apache-avro 0.17.0

A library for working with Apache Avro in Rust
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
<!---
  Licensed to the Apache Software Foundation (ASF) under one
  or more contributor license agreements.  See the NOTICE file
  distributed with this work for additional information
  regarding copyright ownership.  The ASF licenses this file
  to you under the Apache License, Version 2.0 (the
  "License"); you may not use this file except in compliance
  with the License.  You may obtain a copy of the License at

    http://www.apache.org/licenses/LICENSE-2.0

  Unless required by applicable law or agreed to in writing,
  software distributed under the License is distributed on an
  "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
  KIND, either express or implied.  See the License for the
  specific language governing permissions and limitations
  under the License.
-->

# apache-avro

[![Latest Version](https://img.shields.io/crates/v/apache-avro.svg)](https://crates.io/crates/apache-avro)
[![Rust Continuous Integration](https://github.com/apache/avro/actions/workflows/test-lang-rust-ci.yml/badge.svg)](https://github.com/apache/avro/actions/workflows/test-lang-rust-ci.yml)
[![Latest Documentation](https://docs.rs/apache-avro/badge.svg)](https://docs.rs/apache-avro)
[![Apache License 2.0](https://img.shields.io/badge/license-Apache%202-blue.svg)](https://github.com/apache/avro/blob/main/LICENSE.txt)

<!-- cargo-rdme start -->

A library for working with [Apache Avro](https://avro.apache.org/) in Rust.

Please check our [documentation](https://docs.rs/apache-avro) for examples, tutorials and API reference.

**[Apache Avro](https://avro.apache.org/)** is a data serialization system which provides rich
data structures and a compact, fast, binary data format.

All data in Avro is schematized, as in the following example:

```json
{
    "type": "record",
    "name": "test",
    "fields": [
        {"name": "a", "type": "long", "default": 42},
        {"name": "b", "type": "string"}
    ]
}
```

There are basically two ways of handling Avro data in Rust:

* **as Avro-specialized data types** based on an Avro schema;
* **as generic Rust serde-compatible types** implementing/deriving `Serialize` and
`Deserialize`;

**apache-avro** provides a way to read and write both these data representations easily and
efficiently.

## Installing the library


Add to your `Cargo.toml`:

```toml
[dependencies]
apache-avro = "x.y"
```

Or in case you want to leverage the **Snappy** codec:

```toml
[dependencies.apache-avro]
version = "x.y"
features = ["snappy"]
```

Or in case you want to leverage the **Zstandard** codec:

```toml
[dependencies.apache-avro]
version = "x.y"
features = ["zstandard"]
```

Or in case you want to leverage the **Bzip2** codec:

```toml
[dependencies.apache-avro]
version = "x.y"
features = ["bzip"]
```

Or in case you want to leverage the **Xz** codec:

```toml
[dependencies.apache-avro]
version = "x.y"
features = ["xz"]
```

## Upgrading to a newer minor version

The library is still in beta, so there might be backward-incompatible changes between minor
versions. If you have troubles upgrading, check the [version upgrade guide](https://github.com/apache/avro/blob/main/lang/rust/migration_guide.md).

## Defining a schema

An Avro data cannot exist without an Avro schema. Schemas **must** be used while writing and
**can** be used while reading and they carry the information regarding the type of data we are
handling. Avro schemas are used for both schema validation and resolution of Avro data.

Avro schemas are defined in **JSON** format and can just be parsed out of a raw string:

```rust
use apache_avro::Schema;

let raw_schema = r#"
    {
        "type": "record",
        "name": "test",
        "fields": [
            {"name": "a", "type": "long", "default": 42},
            {"name": "b", "type": "string"}
        ]
    }
"#;

// if the schema is not valid, this function will return an error
let schema = Schema::parse_str(raw_schema).unwrap();

// schemas can be printed for debugging
println!("{:?}", schema);
```

Additionally, a list of of definitions (which may depend on each other) can be given and all of
them will be parsed into the corresponding schemas.

```rust
use apache_avro::Schema;

let raw_schema_1 = r#"{
        "name": "A",
        "type": "record",
        "fields": [
            {"name": "field_one", "type": "float"}
        ]
    }"#;

// This definition depends on the definition of A above
let raw_schema_2 = r#"{
        "name": "B",
        "type": "record",
        "fields": [
            {"name": "field_one", "type": "A"}
        ]
    }"#;

// if the schemas are not valid, this function will return an error
let schemas = Schema::parse_list(&[raw_schema_1, raw_schema_2]).unwrap();

// schemas can be printed for debugging
println!("{:?}", schemas);
```
*N.B.* It is important to note that the composition of schema definitions requires schemas with names.
For this reason, only schemas of type Record, Enum, and Fixed should be input into this function.

