bindgen 0.63.0

Automatically generates Rust FFI bindings to C and C++ libraries.
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
//! A higher level Clang API built on top of the generated bindings in the
//! `clang_sys` module.

#![allow(non_upper_case_globals, dead_code)]

use crate::ir::context::BindgenContext;
use clang_sys::*;
use std::ffi::{CStr, CString};
use std::fmt;
use std::hash::Hash;
use std::hash::Hasher;
use std::os::raw::{c_char, c_int, c_longlong, c_uint, c_ulong, c_ulonglong};
use std::{mem, ptr, slice};

/// Type representing a clang attribute.
///
/// Values of this type can be used to check for different attributes using the `has_attrs`
/// function.
pub struct Attribute {
    name: &'static [u8],
    kind: Option<CXCursorKind>,
    token_kind: CXTokenKind,
}

impl Attribute {
    /// A `warn_unused_result` attribute.
    pub const MUST_USE: Self = Self {
        name: b"warn_unused_result",
        // FIXME(emilio): clang-sys doesn't expose `CXCursor_WarnUnusedResultAttr` (from clang 9).
        kind: Some(440),
        token_kind: CXToken_Identifier,
    };

    /// A `_Noreturn` attribute.
    pub const NO_RETURN: Self = Self {
        name: b"_Noreturn",
        kind: None,
        token_kind: CXToken_Keyword,
    };

    /// A `[[noreturn]]` attribute.
    pub const NO_RETURN_CPP: Self = Self {
        name: b"noreturn",
        kind: None,
        token_kind: CXToken_Identifier,
    };
}

/// A cursor into the Clang AST, pointing to an AST node.
///
/// We call the AST node pointed to by the cursor the cursor's "referent".
#[derive(Copy, Clone)]
pub struct Cursor {
    x: CXCursor,
}

impl fmt::Debug for Cursor {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        write!(
            fmt,
            "Cursor({} kind: {}, loc: {}, usr: {:?})",
            self.spelling(),
            kind_to_str(self.kind()),
            self.location(),
            self.usr()
        )
    }
}

impl Cursor {
    /// Get the Unified Symbol Resolution for this cursor's referent, if
    /// available.
    ///
    /// The USR can be used to compare entities across translation units.
    pub fn usr(&self) -> Option<String> {
        let s = unsafe { cxstring_into_string(clang_getCursorUSR(self.x)) };
        if s.is_empty() {
            None
        } else {
            Some(s)
        }
    }

    /// Is this cursor's referent a declaration?
    pub fn is_declaration(&self) -> bool {
        unsafe { clang_isDeclaration(self.kind()) != 0 }
    }

    /// Is this cursor's referent an anonymous record or so?
    pub fn is_anonymous(&self) -> bool {
        unsafe { clang_Cursor_isAnonymous(self.x) != 0 }
    }

    /// Get this cursor's referent's spelling.
    pub fn spelling(&self) -> String {
        unsafe { cxstring_into_string(clang_getCursorSpelling(self.x)) }
    }

    /// Get this cursor's referent's display name.
    ///
    /// This is not necessarily a valid identifier. It includes extra
    /// information, such as parameters for a function, etc.
    pub fn display_name(&self) -> String {
        unsafe { cxstring_into_string(clang_getCursorDisplayName(self.x)) }
    }

    /// Get the mangled name of this cursor's referent.
    pub fn mangling(&self) -> String {
        unsafe { cxstring_into_string(clang_Cursor_getMangling(self.x)) }
    }

    /// Gets the C++ manglings for this cursor, or an error if the manglings
    /// are not available.
    pub fn cxx_manglings(&self) -> Result<Vec<String>, ()> {
        use clang_sys::*;
        unsafe {
            let manglings = clang_Cursor_getCXXManglings(self.x);
            if manglings.is_null() {
                return Err(());
            }
            let count = (*manglings).Count as usize;

            let mut result = Vec::with_capacity(count);
            for i in 0..count {
                let string_ptr = (*manglings).Strings.add(i);
                result.push(cxstring_to_string_leaky(*string_ptr));
            }
            clang_disposeStringSet(manglings);
            Ok(result)
        }
    }

    /// Returns whether the cursor refers to a built-in definition.
    pub fn is_builtin(&self) -> bool {
        let (file, _, _, _) = self.location().location();
        file.name().is_none()
    }

