(&output);
                let is_ref = match &self.typeenv.types[ty.index()] {
                    &Type::Primitive(..) => false,
                    _ => true,
                };
                writeln!(code, "{}let {} = arg{};", indent, outputname, index).unwrap();
                self.define_val(
                    &Value::Pattern {
                        inst: id,
                        output: 0,
                    },
                    ctx,
                    is_ref,
                    ty,
                );
                (true, 0)
            }
            &PatternInst::MatchEqual { ref a, ref b, .. } => {
                let a = self.value_by_ref(a, ctx);
                let b = self.value_by_ref(b, ctx);
                writeln!(code, "{}if {} == {} {{", indent, a, b).unwrap();
                (false, 1)
            }
            &PatternInst::MatchInt {
                ref input,
                int_val,
                ty,
                ..
            } => {
                let int_val = self.const_int(int_val, ty);
                let input = self.value_by_val(input, ctx);
                writeln!(code, "{}if {} == {}  {{", indent, input, int_val).unwrap();
                (false, 1)
            }
            &PatternInst::MatchPrim { ref input, val, .. } => {
                let input = self.value_by_val(input, ctx);
                let sym = &self.typeenv.syms[val.index()];
                writeln!(code, "{}if {} == {} {{", indent, input, sym).unwrap();
                (false, 1)
            }
            &PatternInst::MatchVariant {
                ref input,
                input_ty,
                variant,
                ref arg_tys,
            } => {
                let input = self.value_by_ref(input, ctx);
                let variants = match &self.typeenv.types[input_ty.index()] {
                    &Type::Primitive(..) => panic!("primitive type input to MatchVariant"),
                    &Type::Enum { ref variants, .. } => variants,
                };
                let ty_name = self.type_name(input_ty, /* is_ref = */ true);
                let variant = &variants[variant.index()];
                let variantname = &self.typeenv.syms[variant.name.index()];
                let args = self.match_variant_binders(variant, &arg_tys[..], id, ctx);
                let args = if args.is_empty() {
                    "".to_string()
                } else {
                    format!("{{ {} }}", args.join(", "))
                };
                writeln!(
                    code,
                    "{}if let {}::{} {} = {} {{",
                    indent, ty_name, variantname, args, input
                )
                .unwrap();
                (false, 1)
            }
            &PatternInst::Extract {
                ref inputs,
                ref output_tys,
                term,
                infallible,
                multi,
                ..
            } => {
                let termdata = &self.termenv.terms[term.index()];
                let sig = termdata.extractor_sig(self.typeenv).unwrap();

                let input_values = inputs
                    .iter()
                    .map(|input| self.value_by_ref(input, ctx))
                    .collect::<Vec<_>>();
                let output_binders = output_tys
                    .iter()
                    .enumerate()
                    .map(|(i, &ty)| {
                        let output_val = Value::Pattern {
                            inst: id,
                            output: i,
                        };
                        self.define_val(&output_val, ctx, /* is_ref = */ false, ty);
                        self.value_binder(&output_val, /* is_ref = */ false, ty)
                    })
                    .collect::<Vec<_>>();

                let bind_pattern = format!(
                    "{open_paren}{vars}{close_paren}",
                    open_paren = if output_binders.len() == 1 { "" } else { "(" },
                    vars = output_binders.join(", "),
                    close_paren = if output_binders.len() == 1 { "" } else { ")" }
                );
                let etor_call = format!(
                    "{name}(ctx, {args})",
                    name = sig.full_name,
                    args = input_values.join(", ")
                );

                match (infallible, multi) {
                    (_, true) => {
                        writeln!(
                            code,
                            "{indent}if let Some(mut iter) = {etor_call} {{",
                            indent = indent,
                            etor_call = etor_call,
                        )
                        .unwrap();
                        writeln!(
                            code,
                            "{indent}    while let Some({bind_pattern}) = iter.next(ctx) {{",
                            indent = indent,
                            bind_pattern = bind_pattern,
                        )
                        .unwrap();