The library provides also a programmatic interface to define schemas without encoding them in
JSON (for advanced use), but we highly recommend the JSON interface. Please read the API
reference in case you are interested.

For more information about schemas and what kind of information you can encapsulate in them,
please refer to the appropriate section of the
[Avro Specification](https://avro.apache.org/docs/current/spec.html#schemas).

## Writing data

Once we have defined a schema, we are ready to serialize data in Avro, validating them against
the provided schema in the process. As mentioned before, there are two ways of handling Avro
data in Rust.

**NOTE:** The library also provides a low-level interface for encoding a single datum in Avro
bytecode without generating markers and headers (for advanced use), but we highly recommend the
`Writer` interface to be totally Avro-compatible. Please read the API reference in case you are
interested.

### The avro way

Given that the schema we defined above is that of an Avro *Record*, we are going to use the
associated type provided by the library to specify the data we want to serialize:

```rust
use apache_avro::types::Record;
use apache_avro::Writer;
// a writer needs a schema and something to write to
let mut writer = Writer::new(&schema, Vec::new());

// the Record type models our Record schema
let mut record = Record::new(writer.schema()).unwrap();
record.put("a", 27i64);
record.put("b", "foo");

// schema validation happens here
writer.append(record).unwrap();

// this is how to get back the resulting avro bytecode
// this performs a flush operation to make sure data has been written, so it can fail
// you can also call `writer.flush()` yourself without consuming the writer
let encoded = writer.into_inner().unwrap();
```

The vast majority of the times, schemas tend to define a record as a top-level container
encapsulating all the values to convert as fields and providing documentation for them, but in
case we want to directly define an Avro value, the library offers that capability via the
`Value` interface.

```rust
use apache_avro::types::Value;

let mut value = Value::String("foo".to_string());
```

### The serde way

Given that the schema we defined above is an Avro *Record*, we can directly use a Rust struct
deriving `Serialize` to model our data:

```rust
use apache_avro::Writer;

#[derive(Debug, Serialize)]
struct Test {
    a: i64,
    b: String,
}

// a writer needs a schema and something to write to
let mut writer = Writer::new(&schema, Vec::new());

// the structure models our Record schema
let test = Test {
    a: 27,
    b: "foo".to_owned(),
};

// schema validation happens here
writer.append_ser(test).unwrap();

// this is how to get back the resulting avro bytecode
// this performs a flush operation to make sure data is written, so it can fail
// you can also call `writer.flush()` yourself without consuming the writer
let encoded = writer.into_inner();
```

The vast majority of the times, schemas tend to define a record as a top-level container
encapsulating all the values to convert as fields and providing documentation for them, but in
case we want to directly define an Avro value, any type implementing `Serialize` should work.

```rust
let mut value = "foo".to_string();
```

### Using codecs to compress data

Avro supports three different compression codecs when encoding data:

* **Null**: leaves data uncompressed;
* **Deflate**: writes the data block using the deflate algorithm as specified in RFC 1951, and
typically implemented using the zlib library. Note that this format (unlike the "zlib format" in
RFC 1950) does not have a checksum.
* **Snappy**: uses Google's [Snappy]http://google.github.io/snappy/ compression library. Each
compressed block is followed by the 4-byte, big-endianCRC32 checksum of the uncompressed data in
the block. You must enable the `snappy` feature to use this codec.
* **Zstandard**: uses Facebook's [Zstandard]https://facebook.github.io/zstd/ compression library.
You must enable the `zstandard` feature to use this codec.
* **Bzip2**: uses [BZip2]https://sourceware.org/bzip2/ compression library.
You must enable the `bzip` feature to use this codec.
* **Xz**: uses [xz2]https://github.com/alexcrichton/xz2-rs compression library.
  You must enable the `xz` feature to use this codec.