    /// Get the `Cursor` for this cursor's referent's lexical parent.
    ///
    /// The lexical parent is the parent of the definition. The semantic parent
    /// is the parent of the declaration. Generally, the lexical parent doesn't
    /// have any effect on semantics, while the semantic parent does.
    ///
    /// In the following snippet, the `Foo` class would be the semantic parent
    /// of the out-of-line `method` definition, while the lexical parent is the
    /// translation unit.
    ///
    /// ```c++
    /// class Foo {
    ///     void method();
    /// };
    ///
    /// void Foo::method() { /* ... */ }
    /// ```
    pub fn lexical_parent(&self) -> Cursor {
        unsafe {
            Cursor {
                x: clang_getCursorLexicalParent(self.x),
            }
        }
    }

    /// Get the referent's semantic parent, if one is available.
    ///
    /// See documentation for `lexical_parent` for details on semantic vs
    /// lexical parents.
    pub fn fallible_semantic_parent(&self) -> Option<Cursor> {
        let sp = unsafe {
            Cursor {
                x: clang_getCursorSemanticParent(self.x),
            }
        };
        if sp == *self || !sp.is_valid() {
            return None;
        }
        Some(sp)
    }

    /// Get the referent's semantic parent.
    ///
    /// See documentation for `lexical_parent` for details on semantic vs
    /// lexical parents.
    pub fn semantic_parent(&self) -> Cursor {
        self.fallible_semantic_parent().unwrap()
    }

    /// Return the number of template arguments used by this cursor's referent,
    /// if the referent is either a template instantiation. Returns `None`
    /// otherwise.
    ///
    /// NOTE: This may not return `Some` for partial template specializations,
    /// see #193 and #194.
    pub fn num_template_args(&self) -> Option<u32> {
        // XXX: `clang_Type_getNumTemplateArguments` is sort of reliable, while
        // `clang_Cursor_getNumTemplateArguments` is totally unreliable.
        // Therefore, try former first, and only fallback to the latter if we
        // have to.
        self.cur_type()
            .num_template_args()
            .or_else(|| {
                let n: c_int =
                    unsafe { clang_Cursor_getNumTemplateArguments(self.x) };

                if n >= 0 {
                    Some(n as u32)
                } else {
                    debug_assert_eq!(n, -1);
                    None
                }
            })
            .or_else(|| {
                let canonical = self.canonical();
                if canonical != *self {
                    canonical.num_template_args()
                } else {
                    None
                }
            })
    }

    /// Get a cursor pointing to this referent's containing translation unit.
    ///
    /// Note that we shouldn't create a `TranslationUnit` struct here, because
    /// bindgen assumes there will only be one of them alive at a time, and
    /// disposes it on drop. That can change if this would be required, but I
    /// think we can survive fine without it.
    pub fn translation_unit(&self) -> Cursor {
        assert!(self.is_valid());
        unsafe {
            let tu = clang_Cursor_getTranslationUnit(self.x);
            let cursor = Cursor {
                x: clang_getTranslationUnitCursor(tu),
            };
            assert!(cursor.is_valid());
            cursor
        }
    }

    /// Is the referent a top level construct?
    pub fn is_toplevel(&self) -> bool {
        let mut semantic_parent = self.fallible_semantic_parent();

        while semantic_parent.is_some() &&
            (semantic_parent.unwrap().kind() == CXCursor_Namespace ||
                semantic_parent.unwrap().kind() ==
                    CXCursor_NamespaceAlias ||
                semantic_parent.unwrap().kind() == CXCursor_NamespaceRef)
        {
            semantic_parent =
                semantic_parent.unwrap().fallible_semantic_parent();
        }

        let tu = self.translation_unit();
        // Yes, this can happen with, e.g., macro definitions.
        semantic_parent == tu.fallible_semantic_parent()
    }

    /// There are a few kinds of types that we need to treat specially, mainly
    /// not tracking the type declaration but the location of the cursor, given
    /// clang doesn't expose a proper declaration for these types.
    pub fn is_template_like(&self) -> bool {
        matches!(
            self.kind(),
            CXCursor_ClassTemplate |
                CXCursor_ClassTemplatePartialSpecialization |
                CXCursor_TypeAliasTemplateDecl
        )
    }

    /// Is this Cursor pointing to a function-like macro definition?
    pub fn is_macro_function_like(&self) -> bool {
        unsafe { clang_Cursor_isMacroFunctionLike(self.x) != 0 }
    }

    /// Get the kind of referent this cursor is pointing to.
    pub fn kind(&self) -> CXCursorKind {
        self.x.kind
    }

    /// Returns true if the cursor is a definition
    pub fn is_definition(&self) -> bool {
        unsafe { clang_isCursorDefinition(self.x) != 0 }
    }

    /// Is the referent a template specialization?
    pub fn is_template_specialization(&self) -> bool {
        self.specialized().is_some()
    }

