angle_sc/lib.rs
1// Copyright (c) 2024-2025 Ken Barker
2
3// Permission is hereby granted, free of charge, to any person obtaining a copy
4// of this software and associated documentation files (the "Software"),
5// to deal in the Software without restriction, including without limitation the
6// rights to use, copy, modify, merge, publish, distribute, sublicense, and/or
7// sell copies of the Software, and to permit persons to whom the Software is
8// furnished to do so, subject to the following conditions:
9
10// The above copyright notice and this permission notice shall be included in
11// all copies or substantial portions of the Software.
12
13// THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
14// IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
15// FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
16// AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
17// LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
18// OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
19// THE SOFTWARE.
20
21//! [](https://crates.io/crates/angle-sc)
22//! [](https://docs.rs/angle-sc/)
23//! [](https://opensource.org/license/mit/)
24//! [](https://github.com/kenba/angle-sc-rs/actions)
25//! [](https://codecov.io/gh/kenba/angle-sc-rs)
26//!
27//! A Rust library for performing accurate and efficient trigonometry calculations.
28//!
29//! ## Description
30//!
31//! The standard trigonometry functions: `sin`, `cos`, `tan`, etc.
32//! [give unexpected results for well-known angles](https://stackoverflow.com/questions/31502120/sin-and-cos-give-unexpected-results-for-well-known-angles#answer-31525208).
33//! This is because the functions use parameters with `radians` units instead of `degrees`.
34//! The conversion from `degrees` to `radians` suffers from
35//! [round-off error](https://en.wikipedia.org/wiki/Round-off_error) due to
36//! `radians` being based on the irrational number π.
37//! This library provides a [sincos](src/trig.rs#sincos) function to calculate more
38//! accurate values than the standard `sin` and `cos` functions for angles in radians
39//! and a [sincosd](src/trig.rs#sincosd) function to calculate more accurate values
40//! for angles in degrees.
41//!
42//! The library also provides an [Angle](#angle) struct which represents an angle
43//! by its sine and cosine as the coordinates of a
44//! [unit circle](https://en.wikipedia.org/wiki/Unit_circle),
45//! see *Figure 1*.
46//!
47//! 
48//! *Figure 1 Unit circle formed by cos *θ* and sin *θ**
49//!
50//! The `Angle` struct enables more accurate calculations of angle rotations and
51//! conversions to and from `degrees` or `radians`.
52//!
53//! ## Features
54//!
55//! * `Degrees`, `Radians` and `Angle` types;
56//! * functions for accurately calculating sines and cosines of angles in `Degrees` or `Radians`
57//! using [remquo](https://pubs.opengroup.org/onlinepubs/9699919799/functions/remquo.html);
58//! * functions for accurately calculating sines and cosines of differences of angles in `Degrees` or `Radians`
59//! using the [2Sum](https://en.wikipedia.org/wiki/2Sum) algorithm;
60//! * functions for accurately calculating sums and differences of `Angles` using
61//! [trigonometric identities](https://en.wikipedia.org/wiki/List_of_trigonometric_identities#Angle_sum_and_difference_identities);
62//! * and some [spherical trigonometry](https://en.wikipedia.org/wiki/Spherical_trigonometry) functions.
63//! * The library is declared [no_std](https://docs.rust-embedded.org/book/intro/no-std.html).
64//!
65//! ## Examples
66//!
67//! The following example shows the `round-off error` inherent in calculating angles in `radians`.
68//! It calculates the correct sine and cosine for 60° and converts them back
69//! precisely to 60°, but it fails to convert them to the precise angle in `radians`: π/3.
70//! ```
71//! use angle_sc::{Angle, Degrees, Radians, is_within_tolerance, trig};
72//!
73//! let angle_60 = Angle::from(Degrees(60.0));
74//! assert_eq!(trig::COS_30_DEGREES, angle_60.sin().0);
75//! assert_eq!(0.5, angle_60.cos().0);
76//! assert_eq!(60.0, Degrees::from(angle_60).0);
77//!
78//! // assert_eq!(core::f64::consts::FRAC_PI_3, Radians::from(angle_60).0); // Fails because PI is irrational
79//! assert!(is_within_tolerance(
80//! core::f64::consts::FRAC_PI_3,
81//! Radians::from(angle_60).0,
82//! f64::EPSILON
83//! ));
84//! ```
85//!
86//! The following example calculates the sine and cosine between the difference
87//! of two angles in `degrees`: -155° - 175°.
88//! It is more accurate than calling the `Angle` `From` trait in the example above
89//! with the difference in `degrees`.
90//! It is particularly useful for implementing the
91//! [Haversine formula](https://en.wikipedia.org/wiki/Haversine_formula)
92//! which requires sines and cosines of both longitude and latitude differences.
93//! Note: in this example sine and cosine of 30° are converted precisely to π/6.
94//! ```
95//! use angle_sc::{Angle, Degrees, Radians, trig};
96//!
97//! // Difference of Degrees(-155.0) - Degrees(175.0)
98//! let angle_30 = Angle::from((Degrees(-155.0), Degrees(175.0)));
99//! assert_eq!(0.5, angle_30.sin().0);
100//! assert_eq!(trig::COS_30_DEGREES, angle_30.cos().0);
101//! assert_eq!(30.0, Degrees::from(angle_30).0);
102//! assert_eq!(core::f64::consts::FRAC_PI_6, Radians::from(angle_30).0);
103//! ```
104//!
105//! ## Design
106//!
107//! ### Trigonometry Functions
108//!
109//! The `trig` module contains accurate and efficient trigonometry functions.
110//!
111//! ### Angle
112//!
113//! The `Angle` struct represents an angle by its sine and cosine instead of in
114//! `degrees` or `radians`.
115//!
116//! This representation an angle makes functions such as
117//! rotating an angle +/-90° around the unit circle or calculating the opposite angle;
118//! simple, accurate and efficient since they just involve changing the signs
119//! and/or positions of the `sin` and `cos` values.
120//!