To specify a codec to use to compress data, just specify it while creating a `Writer`:
```rust
use apache_avro::Writer;
use apache_avro::Codec;
let mut writer = Writer::with_codec(&schema, Vec::new(), Codec::Deflate);
```

## Reading data

As far as reading Avro encoded data goes, we can just use the schema encoded with the data to
read them. The library will do it automatically for us, as it already does for the compression
codec:

```rust
use apache_avro::Reader;
// reader creation can fail in case the input to read from is not Avro-compatible or malformed
let reader = Reader::new(&input[..]).unwrap();
```

In case, instead, we want to specify a different (but compatible) reader schema from the schema
the data has been written with, we can just do as the following:
```rust
use apache_avro::Schema;
use apache_avro::Reader;

let reader_raw_schema = r#"
    {
        "type": "record",
        "name": "test",
        "fields": [
            {"name": "a", "type": "long", "default": 42},
            {"name": "b", "type": "string"},
            {"name": "c", "type": "long", "default": 43}
        ]
    }
"#;

let reader_schema = Schema::parse_str(reader_raw_schema).unwrap();

// reader creation can fail in case the input to read from is not Avro-compatible or malformed
let reader = Reader::with_schema(&reader_schema, &input[..]).unwrap();
```

The library will also automatically perform schema resolution while reading the data.

For more information about schema compatibility and resolution, please refer to the
[Avro Specification](https://avro.apache.org/docs/current/spec.html#schemas).

As usual, there are two ways to handle Avro data in Rust, as you can see below.

**NOTE:** The library also provides a low-level interface for decoding a single datum in Avro
bytecode without markers and header (for advanced use), but we highly recommend the `Reader`
interface to leverage all Avro features. Please read the API reference in case you are
interested.


### The avro way

We can just read directly instances of `Value` out of the `Reader` iterator:

```rust
use apache_avro::Reader;
let reader = Reader::new(&input[..]).unwrap();

// value is a Result  of an Avro Value in case the read operation fails
for value in reader {
    println!("{:?}", value.unwrap());
}

```

### The serde way

Alternatively, we can use a Rust type implementing `Deserialize` and representing our schema to
read the data into:

```rust
use apache_avro::Reader;
use apache_avro::from_value;

#[derive(Debug, Deserialize)]
struct Test {
    a: i64,
    b: String,
}

let reader = Reader::new(&input[..]).unwrap();

// value is a Result in case the read operation fails
for value in reader {
    println!("{:?}", from_value::<Test>(&value.unwrap()));
}
```

## Putting everything together

The following is an example of how to combine everything showed so far and it is meant to be a
quick reference of the library interface:

```rust
use apache_avro::{Codec, Reader, Schema, Writer, from_value, types::Record, Error};
use serde::{Deserialize, Serialize};

#[derive(Debug, Deserialize, Serialize)]
struct Test {
    a: i64,
    b: String,
}

fn main() -> Result<(), Error> {
    let raw_schema = r#"
        {
            "type": "record",
            "name": "test",
            "fields": [
                {"name": "a", "type": "long", "default": 42},
                {"name": "b", "type": "string"}
            ]
        }
    "#;

    let schema = Schema::parse_str(raw_schema)?;

    println!("{:?}", schema);

    let mut writer = Writer::with_codec(&schema, Vec::new(), Codec::Deflate);

    let mut record = Record::new(writer.schema()).unwrap();
    record.put("a", 27i64);
    record.put("b", "foo");

    writer.append(record)?;

    let test = Test {
        a: 27,
        b: "foo".to_owned(),
    };

    writer.append_ser(test)?;

    let input = writer.into_inner()?;
    let reader = Reader::with_schema(&schema, &input[..])?;

    for record in reader {
        println!("{:?}", from_value::<Test>(&record?));
    }
    Ok(())
}
```

`apache-avro` also supports the logical types listed in the [Avro specification](https://avro.apache.org/docs/current/spec.html#Logical+Types):

1. `Decimal` using the [`num_bigint`]https://docs.rs/num-bigint/latest/num_bigint crate
1. UUID using the [`uuid`]https://docs.rs/uuid/latest/uuid crate
1. Date, Time (milli) as `i32` and Time (micro) as `i64`
1. Timestamp (milli and micro) as `i64`
1. Local timestamp (milli and micro) as `i64`
1. Duration as a custom type with `months`, `days` and `millis` accessor methods each of which returns an `i32`

Note that the on-disk representation is identical to the underlying primitive/complex type.