    /// Is the referent a fully specialized template specialization without any
    /// remaining free template arguments?
    pub fn is_fully_specialized_template(&self) -> bool {
        self.is_template_specialization() &&
            self.kind() != CXCursor_ClassTemplatePartialSpecialization &&
            self.num_template_args().unwrap_or(0) > 0
    }

    /// Is the referent a template specialization that still has remaining free
    /// template arguments?
    pub fn is_in_non_fully_specialized_template(&self) -> bool {
        if self.is_toplevel() {
            return false;
        }

        let parent = self.semantic_parent();
        if parent.is_fully_specialized_template() {
            return false;
        }

        if !parent.is_template_like() {
            return parent.is_in_non_fully_specialized_template();
        }

        true
    }

    /// Is the referent any kind of template parameter?
    pub fn is_template_parameter(&self) -> bool {
        matches!(
            self.kind(),
            CXCursor_TemplateTemplateParameter |
                CXCursor_TemplateTypeParameter |
                CXCursor_NonTypeTemplateParameter
        )
    }

    /// Does the referent's type or value depend on a template parameter?
    pub fn is_dependent_on_template_parameter(&self) -> bool {
        fn visitor(
            found_template_parameter: &mut bool,
            cur: Cursor,
        ) -> CXChildVisitResult {
            // If we found a template parameter, it is dependent.
            if cur.is_template_parameter() {
                *found_template_parameter = true;
                return CXChildVisit_Break;
            }

            // Get the referent and traverse it as well.
            if let Some(referenced) = cur.referenced() {
                if referenced.is_template_parameter() {
                    *found_template_parameter = true;
                    return CXChildVisit_Break;
                }

                referenced
                    .visit(|next| visitor(found_template_parameter, next));
                if *found_template_parameter {
                    return CXChildVisit_Break;
                }
            }

            // Continue traversing the AST at the original cursor.
            CXChildVisit_Recurse
        }

        if self.is_template_parameter() {
            return true;
        }

        let mut found_template_parameter = false;
        self.visit(|next| visitor(&mut found_template_parameter, next));

        found_template_parameter
    }

    /// Is this cursor pointing a valid referent?
    pub fn is_valid(&self) -> bool {
        unsafe { clang_isInvalid(self.kind()) == 0 }
    }

    /// Get the source location for the referent.
    pub fn location(&self) -> SourceLocation {
        unsafe {
            SourceLocation {
                x: clang_getCursorLocation(self.x),
            }
        }
    }

    /// Get the source location range for the referent.
    pub fn extent(&self) -> CXSourceRange {
        unsafe { clang_getCursorExtent(self.x) }
    }

    /// Get the raw declaration comment for this referent, if one exists.
    pub fn raw_comment(&self) -> Option<String> {
        let s = unsafe {
            cxstring_into_string(clang_Cursor_getRawCommentText(self.x))
        };
        if s.is_empty() {
            None
        } else {
            Some(s)
        }
    }

    /// Get the referent's parsed comment.
    pub fn comment(&self) -> Comment {
        unsafe {
            Comment {
                x: clang_Cursor_getParsedComment(self.x),
            }
        }
    }

    /// Get the referent's type.
    pub fn cur_type(&self) -> Type {
        unsafe {
            Type {
                x: clang_getCursorType(self.x),
            }
        }
    }

    /// Given that this cursor's referent is a reference to another type, or is
    /// a declaration, get the cursor pointing to the referenced type or type of
    /// the declared thing.
    pub fn definition(&self) -> Option<Cursor> {
        unsafe {
            let ret = Cursor {
                x: clang_getCursorDefinition(self.x),
            };

            if ret.is_valid() && ret.kind() != CXCursor_NoDeclFound {
                Some(ret)
            } else {
                None
            }
        }
    }

    /// Given that this cursor's referent is reference type, get the cursor
    /// pointing to the referenced type.
    pub fn referenced(&self) -> Option<Cursor> {
        unsafe {
            let ret = Cursor {
                x: clang_getCursorReferenced(self.x),
            };

            if ret.is_valid() {
                Some(ret)
            } else {
                None
            }
        }
    }

    /// Get the canonical cursor for this referent.
    ///
    /// Many types can be declared multiple times before finally being properly
    /// defined. This method allows us to get the canonical cursor for the
    /// referent type.
    pub fn canonical(&self) -> Cursor {
        unsafe {
            Cursor {
                x: clang_getCanonicalCursor(self.x),
            }
        }
    }

    /// Given that this cursor points to either a template specialization or a
    /// template instantiation, get a cursor pointing to the template definition
    /// that is being specialized.
    pub fn specialized(&self) -> Option<Cursor> {
        unsafe {
            let ret = Cursor {
                x: clang_getSpecializedCursorTemplate(self.x),
            };
            if ret.is_valid() {
                Some(ret)
            } else {
                None
            }
        }
    }