121//! `Angle` `Add` and `Sub` traits are implemented using
122//! [angle sum and difference](https://en.wikipedia.org/wiki/List_of_trigonometric_identities#Angle_sum_and_difference_identities)
123//! trigonometric identities,
124//! while `Angle` [double](https://en.wikipedia.org/wiki/List_of_trigonometric_identities#Double-angle_formulae)
125//! and [half](https://en.wikipedia.org/wiki/List_of_trigonometric_identities#Half-angle_formulae) methods use other
126//! trigonometric identities.
127//!
128//! The `sin` and `cos` fields of `Angle` are `UnitNegRange`s:,
129//! a [newtype](https://rust-unofficial.github.io/patterns/patterns/behavioural/newtype.html)
130//! with values in the range -1.0 to +1.0 inclusive.
131
132#![cfg_attr(not(test), no_std)]
133#![allow(clippy::float_cmp)]
134
135pub mod trig;
136use core::cmp::{Ordering, PartialOrd};
137use core::convert::From;
138use core::ops::{Add, AddAssign, Neg, Sub, SubAssign};
139use serde::{Deserialize, Deserializer, Serialize, Serializer};
140
141/// The Degrees newtype an f64.
142#[derive(Clone, Copy, Debug, PartialEq, Serialize, Deserialize)]
143pub struct Degrees(pub f64);
144
145impl Degrees {
146 /// The absolute value of the angle.
147 #[must_use]
148 pub fn abs(self) -> Self {
149 Self(libm::fabs(self.0))
150 }
151
152 /// The opposite angle on the circle, i.e. +/- 180 degrees.
153 #[must_use]
154 pub fn opposite(self) -> Self {
155 Self(if 0.0 < self.0 {
156 self.0 - 180.0
157 } else {
158 self.0 + 180.0
159 })
160 }
161}
162
163impl Default for Degrees {
164 #[must_use]
165 fn default() -> Self {
166 Self(0.0)
167 }
168}
169
170impl Neg for Degrees {
171 type Output = Self;
172
173 /// An implementation of Neg for Degrees, i.e. -angle.
174 /// # Examples
175 /// ```
176 /// use angle_sc::Degrees;
177 ///
178 /// let angle_45 = Degrees(45.0);
179 /// let result_m45 = -angle_45;
180 /// assert_eq!(-45.0, result_m45.0);
181 /// ```
182 #[must_use]
183 fn neg(self) -> Self {
184 Self(0.0 - self.0)
185 }
186}
187
188impl Add for Degrees {
189 type Output = Self;
190
191 /// Add a pair of angles in Degrees, wraps around +/-180.
192 /// Uses the [2Sum](https://en.wikipedia.org/wiki/2Sum) algorithm to reduce
193 /// round-off error.
194 /// # Examples
195 /// ```
196 /// use angle_sc::{Degrees};
197 ///
198 /// let angle_120 = Degrees(120.0);
199 /// let result = angle_120 + angle_120;
200 /// assert_eq!(-angle_120, result);
201 /// ```
202 #[must_use]
203 fn add(self, other: Self) -> Self::Output {
204 let (s, t) = two_sum(self.0, other.0);
205 Self(if s <= -180.0 {
206 s + 360.0 + t
207 } else if s > 180.0 {
208 s - 360.0 + t
209 } else {
210 s
211 })
212 }
213}
214
215impl AddAssign for Degrees {
216 fn add_assign(&mut self, other: Self) {
217 *self = *self + other;
218 }
219}
220
221impl Sub for Degrees {
222 type Output = Self;
223
224 /// Subtract a pair of angles in Degrees, wraps around +/-180.
225 /// Uses the [2Sum](https://en.wikipedia.org/wiki/2Sum) algorithm to reduce
226 /// round-off error.
227 /// # Examples
228 /// ```
229 /// use angle_sc::{Degrees};
230 ///
231 /// let angle_120 = Degrees(120.0);
232 /// let result = -angle_120 - angle_120;
233 /// assert_eq!(angle_120, result);
234 /// ```
235 #[must_use]
236 fn sub(self, other: Self) -> Self::Output {
237 self + -other
238 }
239}
240
241impl SubAssign for Degrees {
242 fn sub_assign(&mut self, other: Self) {
243 *self = *self - other;
244 }
245}
246
247/// The Radians newtype an f64.
248#[derive(Clone, Copy, Debug, PartialEq, PartialOrd)]
249pub struct Radians(pub f64);
250
251impl Radians {
252 /// The absolute value of the angle.
253 #[must_use]
254 pub fn abs(self) -> Self {
255 Self(libm::fabs(self.0))
256 }
257
258 /// The opposite angle on the circle, i.e. +/- PI.
259 #[must_use]
260 pub fn opposite(self) -> Self {
261 Self(if 0.0 < self.0 {
262 self.0 - core::f64::consts::PI
263 } else {
264 self.0 + core::f64::consts::PI
265 })
266 }
267
268 /// Clamp value into the range: `0.0..=max_value`.
269 /// # Examples
270 /// ```
271 /// use angle_sc::Radians;
272 ///
273 /// let value = Radians(-f64::EPSILON);
274 /// assert_eq!(Radians(0.0), value.clamp(Radians(1.0)));
275 /// let value = Radians(0.0);
276 /// assert_eq!(Radians(0.0), value.clamp(Radians(1.0)));
277 /// let value = Radians(1.0);
278 /// assert_eq!(Radians(1.0), value.clamp(Radians(1.0)));
279 /// let value = Radians(1.0 + f64::EPSILON);
280 /// assert_eq!(Radians(1.0), value.clamp(Radians(1.0)));
281 /// ```
282 #[must_use]
283 pub const fn clamp(self, max_value: Self) -> Self {
284 Self(self.0.clamp(0.0, max_value.0))
285 }
286}
287
288impl Default for Radians {
289 #[must_use]
290 fn default() -> Self {
291 Self(0.0)
292 }
293}
294
295impl Neg for Radians {
296 type Output = Self;
297
298 /// An implementation of Neg for Radians, i.e. -angle.