                        (false, 2)
                    }
                    (false, false) => {
                        writeln!(
                            code,
                            "{indent}if let Some({bind_pattern}) = {etor_call} {{",
                            indent = indent,
                            bind_pattern = bind_pattern,
                            etor_call = etor_call,
                        )
                        .unwrap();

                        (false, 1)
                    }
                    (true, false) => {
                        writeln!(
                            code,
                            "{indent}let {bind_pattern} = {etor_call};",
                            indent = indent,
                            bind_pattern = bind_pattern,
                            etor_call = etor_call,
                        )
                        .unwrap();

                        (true, 0)
                    }
                }
            }
            &PatternInst::Expr {
                ref seq, output_ty, ..
            } if seq.is_const_int().is_some() => {
                let (ty, val) = seq.is_const_int().unwrap();
                assert_eq!(ty, output_ty);

                let output = Value::Pattern {
                    inst: id,
                    output: 0,
                };
                writeln!(
                    code,
                    "{}let {} = {};",
                    indent,
                    self.value_name(&output),
                    self.const_int(val, ty),
                )
                .unwrap();
                self.define_val(&output, ctx, /* is_ref = */ false, ty);
                (true, 0)
            }
            &PatternInst::Expr {
                ref seq, output_ty, ..
            } => {
                let closure_name = format!("closure{}", id.index());
                writeln!(code, "{}let mut {} = || {{", indent, closure_name).unwrap();
                let subindent = format!("{}    ", indent);
                let mut subctx = ctx.clone();
                let mut returns = vec![];
                for (id, inst) in seq.insts.iter().enumerate() {
                    let id = InstId(id);
                    let new_scope = self.generate_expr_inst(
                        code,
                        id,
                        inst,
                        &subindent,
                        &mut subctx,
                        &mut returns,
                    );
                    assert!(!new_scope);
                }
                assert_eq!(returns.len(), 1);
                writeln!(code, "{}return Some({});", subindent, returns[0].1).unwrap();
                writeln!(code, "{}}};", indent).unwrap();

                let output = Value::Pattern {
                    inst: id,
                    output: 0,
                };
                writeln!(
                    code,
                    "{}if let Some({}) = {}() {{",
                    indent,
                    self.value_binder(&output, /* is_ref = */ false, output_ty),
                    closure_name
                )
                .unwrap();
                self.define_val(&output, ctx, /* is_ref = */ false, output_ty);

                (false, 1)
            }
        }
    }

Get this term’s constructor’s external function signature, if any.

Examples found in repository?
src/codegen.rs (line 176)
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
    fn generate_ctx_trait(&self, code: &mut String) {
        writeln!(code, "").unwrap();
        writeln!(
            code,
            "/// Context during lowering: an implementation of this trait"
        )
        .unwrap();
        writeln!(
            code,
            "/// must be provided with all external constructors and extractors."
        )
        .unwrap();
        writeln!(
            code,
            "/// A mutable borrow is passed along through all lowering logic."
        )
        .unwrap();
        writeln!(code, "pub trait Context {{").unwrap();
        for term in &self.termenv.terms {
            if term.has_external_extractor() {
                let ext_sig = term.extractor_sig(self.typeenv).unwrap();
                self.generate_trait_sig(code, "    ", &ext_sig);
            }
            if term.has_external_constructor() {
                let ext_sig = term.constructor_sig(self.typeenv).unwrap();
                self.generate_trait_sig(code, "    ", &ext_sig);
            }
        }
        writeln!(code, "}}").unwrap();
        writeln!(
            code,
            r#"
           pub trait ContextIter {{
               type Context;
               type Output;
               fn next(&mut self, ctx: &mut Self::Context) -> Option<Self::Output>;
           }}

           pub struct ContextIterWrapper<Item, I: Iterator < Item = Item>, C: Context> {{
               iter: I,
               _ctx: PhantomData<C>,
           }}
           impl<Item, I: Iterator<Item = Item>, C: Context> From<I> for ContextIterWrapper<Item, I, C> {{
               fn from(iter: I) -> Self {{
                   Self {{ iter, _ctx: PhantomData }}
               }}
           }}
           impl<Item, I: Iterator<Item = Item>, C: Context> ContextIter for ContextIterWrapper<Item, I, C> {{
               type Context = C;
               type Output = Item;
               fn next(&mut self, _ctx: &mut Self::Context) -> Option<Self::Output> {{
                   self.iter.next()
               }}
           }}
           "#,
        )
            .unwrap();
    }