#### Read and write logical types

```rust
use apache_avro::{
    types::Record, types::Value, Codec, Days, Decimal, Duration, Millis, Months, Reader, Schema,
    Writer, Error,
};
use num_bigint::ToBigInt;

fn main() -> Result<(), Error> {
    let raw_schema = r#"
    {
      "type": "record",
      "name": "test",
      "fields": [
        {
          "name": "decimal_fixed",
          "type": {
            "type": "fixed",
            "size": 2,
            "name": "decimal"
          },
          "logicalType": "decimal",
          "precision": 4,
          "scale": 2
        },
        {
          "name": "decimal_var",
          "type": "bytes",
          "logicalType": "decimal",
          "precision": 10,
          "scale": 3
        },
        {
          "name": "uuid",
          "type": "string",
          "logicalType": "uuid"
        },
        {
          "name": "date",
          "type": "int",
          "logicalType": "date"
        },
        {
          "name": "time_millis",
          "type": "int",
          "logicalType": "time-millis"
        },
        {
          "name": "time_micros",
          "type": "long",
          "logicalType": "time-micros"
        },
        {
          "name": "timestamp_millis",
          "type": "long",
          "logicalType": "timestamp-millis"
        },
        {
          "name": "timestamp_micros",
          "type": "long",
          "logicalType": "timestamp-micros"
        },
        {
          "name": "local_timestamp_millis",
          "type": "long",
          "logicalType": "local-timestamp-millis"
        },
        {
          "name": "local_timestamp_micros",
          "type": "long",
          "logicalType": "local-timestamp-micros"
        },
        {
          "name": "duration",
          "type": {
            "type": "fixed",
            "size": 12,
            "name": "duration"
          },
          "logicalType": "duration"
        }
      ]
    }
    "#;

    let schema = Schema::parse_str(raw_schema)?;

    println!("{:?}", schema);

    let mut writer = Writer::with_codec(&schema, Vec::new(), Codec::Deflate);

    let mut record = Record::new(writer.schema()).unwrap();
    record.put("decimal_fixed", Decimal::from(9936.to_bigint().unwrap().to_signed_bytes_be()));
    record.put("decimal_var", Decimal::from((-32442.to_bigint().unwrap()).to_signed_bytes_be()));
    record.put("uuid", uuid::Uuid::parse_str("550e8400-e29b-41d4-a716-446655440000").unwrap());
    record.put("date", Value::Date(1));
    record.put("time_millis", Value::TimeMillis(2));
    record.put("time_micros", Value::TimeMicros(3));
    record.put("timestamp_millis", Value::TimestampMillis(4));
    record.put("timestamp_micros", Value::TimestampMicros(5));
    record.put("timestamp_nanos", Value::TimestampNanos(6));
    record.put("local_timestamp_millis", Value::LocalTimestampMillis(4));
    record.put("local_timestamp_micros", Value::LocalTimestampMicros(5));
    record.put("local_timestamp_nanos", Value::LocalTimestampMicros(6));
    record.put("duration", Duration::new(Months::new(6), Days::new(7), Millis::new(8)));

    writer.append(record)?;

    let input = writer.into_inner()?;
    let reader = Reader::with_schema(&schema, &input[..])?;

    for record in reader {
        println!("{:?}", record?);
    }
    Ok(())
}
```

### Calculate Avro schema fingerprint

This library supports calculating the following fingerprints:

 - SHA-256
 - MD5
 - Rabin

An example of fingerprinting for the supported fingerprints:

```rust
use apache_avro::rabin::Rabin;
use apache_avro::{Schema, Error};
use md5::Md5;
use sha2::Sha256;

fn main() -> Result<(), Error> {
    let raw_schema = r#"
        {
            "type": "record",
            "name": "test",
            "fields": [
                {"name": "a", "type": "long", "default": 42},
                {"name": "b", "type": "string"}
            ]
        }
    "#;
    let schema = Schema::parse_str(raw_schema)?;
    println!("{}", schema.fingerprint::<Sha256>());
    println!("{}", schema.fingerprint::<Md5>());
    println!("{}", schema.fingerprint::<Rabin>());
    Ok(())
}
```

### Ill-formed data

In order to ease decoding, the Binary Encoding specification of Avro data
requires some fields to have their length encoded alongside the data.

If encoded data passed to a `Reader` has been ill-formed, it can happen that
the bytes meant to contain the length of data are bogus and could result
in extravagant memory allocation.

To shield users from ill-formed data, `apache-avro` sets a limit (default: 512MB)
to any allocation it will perform when decoding data.

If you expect some of your data fields to be larger than this limit, be sure
to make use of the `max_allocation_bytes` function before reading **any** data
(we leverage Rust's [`std::sync::Once`](https://doc.rust-lang.org/std/sync/struct.Once.html)
mechanism to initialize this value, if
any call to decode is made before a call to `max_allocation_bytes`, the limit
will be 512MB throughout the lifetime of the program).


```rust
use apache_avro::max_allocation_bytes;

max_allocation_bytes(2 * 1024 * 1024 * 1024);  // 2GB

// ... happily decode large data

```

### Check schemas compatibility

This library supports checking for schemas compatibility.