299 /// # Examples
300 /// ```
301 /// use angle_sc::Radians;
302 ///
303 /// let angle_45 = Radians(core::f64::consts::FRAC_PI_4);
304 /// let result_m45 = -angle_45;
305 /// assert_eq!(-core::f64::consts::FRAC_PI_4, result_m45.0);
306 /// ```
307 #[must_use]
308 fn neg(self) -> Self {
309 Self(0.0 - self.0)
310 }
311}
312
313impl Add for Radians {
314 type Output = Self;
315
316 /// Add a pair of angles in Radians, wraps around +/-PI.
317 /// Uses the [2Sum](https://en.wikipedia.org/wiki/2Sum) algorithm to reduce
318 /// round-off error.
319 /// # Examples
320 /// ```
321 /// use angle_sc::{Radians, is_within_tolerance};
322 ///
323 /// let angle_120 = Radians(2.0 * core::f64::consts::FRAC_PI_3);
324 /// let result = angle_120 + angle_120;
325 /// assert!(is_within_tolerance(-2.0 * core::f64::consts::FRAC_PI_3, result.0, 4.0 * f64::EPSILON));
326 /// ```
327 #[must_use]
328 fn add(self, other: Self) -> Self::Output {
329 let (s, t) = two_sum(self.0, other.0);
330 Self(if s <= -core::f64::consts::PI {
331 s + core::f64::consts::TAU + t
332 } else if s > core::f64::consts::PI {
333 s - core::f64::consts::TAU + t
334 } else {
335 s
336 })
337 }
338}
339
340impl AddAssign for Radians {
341 fn add_assign(&mut self, other: Self) {
342 *self = *self + other;
343 }
344}
345
346impl Sub for Radians {
347 type Output = Self;
348
349 /// Subtract a pair of angles in Radians, wraps around +/-PI.
350 /// Uses the [2Sum](https://en.wikipedia.org/wiki/2Sum) algorithm to reduce
351 /// round-off error.
352 /// # Examples
353 /// ```
354 /// use angle_sc::{Radians, is_within_tolerance};
355 ///
356 /// let angle_120 = Radians(2.0 * core::f64::consts::FRAC_PI_3);
357 /// let angle_m120 = -angle_120;
358 /// let result = angle_m120 - angle_120;
359 /// assert!(is_within_tolerance(angle_120.0, result.0, 4.0 * f64::EPSILON));
360 /// ```
361 #[must_use]
362 fn sub(self, other: Self) -> Self::Output {
363 self + -other
364 }
365}
366
367impl SubAssign for Radians {
368 fn sub_assign(&mut self, other: Self) {
369 *self = *self - other;
370 }
371}
372
373/// An angle represented by it's sine and cosine as `UnitNegRanges`.
374#[derive(Clone, Copy, Debug, PartialEq)]
375pub struct Angle {
376 /// The sine of the angle.
377 sin: trig::UnitNegRange,
378 /// The cosine of the angle.
379 cos: trig::UnitNegRange,
380}
381
382/// A default angle: zero degrees or radians.
383impl Default for Angle {
384 /// Implementation of Default for Angle returns Angle(0.0, 1.0),
385 /// i.e. the Angle corresponding to zero degrees or radians.
386 /// # Examples
387 /// ```
388 /// use angle_sc::Angle;
389 ///
390 /// let zero = Angle::default();
391 /// assert_eq!(0.0, zero.sin().0);
392 /// assert_eq!(1.0, zero.cos().0);
393 /// ```
394 #[must_use]
395 fn default() -> Self {
396 Self {
397 sin: trig::UnitNegRange(0.0),
398 cos: trig::UnitNegRange(1.0),
399 }
400 }
401}
402
403impl Validate for Angle {
404 /// Test whether an `Angle` is valid, i.e. both sin and cos are valid
405 /// `UnitNegRange`s and the length of their hypotenuse is approximately 1.0.
406 fn is_valid(&self) -> bool {
407 self.sin.is_valid()
408 && self.cos.is_valid()
409 && is_within_tolerance(1.0, libm::hypot(self.sin.0, self.cos.0), f64::EPSILON)
410 }
411}
412
413impl Angle {
414 /// Construct an Angle from sin and cos values.
415 #[must_use]
416 pub const fn new(sin: trig::UnitNegRange, cos: trig::UnitNegRange) -> Self {
417 Self { sin, cos }
418 }
419
420 /// Construct an Angle from y and x values.
421 /// Normalizes the values.
422 #[must_use]
423 pub fn from_y_x(y: f64, x: f64) -> Self {
424 let length = libm::hypot(y, x);
425
426 if is_small(length, f64::EPSILON) {
427 Self::default()
428 } else {
429 Self::new(
430 trig::UnitNegRange::clamp(y / length),
431 trig::UnitNegRange::clamp(x / length),
432 )
433 }
434 }
435
436 /// The sine of the Angle.
437 #[must_use]
438 pub const fn sin(self) -> trig::UnitNegRange {
439 self.sin
440 }
441
442 /// The cosine of the Angle.
443 #[must_use]
444 pub const fn cos(self) -> trig::UnitNegRange {
445 self.cos
446 }
447
448 /// The tangent of the Angle.
449 ///
450 /// returns the tangent or `None` if `self.cos < SQ_EPSILON`
451 #[must_use]
452 pub fn tan(self) -> Option<f64> {
453 trig::tan(self.sin, self.cos)
454 }
455
456 /// The cosecant of the Angle.
457 ///
458 /// returns the cosecant or `None` if `self.sin < SQ_EPSILON`
459 #[must_use]
460 pub fn csc(self) -> Option<f64> {
461 trig::csc(self.sin)
462 }
463
464 /// The secant of the Angle.
465 ///
466 /// returns the secant or `None` if `self.cos < SQ_EPSILON`
467 #[must_use]
468 pub fn sec(self) -> Option<f64> {
469 trig::sec(self.cos)
470 }
471
472 /// The cotangent of the Angle.