    fn generate_internal_types(&self, code: &mut String) {
        for ty in &self.typeenv.types {
            match ty {
                &Type::Enum {
                    name,
                    is_extern,
                    is_nodebug,
                    ref variants,
                    pos,
                    ..
                } if !is_extern => {
                    let name = &self.typeenv.syms[name.index()];
                    writeln!(
                        code,
                        "\n/// Internal type {}: defined at {}.",
                        name,
                        pos.pretty_print_line(&self.typeenv.filenames[..])
                    )
                    .unwrap();

                    // Generate the `derive`s.
                    let debug_derive = if is_nodebug { "" } else { ", Debug" };
                    if variants.iter().all(|v| v.fields.is_empty()) {
                        writeln!(
                            code,
                            "#[derive(Copy, Clone, PartialEq, Eq{})]",
                            debug_derive
                        )
                        .unwrap();
                    } else {
                        writeln!(code, "#[derive(Clone{})]", debug_derive).unwrap();
                    }

                    writeln!(code, "pub enum {} {{", name).unwrap();
                    for variant in variants {
                        let name = &self.typeenv.syms[variant.name.index()];
                        if variant.fields.is_empty() {
                            writeln!(code, "    {},", name).unwrap();
                        } else {
                            writeln!(code, "    {} {{", name).unwrap();
                            for field in &variant.fields {
                                let name = &self.typeenv.syms[field.name.index()];
                                let ty_name =
                                    self.typeenv.types[field.ty.index()].name(&self.typeenv);
                                writeln!(code, "        {}: {},", name, ty_name).unwrap();
                            }
                            writeln!(code, "    }},").unwrap();
                        }
                    }
                    writeln!(code, "}}").unwrap();
                }
                _ => {}
            }
        }
    }

    fn type_name(&self, typeid: TypeId, by_ref: bool) -> String {
        match &self.typeenv.types[typeid.index()] {
            &Type::Primitive(_, sym, _) => self.typeenv.syms[sym.index()].clone(),
            &Type::Enum { name, .. } => {
                let r = if by_ref { "&" } else { "" };
                format!("{}{}", r, self.typeenv.syms[name.index()])
            }
        }
    }

    fn value_name(&self, value: &Value) -> String {
        match value {
            &Value::Pattern { inst, output } => format!("pattern{}_{}", inst.index(), output),
            &Value::Expr { inst, output } => format!("expr{}_{}", inst.index(), output),
        }
    }

    fn ty_prim(&self, ty: TypeId) -> bool {
        self.typeenv.types[ty.index()].is_prim()
    }

    fn value_binder(&self, value: &Value, is_ref: bool, ty: TypeId) -> String {
        let prim = self.ty_prim(ty);
        if prim || !is_ref {
            format!("{}", self.value_name(value))
        } else {
            format!("ref {}", self.value_name(value))
        }
    }

    fn value_by_ref(&self, value: &Value, ctx: &BodyContext) -> String {
        let raw_name = self.value_name(value);
        let &(is_ref, ty) = ctx.values.get(value).unwrap();
        let prim = self.ty_prim(ty);
        if is_ref || prim {
            raw_name
        } else {
            format!("&{}", raw_name)
        }
    }

    fn value_by_val(&self, value: &Value, ctx: &BodyContext) -> String {
        let raw_name = self.value_name(value);
        let &(is_ref, _) = ctx.values.get(value).unwrap();
        if is_ref {
            format!("{}.clone()", raw_name)
        } else {
            raw_name
        }
    }

    fn define_val(&self, value: &Value, ctx: &mut BodyContext, is_ref: bool, ty: TypeId) {
        let is_ref = !self.ty_prim(ty) && is_ref;
        ctx.values.insert(value.clone(), (is_ref, ty));
    }