Examples of checking for compatibility:

1. Compatible schemas

Explanation: an int array schema can be read by a long array schema- an int
(32bit signed integer) fits into a long (64bit signed integer)

```rust
use apache_avro::{Schema, schema_compatibility::SchemaCompatibility};

let writers_schema = Schema::parse_str(r#"{"type": "array", "items":"int"}"#).unwrap();
let readers_schema = Schema::parse_str(r#"{"type": "array", "items":"long"}"#).unwrap();
assert!(SchemaCompatibility::can_read(&writers_schema, &readers_schema).is_ok());
```

2. Incompatible schemas (a long array schema cannot be read by an int array schema)

Explanation: a long array schema cannot be read by an int array schema- a
long (64bit signed integer) does not fit into an int (32bit signed integer)

```rust
use apache_avro::{Schema, schema_compatibility::SchemaCompatibility};

let writers_schema = Schema::parse_str(r#"{"type": "array", "items":"long"}"#).unwrap();
let readers_schema = Schema::parse_str(r#"{"type": "array", "items":"int"}"#).unwrap();
assert!(SchemaCompatibility::can_read(&writers_schema, &readers_schema).is_err());
```
### Custom names validators

By default the library follows the rules by the
[Avro specification](https://avro.apache.org/docs/1.11.1/specification/#names)!

Some of the other Apache Avro language SDKs are not that strict and allow more
characters in names. For interoperability with those SDKs, the library provides
a way to customize the names validation.

```rust
use apache_avro::AvroResult;
use apache_avro::schema::Namespace;
use apache_avro::validator::{SchemaNameValidator, set_schema_name_validator};

struct MyCustomValidator;

impl SchemaNameValidator for MyCustomValidator {
    fn validate(&self, name: &str) -> AvroResult<(String, Namespace)> {
        todo!()
    }
}

// don't parse any schema before registering the custom validator(s) !

set_schema_name_validator(Box::new(MyCustomValidator));

// ... use the library
```

Similar logic could be applied to the schema namespace, enum symbols and field names validation.

**Note**: the library allows to set a validator only once per the application lifetime!
If the application parses schemas before setting a validator, the default validator will be
registered and used!

### Custom schema equality comparators

The library provides two implementations of schema equality comparators:
1. `SpecificationEq` - a comparator that serializes the schemas to their
canonical forms (i.e. JSON) and compares them as strings. It is the only implementation
until apache_avro 0.16.0.
See the [Avro specification]https://avro.apache.org/docs/1.11.1/specification/#parsing-canonical-form-for-schemas
for more information!
2. `StructFieldEq` - a comparator that compares the schemas structurally.
It is faster than the `SpecificationEq` because it returns `false` as soon as a difference
is found and is recommended for use!
It is the default comparator since apache_avro 0.17.0.

To use a custom comparator, you need to implement the `SchemataEq` trait and set it using the
`set_schemata_equality_comparator` function:

```rust
use apache_avro::{AvroResult, Schema};
use apache_avro::schema::Namespace;
use apache_avro::schema_equality::{SchemataEq, set_schemata_equality_comparator};

#[derive(Debug)]
struct MyCustomSchemataEq;

impl SchemataEq for MyCustomSchemataEq {
    fn compare(&self, schema_one: &Schema, schema_two: &Schema) -> bool {
        todo!()
    }
}

// don't parse any schema before registering the custom comparator !

set_schemata_equality_comparator(Box::new(MyCustomSchemataEq));

// ... use the library
```
**Note**: the library allows to set a comparator only once per the application lifetime!
If the application parses schemas before setting a comparator, the default comparator will be
registered and used!

<!-- cargo-rdme end -->

## Minimal supported Rust version

1.73.0

## License
This project is licensed under [Apache License 2.0](https://github.com/apache/avro/blob/main/LICENSE.txt).

## Contributing
Everyone is encouraged to contribute! You can contribute by forking the GitHub repo and making a pull request or opening an issue.
All contributions will be licensed under [Apache License 2.0](https://github.com/apache/avro/blob/main/LICENSE.txt).

Please consider adding documentation and tests!
If you introduce a backward-incompatible change, please consider adding instruction to migrate in the [Migration Guide](migration_guide.md)
If you modify the crate documentation in `lib.rs`, run `make readme` to sync the README file.