473 ///
474 /// returns the cotangent or `None` if `self.sin < SQ_EPSILON`
475 #[must_use]
476 pub fn cot(self) -> Option<f64> {
477 trig::cot(self.sin, self.cos)
478 }
479
480 /// The absolute value of the angle, i.e. the angle with a positive sine.
481 /// # Examples
482 /// ```
483 /// use angle_sc::{Angle, Degrees};
484 ///
485 /// let angle_m45 = Angle::from(Degrees(-45.0));
486 /// let result_45 = angle_m45.abs();
487 /// assert_eq!(Degrees(45.0), Degrees::from(result_45));
488 /// ```
489 #[must_use]
490 pub fn abs(self) -> Self {
491 Self {
492 sin: self.sin.abs(),
493 cos: self.cos,
494 }
495 }
496
497 /// The opposite angle on the circle, i.e. +/- 180 degrees.
498 /// # Examples
499 /// ```
500 /// use angle_sc::{Angle, Degrees};
501 ///
502 /// let angle_m30 = Angle::from(Degrees(-30.0));
503 /// let result = angle_m30.opposite();
504 /// assert_eq!(Degrees(150.0), Degrees::from(result));
505 /// ```
506 #[must_use]
507 pub fn opposite(self) -> Self {
508 Self {
509 sin: -self.sin,
510 cos: -self.cos,
511 }
512 }
513
514 /// A quarter turn clockwise around the circle, i.e. + 90°.
515 /// # Examples
516 /// ```
517 /// use angle_sc::{Angle, Degrees};
518 ///
519 /// let angle_m30 = Angle::from(Degrees(-30.0));
520 /// let result = angle_m30.quarter_turn_cw();
521 /// assert_eq!(Angle::from(Degrees(60.0)), result);
522 /// ```
523 #[must_use]
524 pub fn quarter_turn_cw(self) -> Self {
525 Self {
526 sin: self.cos,
527 cos: -self.sin,
528 }
529 }
530
531 /// A quarter turn counter-clockwise around the circle, i.e. - 90°.
532 /// # Examples
533 /// ```
534 /// use angle_sc::{Angle, Degrees};
535 ///
536 /// let angle_120 = Angle::from(Degrees(120.0));
537 /// let result = angle_120.quarter_turn_ccw();
538 /// assert_eq!(Angle::from(Degrees(30.0)), result);
539 /// ```
540 #[must_use]
541 pub fn quarter_turn_ccw(self) -> Self {
542 Self {
543 sin: -self.cos,
544 cos: self.sin,
545 }
546 }
547
548 /// Negate the cosine of the Angle.
549 /// I.e. `PI` - `angle.radians()` for positive angles,
550 /// `angle.radians()` + `PI` for negative angles
551 /// # Examples
552 /// ```
553 /// use angle_sc::{Angle, Degrees};
554 ///
555 /// let angle_45 = Angle::from(Degrees(45.0));
556 /// let result_45 = angle_45.negate_cos();
557 /// assert_eq!(Degrees(135.0), Degrees::from(result_45));
558 /// ```
559 #[must_use]
560 pub fn negate_cos(self) -> Self {
561 Self {
562 sin: self.sin,
563 cos: -self.cos,
564 }
565 }
566
567 /// Double the Angle.
568 /// See: [Double-angle formulae](https://en.wikipedia.org/wiki/List_of_trigonometric_identities#Double-angle_formulae)
569 /// # Examples
570 /// ```
571 /// use angle_sc::{Angle, Degrees};
572 ///
573 /// let angle_30 = Angle::from(Degrees(30.0));
574 /// let result_60 = angle_30.double();
575 ///
576 /// // Note: multiplication is not precise...
577 /// // assert_eq!(Degrees(60.0), Degrees::from(result_60));
578 /// let delta_angle = libm::fabs(60.0 - Degrees::from(result_60).0);
579 /// assert!(delta_angle <= 32.0 * f64::EPSILON);
580 /// ```
581 #[must_use]
582 pub fn double(self) -> Self {
583 Self {
584 sin: trig::UnitNegRange::clamp(2.0 * self.sin.0 * self.cos.0),
585 cos: trig::UnitNegRange::clamp((self.cos.0 - self.sin.0) * (self.cos.0 + self.sin.0)),
586 }
587 }
588
589 /// Half of the Angle.
590 /// See: [Half-angle formulae](https://en.wikipedia.org/wiki/List_of_trigonometric_identities#Half-angle_formulae)
591 /// # Examples
592 /// ```
593 /// use angle_sc::{Angle, Degrees};
594 ///
595 /// let angle_30 = Angle::from(Degrees(30.0));
596 /// let angle_60 = Angle::from(Degrees(60.0));
597 ///
598 /// assert_eq!(angle_30, angle_60.half());
599 /// ```
600 #[must_use]
601 pub fn half(self) -> Self {
602 Self {
603 sin: trig::UnitNegRange(libm::copysign(
604 libm::sqrt(trig::sq_sine_half(self.cos)),
605 self.sin.0,
606 )),
607 cos: trig::UnitNegRange(libm::sqrt(trig::sq_cosine_half(self.cos))),
608 }
609 }
610}
611
612impl Neg for Angle {
613 type Output = Self;
614
615 /// An implementation of Neg for Angle, i.e. -angle.
616 /// Negates the sine of the Angle, does not affect the cosine.
617 /// # Examples
618 /// ```
619 /// use angle_sc::{Angle, Degrees};
620 ///
621 /// let angle_45 = Angle::from(Degrees(45.0));
622 /// let result_m45 = -angle_45;
623 /// assert_eq!(Degrees(-45.0), Degrees::from(result_m45));
624 /// ```
625 #[must_use]
626 fn neg(self) -> Self {
627 Self {
628 sin: -self.sin,
629 cos: self.cos,
630 }
631 }
632}
633
634impl Add for Angle {
635 type Output = Self;
636
637 /// Add two Angles, i.e. a + b
638 /// Uses trigonometric identity functions, see:
639 /// [angle sum and difference identities](https://en.wikipedia.org/wiki/List_of_trigonometric_identities#Angle_sum_and_difference_identities).