    fn const_int(&self, val: i128, ty: TypeId) -> String {
        let is_bool = match &self.typeenv.types[ty.index()] {
            &Type::Primitive(_, name, _) => &self.typeenv.syms[name.index()] == "bool",
            _ => unreachable!(),
        };
        if is_bool {
            format!("{}", val != 0)
        } else {
            let ty_name = self.type_name(ty, /* by_ref = */ false);
            if ty_name == "i128" {
                format!("{}i128", val)
            } else {
                format!("{}i128 as {}", val, ty_name)
            }
        }
    }

    fn generate_internal_term_constructors(&self, code: &mut String) {
        for (&termid, trie) in self.functions_by_term {
            let termdata = &self.termenv.terms[termid.index()];

            // Skip terms that are enum variants or that have external
            // constructors/extractors.
            if !termdata.has_constructor() || termdata.has_external_constructor() {
                continue;
            }

            let sig = termdata.constructor_sig(self.typeenv).unwrap();

            let args = sig
                .param_tys
                .iter()
                .enumerate()
                .map(|(i, &ty)| format!("arg{}: {}", i, self.type_name(ty, true)))
                .collect::<Vec<_>>()
                .join(", ");
            assert_eq!(sig.ret_tys.len(), 1);
            let ret = self.type_name(sig.ret_tys[0], false);
            let ret = if sig.multi {
                format!("impl ContextIter<Context = C, Output = {}>", ret)
            } else {
                ret
            };

            writeln!(
                code,
                "\n// Generated as internal constructor for term {}.",
                self.typeenv.syms[termdata.name.index()],
            )
            .unwrap();
            writeln!(
                code,
                "pub fn {}<C: Context>(ctx: &mut C, {}) -> Option<{}> {{",
                sig.func_name, args, ret,
            )
            .unwrap();

            if sig.multi {
                writeln!(code, "let mut returns = ConstructorVec::new();").unwrap();
            }

            let mut body_ctx: BodyContext = Default::default();
            let returned = self.generate_body(
                code,
                /* depth = */ 0,
                trie,
                "    ",
                &mut body_ctx,
                sig.multi,
            );
            if !returned {
                if sig.multi {
                    writeln!(
                        code,
                        "    return Some(ContextIterWrapper::from(returns.into_iter()));"
                    )
                    .unwrap();
                } else {
                    writeln!(code, "    return None;").unwrap();
                }
            }

            writeln!(code, "}}").unwrap();
        }
    }

    fn generate_expr_inst(
        &self,
        code: &mut String,
        id: InstId,
        inst: &ExprInst,
        indent: &str,
        ctx: &mut BodyContext,
        returns: &mut Vec<(usize, String)>,
    ) -> bool {
        log!("generate_expr_inst: {:?}", inst);
        let mut new_scope = false;
        match inst {
            &ExprInst::ConstInt { ty, val } => {
                let value = Value::Expr {
                    inst: id,
                    output: 0,
                };
                self.define_val(&value, ctx, /* is_ref = */ false, ty);
                let name = self.value_name(&value);
                let ty_name = self.type_name(ty, /* by_ref = */ false);
                writeln!(
                    code,
                    "{}let {}: {} = {};",
                    indent,
                    name,
                    ty_name,
                    self.const_int(val, ty)
                )
                .unwrap();
            }
            &ExprInst::ConstPrim { ty, val } => {
                let value = Value::Expr {
                    inst: id,
                    output: 0,
                };
                self.define_val(&value, ctx, /* is_ref = */ false, ty);
                let name = self.value_name(&value);
                let ty_name = self.type_name(ty, /* by_ref = */ false);
                writeln!(
                    code,
                    "{}let {}: {} = {};",
                    indent,
                    name,
                    ty_name,
                    self.typeenv.syms[val.index()],
                )
                .unwrap();
            }
            &ExprInst::CreateVariant {
                ref inputs,
                ty,
                variant,
            } => {
                let variantinfo = match &self.typeenv.types[ty.index()] {
                    &Type::Primitive(..) => panic!("CreateVariant with primitive type"),
                    &Type::Enum { ref variants, .. } => &variants[variant.index()],
                };
                let mut input_fields = vec![];
                for ((input_value, _), field) in inputs.iter().zip(variantinfo.fields.iter()) {
                    let field_name = &self.typeenv.syms[field.name.index()];
                    let value_expr = self.value_by_val(input_value, ctx);
                    input_fields.push(format!("{}: {}", field_name, value_expr));
                }