640 /// # Examples
641 /// ```
642 /// use angle_sc::{Angle, Degrees};
643 ///
644 /// let angle_30 = Angle::from(Degrees(30.0));
645 /// let angle_60 = Angle::from(Degrees(60.0));
646 /// let result_90 = angle_30 + angle_60;
647 /// assert_eq!(Degrees(90.0), Degrees::from(result_90));
648 /// ```
649 #[must_use]
650 fn add(self, other: Self) -> Self::Output {
651 Self {
652 sin: trig::sine_sum(self.sin, self.cos, other.sin, other.cos),
653 cos: trig::cosine_sum(self.sin, self.cos, other.sin, other.cos),
654 }
655 }
656}
657
658impl AddAssign for Angle {
659 fn add_assign(&mut self, other: Self) {
660 *self = *self + other;
661 }
662}
663
664impl Sub for Angle {
665 type Output = Self;
666
667 /// Subtract two Angles, i.e. a - b
668 /// Uses trigonometric identity functions, see:
669 /// [angle sum and difference identities](https://en.wikipedia.org/wiki/List_of_trigonometric_identities#Angle_sum_and_difference_identities).
670 /// # Examples
671 /// ```
672 /// use angle_sc::{Angle, Degrees, is_within_tolerance};
673 ///
674 /// let angle_30 = Angle::from(Degrees(30.0));
675 /// let angle_60 = Angle::from(Degrees(60.0));
676 /// let result_30 = angle_60 - angle_30;
677 ///
678 /// assert!(is_within_tolerance(Degrees(30.0).0, Degrees::from(result_30).0, 32.0 * f64::EPSILON));
679 /// ```
680 #[must_use]
681 fn sub(self, other: Self) -> Self::Output {
682 Self {
683 sin: trig::sine_diff(self.sin, self.cos, other.sin, other.cos),
684 cos: trig::cosine_diff(self.sin, self.cos, other.sin, other.cos),
685 }
686 }
687}
688
689impl SubAssign for Angle {
690 fn sub_assign(&mut self, other: Self) {
691 *self = *self - other;
692 }
693}
694
695impl PartialOrd for Angle {
696 /// Compare two Angles, i.e. a < b.
697 /// It compares whether an `Angle` is clockwise of the other `Angle` on the
698 /// unit circle.
699 ///
700 /// # Examples
701 /// ```
702 /// use angle_sc::{Angle, Degrees};
703 /// let degrees_120 = Angle::from(Degrees(120.0));
704 /// let degrees_m120 = -degrees_120;
705 /// assert!(degrees_120 < degrees_m120);
706 /// ```
707 fn partial_cmp(&self, other: &Self) -> Option<Ordering> {
708 let delta = *other - *self;
709 trig::UnitNegRange(0.0).partial_cmp(&delta.sin)
710 }
711}
712
713impl From<Degrees> for Angle {
714 /// Construct an `Angle` from an angle in Degrees.
715 ///
716 /// Examples:
717 /// ```
718 /// use angle_sc::{Angle, Degrees, is_within_tolerance, trig};
719 ///
720 /// let angle = Angle::from(Degrees(60.0));
721 /// assert_eq!(trig::COS_30_DEGREES, angle.sin().0);
722 /// assert_eq!(0.5, angle.cos().0);
723 /// assert_eq!(60.0, Degrees::from(angle).0);
724 /// ```
725 #[must_use]
726 fn from(a: Degrees) -> Self {
727 let (sin, cos) = trig::sincosd(a);
728 Self { sin, cos }
729 }
730}
731
732impl From<(Degrees, Degrees)> for Angle {
733 /// Construct an `Angle` from the difference of a pair angles in Degrees:
734 /// a - b
735 ///
736 /// Examples:
737 /// ```
738 /// use angle_sc::{Angle, Degrees, trig};
739 ///
740 /// // Difference of Degrees(-155.0) - Degrees(175.0)
741 /// let angle = Angle::from((Degrees(-155.0), Degrees(175.0)));
742 /// assert_eq!(0.5, angle.sin().0);
743 /// assert_eq!(trig::COS_30_DEGREES, angle.cos().0);
744 /// assert_eq!(30.0, Degrees::from(angle).0);
745 /// ```
746 #[must_use]
747 fn from(params: (Degrees, Degrees)) -> Self {
748 let (sin, cos) = trig::sincosd_diff(params.0, params.1);
749 Self { sin, cos }
750 }
751}
752
753impl From<Radians> for Angle {
754 /// Construct an `Angle` from an angle in Radians.
755 ///
756 /// Examples:
757 /// ```
758 /// use angle_sc::{Angle, Radians, trig};
759 ///
760 /// let angle = Angle::from(Radians(-core::f64::consts::FRAC_PI_6));
761 /// assert_eq!(-0.5, angle.sin().0);
762 /// assert_eq!(trig::COS_30_DEGREES, angle.cos().0);
763 /// assert_eq!(-core::f64::consts::FRAC_PI_6, Radians::from(angle).0);
764 /// ```
765 #[must_use]
766 fn from(a: Radians) -> Self {
767 let (sin, cos) = trig::sincos(a);
768 Self { sin, cos }
769 }
770}
771
772impl From<(Radians, Radians)> for Angle {
773 /// Construct an Angle from the difference of a pair angles in Radians:
774 /// a - b
775 ///
776 /// Examples:
777 /// ```
778 /// use angle_sc::{Angle, Radians, trig};
779 ///
780 /// // 6*π - π/3 radians round trip
781 /// let angle = Angle::from((
782 /// Radians(3.0 * core::f64::consts::TAU),
783 /// Radians(core::f64::consts::FRAC_PI_3),
784 /// ));
785 /// assert_eq!(-core::f64::consts::FRAC_PI_3, Radians::from(angle).0);
786 /// ```
787 #[must_use]
788 fn from(params: (Radians, Radians)) -> Self {
789 let (sin, cos) = trig::sincos_diff(params.0, params.1);
790 Self { sin, cos }
791 }
792}
793
794impl From<Angle> for Radians {
795 /// Convert an Angle to Radians.
796 #[must_use]
797 fn from(a: Angle) -> Self {
798 trig::arctan2(a.sin, a.cos)
799 }
800}
801
802impl From<Angle> for Degrees {
803 /// Convert an Angle to Degrees.
804 #[must_use]
805 fn from(a: Angle) -> Self {
806 trig::arctan2d(a.sin, a.cos)
807 }
808}
809
810impl Serialize for Angle {
811 /// Serialize an Angle to an value in Degrees.
812 fn serialize<S>(&self, serializer: S) -> Result<S::Ok, S::Error>
813 where
814 S: Serializer,
815 {
816 serializer.serialize_newtype_struct("Degrees", &Degrees::from(*self))
817 }
818}
819
820impl<'de> Deserialize<'de> for Angle {
821 /// Deserialize an value in Degrees to an Angle.
822 fn deserialize<D>(deserializer: D) -> Result<Self, D::Error>
823 where
824 D: Deserializer<'de>,
825 {
826 Ok(Self::from(Degrees::deserialize(deserializer)?))
827 }
828}
829
830//////////////////////////////////////////////////////////////////////////////
831
832/// Calculates floating-point sum and error.
833/// The [2Sum](https://en.wikipedia.org/wiki/2Sum) algorithm.
834///
835/// * `a`, `b` the floating-point numbers to add.
836///
837/// returns (a + b) and the floating-point error: $t = a + b - (a \oplus b)$
838/// so: $a+b=s+t$.
839#[must_use]
840pub fn two_sum<T>(a: T, b: T) -> (T, T)
841where
842 T: Copy + Add<Output = T> + Sub<Output = T>,
843{
844 let s = a + b;
845 let a_prime = s - b;
846 let b_prime = s - a_prime;
847 let delta_a = a - a_prime;
848 let delta_b = b - b_prime;
849 let t = delta_a + delta_b;
850 (s, t)
851}
852
853/// Return the minimum of a or b.
854#[must_use]
855pub fn min<T>(a: T, b: T) -> T
856where
857 T: PartialOrd + Copy,
858{
859 if b < a { b } else { a }
860}
861
862/// Return the maximum of a or b.
863#[must_use]
864pub fn max<T>(a: T, b: T) -> T
865where
866 T: PartialOrd + Copy,
867{
868 if b < a { a } else { b }
869}
870
871/// The Validate trait.
872pub trait Validate {
873 /// return true if the type is valid, false otherwise.
874 fn is_valid(&self) -> bool;
875}
876
877/// Check whether value <= tolerance.
878#[must_use]
879pub fn is_small<T>(value: T, tolerance: T) -> bool
880where
881 T: PartialOrd + Copy,
882{
883 value <= tolerance
884}
885
886/// Check whether a value is within tolerance of a reference value.
887/// * `reference` the required value
888/// * `value` the value to test
889/// * `tolerance` the permitted tolerance
890///
891/// return true if abs(reference - value) is <= tolerance
892#[must_use]
893pub fn is_within_tolerance<T>(reference: T, value: T, tolerance: T) -> bool
894where
895 T: PartialOrd + Copy + Sub<Output = T>,
896{
897 let delta = max(reference, value) - min(reference, value);
898 is_small(delta, tolerance)
899}
900
901#[cfg(test)]
902mod tests {
903 use super::*;
904
905 #[test]
906 fn test_degrees_traits() {
907 let zero = Degrees::default();
908 assert_eq!(Degrees(0.0), zero);
909 let one = Degrees(1.0);
910 let mut one_clone = one.clone();
911 assert!(one_clone == one);
912 let two = Degrees(2.0);
913 let m_one = Degrees(-1.0);
914 assert_eq!(m_one, -one);
915
916 assert_eq!(one, m_one.abs());
917
918 assert_eq!(m_one, one - two);
919 one_clone -= two;
920 assert_eq!(m_one, one_clone);
921
922 assert_eq!(one, m_one + two);
923 one_clone += two;
924 assert_eq!(one, one_clone);
925
926 let d_120 = Degrees(120.0);
927 let d_m120 = Degrees(-120.0);
928 assert_eq!(d_120, d_m120.abs());
929
930 assert_eq!(Degrees(30.0), Degrees(-155.0) - Degrees(175.0));
931
932 assert_eq!(d_m120, d_120 + d_120);
933 assert_eq!(d_120, d_m120 + d_m120);
934 assert_eq!(d_120, d_m120 - d_120);
935
936 assert_eq!(Degrees(-60.0), d_120.opposite());
937 assert_eq!(Degrees(60.0), d_m120.opposite());
938
939 let serialized = serde_json::to_string(&one).unwrap();
940 let deserialized: Degrees = serde_json::from_str(&serialized).unwrap();
941 assert_eq!(one, deserialized);
942
943 let bad_text = "junk";
944 let _serde_error = serde_json::from_str::<Degrees>(&bad_text).unwrap_err();
945
946 print!("Degrees: {:?}", one);
947 }
948
949 #[test]
950 fn test_radians_traits() {
951 let zero = Radians::default();
952 assert_eq!(Radians(0.0), zero);
953 let one = Radians(1.0);
954 let mut one_clone = one.clone();
955 assert!(one_clone == one);
956 let two = Radians(2.0);
957 let m_two = -two;
958 assert!(one < two);
959 let m_one = Radians(-1.0);
960 assert_eq!(m_one, -one);
961
962 assert_eq!(one, m_one.abs());
963