                let output = Value::Expr {
                    inst: id,
                    output: 0,
                };
                let outputname = self.value_name(&output);
                let full_variant_name = format!(
                    "{}::{}",
                    self.type_name(ty, false),
                    self.typeenv.syms[variantinfo.name.index()]
                );
                if input_fields.is_empty() {
                    writeln!(
                        code,
                        "{}let {} = {};",
                        indent, outputname, full_variant_name
                    )
                    .unwrap();
                } else {
                    writeln!(
                        code,
                        "{}let {} = {} {{",
                        indent, outputname, full_variant_name
                    )
                    .unwrap();
                    for input_field in input_fields {
                        writeln!(code, "{}    {},", indent, input_field).unwrap();
                    }
                    writeln!(code, "{}}};", indent).unwrap();
                }
                self.define_val(&output, ctx, /* is_ref = */ false, ty);
            }
            &ExprInst::Construct {
                ref inputs,
                term,
                infallible,
                multi,
                ..
            } => {
                let mut input_exprs = vec![];
                for (input_value, input_ty) in inputs {
                    let value_expr = if self.typeenv.types[input_ty.index()].is_prim() {
                        self.value_by_val(input_value, ctx)
                    } else {
                        self.value_by_ref(input_value, ctx)
                    };
                    input_exprs.push(value_expr);
                }

                let output = Value::Expr {
                    inst: id,
                    output: 0,
                };
                let outputname = self.value_name(&output);
                let termdata = &self.termenv.terms[term.index()];
                let sig = termdata.constructor_sig(self.typeenv).unwrap();
                assert_eq!(input_exprs.len(), sig.param_tys.len());

                if !multi {
                    let fallible_try = if infallible { "" } else { "?" };
                    writeln!(
                        code,
                        "{}let {} = {}(ctx, {}){};",
                        indent,
                        outputname,
                        sig.full_name,
                        input_exprs.join(", "),
                        fallible_try,
                    )
                    .unwrap();
                } else {
                    writeln!(
                        code,
                        "{}let mut it = {}(ctx, {})?;",
                        indent,
                        sig.full_name,
                        input_exprs.join(", "),
                    )
                    .unwrap();
                    writeln!(
                        code,
                        "{}while let Some({}) = it.next(ctx) {{",
                        indent, outputname,
                    )
                    .unwrap();
                    new_scope = true;
                }
                self.define_val(&output, ctx, /* is_ref = */ false, termdata.ret_ty);
            }
            &ExprInst::Return {
                index, ref value, ..
            } => {
                let value_expr = self.value_by_val(value, ctx);
                returns.push((index, value_expr));
            }
        }

        new_scope
    }

Trait Implementations§

Returns a copy of the value. Read more
Performs copy-assignment from source. Read more
Formats the value using the given formatter. Read more
This method tests for self and other values to be equal, and is used by ==.
This method tests for !=. The default implementation is almost always sufficient, and should not be overridden without very good reason.

Auto Trait Implementations§

Blanket Implementations§

Gets the TypeId of self. Read more
Immutably borrows from an owned value. Read more
Mutably borrows from an owned value. Read more

Returns the argument unchanged.

Calls U::from(self).

That is, this conversion is whatever the implementation of From<T> for U chooses to do.

The resulting type after obtaining ownership.
Creates owned data from borrowed data, usually by cloning. Read more
Uses borrowed data to replace owned data, usually by cloning. Read more
The type returned in the event of a conversion error.
Performs the conversion.
The type returned in the event of a conversion error.
Performs the conversion.