964 assert_eq!(m_one, one - two);
965 one_clone -= two;
966 assert_eq!(m_one, one_clone);
967
968 assert_eq!(one, m_one + two);
969 one_clone += two;
970 assert_eq!(one, one_clone);
971
972 let result_1 = m_two - two;
973 assert_eq!(core::f64::consts::TAU - 4.0, result_1.0);
974 assert_eq!(core::f64::consts::PI - 4.0, result_1.opposite().0);
975
976 let result_2 = two - m_two;
977 assert_eq!(4.0 - core::f64::consts::TAU, result_2.0);
978 assert_eq!(4.0 - core::f64::consts::PI, result_2.opposite().0);
979
980 let value = Radians(-f64::EPSILON);
981 assert_eq!(Radians(0.0), value.clamp(Radians(1.0)));
982 let value = Radians(0.0);
983 assert_eq!(Radians(0.0), value.clamp(Radians(1.0)));
984 let value = Radians(1.0);
985 assert_eq!(Radians(1.0), value.clamp(Radians(1.0)));
986 let value = Radians(1.0 + f64::EPSILON);
987 assert_eq!(Radians(1.0), value.clamp(Radians(1.0)));
988
989 print!("Radians: {:?}", one);
990 }
991
992 #[test]
993 fn test_angle_traits() {
994 let zero = Angle::default();
995 assert_eq!(0.0, zero.sin().0);
996 assert_eq!(1.0, zero.cos().0);
997 assert_eq!(0.0, zero.tan().unwrap());
998 assert!(zero.csc().is_none());
999 assert_eq!(1.0, zero.sec().unwrap());
1000 assert!(zero.cot().is_none());
1001 assert!(zero.is_valid());
1002
1003 let zero_clone = zero.clone();
1004 assert_eq!(zero, zero_clone);
1005
1006 let one = Angle::from_y_x(1.0, 0.0);
1007 assert_eq!(1.0, one.sin().0);
1008 assert_eq!(0.0, one.cos().0);
1009 assert!(one.tan().is_none());
1010 assert_eq!(1.0, one.csc().unwrap());
1011 assert!(one.sec().is_none());
1012 assert_eq!(0.0, one.cot().unwrap());
1013 assert!(one.is_valid());
1014
1015 let angle_m45 = Angle::from_y_x(-f64::EPSILON, f64::EPSILON);
1016 assert!(is_within_tolerance(
1017 -core::f64::consts::FRAC_1_SQRT_2,
1018 angle_m45.sin().0,
1019 f64::EPSILON
1020 ));
1021 assert!(is_within_tolerance(
1022 core::f64::consts::FRAC_1_SQRT_2,
1023 angle_m45.cos().0,
1024 f64::EPSILON
1025 ));
1026
1027 assert!(angle_m45 < zero);
1028
1029 let serialized = serde_json::to_string(&zero).unwrap();
1030 let deserialized: Angle = serde_json::from_str(&serialized).unwrap();
1031 assert_eq!(zero, deserialized);
1032
1033 let bad_text = "junk";
1034 let _serde_error = serde_json::from_str::<Angle>(&bad_text).unwrap_err();
1035
1036 print!("Angle: {:?}", angle_m45);
1037 }
1038 #[test]
1039 fn test_angle_conversion() {
1040 let zero = Angle::default();
1041
1042 let too_small = Angle::from_y_x(-f64::EPSILON / 2.0, f64::EPSILON / 2.0);
1043 assert!(too_small.is_valid());
1044 assert_eq!(zero, too_small);
1045
1046 let small = Angle::from(-trig::MAX_COS_ANGLE_IS_ONE);
1047 assert!(small.is_valid());
1048 assert_eq!(-trig::MAX_COS_ANGLE_IS_ONE.0, small.sin().0);
1049 assert_eq!(1.0, small.cos().0);
1050 assert_eq!(-trig::MAX_COS_ANGLE_IS_ONE.0, Radians::from(small).0);
1051
1052 let angle_30 = Angle::from((
1053 Radians(core::f64::consts::FRAC_PI_3),
1054 Radians(core::f64::consts::FRAC_PI_6),
1055 ));
1056 assert!(angle_30.is_valid());
1057 assert_eq!(0.5, angle_30.sin().0);
1058 assert_eq!(libm::sqrt(3.0) / 2.0, angle_30.cos().0);
1059 assert_eq!(30.0, Degrees::from(angle_30).0);
1060 assert_eq!(core::f64::consts::FRAC_PI_6, Radians::from(angle_30).0);
1061
1062 let angle_45 = Angle::from(Radians(core::f64::consts::FRAC_PI_4));
1063 assert!(angle_45.is_valid());
1064 assert_eq!(core::f64::consts::FRAC_1_SQRT_2, angle_45.sin().0);
1065 assert_eq!(core::f64::consts::FRAC_1_SQRT_2, angle_45.cos().0);
1066 assert_eq!(45.0, Degrees::from(angle_45).0);
1067 assert_eq!(core::f64::consts::FRAC_PI_4, Radians::from(angle_45).0);
1068
1069 let angle_m45 = Angle::from(Degrees(-45.0));
1070 assert!(angle_m45.is_valid());
1071 assert_eq!(-core::f64::consts::FRAC_1_SQRT_2, angle_m45.sin().0);
1072 assert_eq!(core::f64::consts::FRAC_1_SQRT_2, angle_m45.cos().0);
1073 assert_eq!(-45.0, Degrees::from(angle_m45).0);
1074 assert_eq!(-core::f64::consts::FRAC_PI_4, Radians::from(angle_m45).0);
1075
1076 let angle_60 = Angle::from((Degrees(-140.0), Degrees(160.0)));
1077 assert!(angle_60.is_valid());
1078 assert_eq!(libm::sqrt(3.0) / 2.0, angle_60.sin().0);
1079 assert_eq!(0.5, angle_60.cos().0);
1080 assert_eq!(60.0, Degrees::from(angle_60).0);
1081 // Fails because PI is irrational
1082 // assert_eq!(core::f64::consts::FRAC_PI_3, Radians::from(angle_60).0);
1083 assert!(is_within_tolerance(
1084 core::f64::consts::FRAC_PI_3,
1085 Radians::from(angle_60).0,
1086 f64::EPSILON
1087 ));
1088
1089 let angle_30 = Angle::from((Degrees(-155.0), Degrees(175.0)));
1090 // assert!(angle_30.is_valid());
1091 assert_eq!(0.5, angle_30.sin().0);
1092 assert_eq!(libm::sqrt(3.0) / 2.0, angle_30.cos().0);
1093 assert_eq!(30.0, Degrees::from(angle_30).0);
1094 assert_eq!(core::f64::consts::FRAC_PI_6, Radians::from(angle_30).0);
1095
1096 let angle_120 = Angle::from(Degrees(120.0));
1097 assert!(angle_120.is_valid());
1098 assert_eq!(libm::sqrt(3.0) / 2.0, angle_120.sin().0);
1099 assert_eq!(-0.5, angle_120.cos().0);
1100 assert_eq!(120.0, Degrees::from(angle_120).0);
1101 assert_eq!(
1102 2.0 * core::f64::consts::FRAC_PI_3,
1103 Radians::from(angle_120).0
1104 );
1105
1106 let angle_m120 = Angle::from(Degrees(-120.0));
1107 assert!(angle_m120.is_valid());
1108 assert_eq!(-libm::sqrt(3.0) / 2.0, angle_m120.sin().0);
1109 assert_eq!(-0.5, angle_m120.cos().0);
1110 assert_eq!(-120.0, Degrees::from(angle_m120).0);
1111 assert_eq!(
1112 -2.0 * core::f64::consts::FRAC_PI_3,
1113 Radians::from(angle_m120).0
1114 );
1115
1116 let angle_m140 = Angle::from(Degrees(-140.0));
1117 assert!(angle_m140.is_valid());
1118 assert!(is_within_tolerance(
1119 -0.6427876096865393,
1120 angle_m140.sin().0,
1121 f64::EPSILON
1122 ));
1123 assert!(is_within_tolerance(
1124 -0.7660444431189781,
1125 angle_m140.cos().0,
1126 f64::EPSILON
1127 ));
1128 assert_eq!(-140.0, Degrees::from(angle_m140).0);
1129
1130 let angle_180 = Angle::from(Degrees(180.0));
1131 assert!(angle_180.is_valid());
1132 assert_eq!(0.0, angle_180.sin().0);
1133 assert_eq!(-1.0, angle_180.cos().0);
1134 assert_eq!(180.0, Degrees::from(angle_180).0);
1135 assert_eq!(core::f64::consts::PI, Radians::from(angle_180).0);
1136 }
1137
1138 #[test]
1139 fn test_angle_maths() {
1140 let degrees_30 = Angle::from(Degrees(30.0));
1141 let degrees_60 = Angle::from(Degrees(60.0));
1142 let degrees_120 = Angle::from(Degrees(120.0));
1143 let degrees_m120 = -degrees_120;
1144
1145 assert!(degrees_120 < degrees_m120);
1146 assert_eq!(degrees_120, degrees_m120.abs());
1147 assert_eq!(degrees_60, degrees_m120.opposite());
1148 assert_eq!(degrees_120, degrees_30.quarter_turn_cw());
1149 assert_eq!(degrees_30, degrees_120.quarter_turn_ccw());
1150 assert_eq!(degrees_60, degrees_120.negate_cos());
1151
1152 let result = degrees_m120 - degrees_120;
1153 assert_eq!(Degrees(120.0).0, Degrees::from(result).0);
1154
1155 let mut result = degrees_m120;
1156 result -= degrees_120;
1157 assert_eq!(Degrees(120.0).0, Degrees::from(result).0);
1158
1159 let result = degrees_120 + degrees_120;
1160 assert_eq!(Degrees(-120.0).0, Degrees::from(result).0);
1161
1162 let mut result = degrees_120;
1163 result += degrees_120;
1164 assert_eq!(Degrees(-120.0).0, Degrees::from(result).0);
1165
1166 let result = degrees_60.double();
1167 assert_eq!(Degrees(120.0).0, Degrees::from(result).0);
1168
1169 let result = degrees_120.double();
1170 assert_eq!(Degrees(-120.0).0, Degrees::from(result).0);
1171
1172 assert_eq!(-degrees_60, degrees_m120.half());
1173 }
1174
1175 #[test]
1176 fn test_two_sum() {
1177 let result = two_sum(1.0, 1.0);
1178 assert_eq!(2.0, result.0);
1179 assert_eq!(0.0, result.1);
1180
1181 let result = two_sum(1.0, 1e-53);
1182 assert_eq!(1.0, result.0);
1183 assert_eq!(1e-53, result.1);
1184
1185 let result = two_sum(1.0, -1e-53);
1186 assert_eq!(1.0, result.0);
1187 assert_eq!(-1e-53, result.1);
1188 }
1189
1190 #[test]
1191 fn test_min_and_max() {
1192 // min -ve and +ve
1193 assert_eq!(min(-1.0 + f64::EPSILON, -1.0), -1.0);
1194 assert_eq!(min(1.0, 1.0 + f64::EPSILON), 1.0);
1195 // max -ve and +ve
1196 assert_eq!(max(-1.0, -1.0 - f64::EPSILON), -1.0);
1197 assert_eq!(max(1.0 - f64::EPSILON, 1.0), 1.0);
1198 }
1199
1200 #[test]
1201 fn test_is_within_tolerance() {
1202 // below minimum tolerance
1203 assert_eq!(
1204 false,
1205 is_within_tolerance(1.0 - 2.0 * f64::EPSILON, 1.0, f64::EPSILON)
1206 );
1207
1208 // within minimum tolerance
1209 assert!(is_within_tolerance(1.0 - f64::EPSILON, 1.0, f64::EPSILON));
1210
1211 // within maximum tolerance
1212 assert!(is_within_tolerance(1.0 + f64::EPSILON, 1.0, f64::EPSILON));
1213
1214 // above maximum tolerance
1215 assert_eq!(
1216 false,
1217 is_within_tolerance(1.0 + 2.0 * f64::EPSILON, 1.0, f64::EPSILON)
1218 );
1219 }
1220}