    /// Assuming that this cursor's referent is a template declaration, get the
    /// kind of cursor that would be generated for its specializations.
    pub fn template_kind(&self) -> CXCursorKind {
        unsafe { clang_getTemplateCursorKind(self.x) }
    }

    /// Traverse this cursor's referent and its children.
    ///
    /// Call the given function on each AST node traversed.
    pub fn visit<Visitor>(&self, mut visitor: Visitor)
    where
        Visitor: FnMut(Cursor) -> CXChildVisitResult,
    {
        let data = &mut visitor as *mut Visitor;
        unsafe {
            clang_visitChildren(self.x, visit_children::<Visitor>, data.cast());
        }
    }

    /// Collect all of this cursor's children into a vec and return them.
    pub fn collect_children(&self) -> Vec<Cursor> {
        let mut children = vec![];
        self.visit(|c| {
            children.push(c);
            CXChildVisit_Continue
        });
        children
    }

    /// Does this cursor have any children?
    pub fn has_children(&self) -> bool {
        let mut has_children = false;
        self.visit(|_| {
            has_children = true;
            CXChildVisit_Break
        });
        has_children
    }

    /// Does this cursor have at least `n` children?
    pub fn has_at_least_num_children(&self, n: usize) -> bool {
        assert!(n > 0);
        let mut num_left = n;
        self.visit(|_| {
            num_left -= 1;
            if num_left == 0 {
                CXChildVisit_Break
            } else {
                CXChildVisit_Continue
            }
        });
        num_left == 0
    }

    /// Returns whether the given location contains a cursor with the given
    /// kind in the first level of nesting underneath (doesn't look
    /// recursively).
    pub fn contains_cursor(&self, kind: CXCursorKind) -> bool {
        let mut found = false;

        self.visit(|c| {
            if c.kind() == kind {
                found = true;
                CXChildVisit_Break
            } else {
                CXChildVisit_Continue
            }
        });

        found
    }

    /// Is the referent an inlined function?
    pub fn is_inlined_function(&self) -> bool {
        unsafe { clang_Cursor_isFunctionInlined(self.x) != 0 }
    }

    /// Is the referent a defaulted function?
    pub fn is_defaulted_function(&self) -> bool {
        unsafe { clang_CXXMethod_isDefaulted(self.x) != 0 }
    }

    /// Is the referent a deleted function?
    pub fn is_deleted_function(&self) -> bool {
        // Unfortunately, libclang doesn't yet have an API for checking if a
        // member function is deleted, but the following should be a good
        // enough approximation.
        // Deleted functions are implicitly inline according to paragraph 4 of
        // [dcl.fct.def.delete] in the C++ standard. Normal inline functions
        // have a definition in the same translation unit, so if this is an
        // inline function without a definition, and it's not a defaulted
        // function, we can reasonably safely conclude that it's a deleted
        // function.
        self.is_inlined_function() &&
            self.definition().is_none() &&
            !self.is_defaulted_function()
    }

    /// Is the referent a bit field declaration?
    pub fn is_bit_field(&self) -> bool {
        unsafe { clang_Cursor_isBitField(self.x) != 0 }
    }

    /// Get a cursor to the bit field's width expression, or `None` if it's not
    /// a bit field.
    pub fn bit_width_expr(&self) -> Option<Cursor> {
        if !self.is_bit_field() {
            return None;
        }

        let mut result = None;
        self.visit(|cur| {
            // The first child may or may not be a TypeRef, depending on whether
            // the field's type is builtin. Skip it.
            if cur.kind() == CXCursor_TypeRef {
                return CXChildVisit_Continue;
            }

            // The next expression or literal is the bit width.
            result = Some(cur);

            CXChildVisit_Break
        });

        result
    }

    /// Get the width of this cursor's referent bit field, or `None` if the
    /// referent is not a bit field or if the width could not be evaluated.
    pub fn bit_width(&self) -> Option<u32> {
        // It is not safe to check the bit width without ensuring it doesn't
        // depend on a template parameter. See
        // https://github.com/rust-lang/rust-bindgen/issues/2239
        if self.bit_width_expr()?.is_dependent_on_template_parameter() {
            return None;
        }

        unsafe {
            let w = clang_getFieldDeclBitWidth(self.x);
            if w == -1 {
                None
            } else {
                Some(w as u32)
            }
        }
    }

    /// Get the integer representation type used to hold this cursor's referent
    /// enum type.
    pub fn enum_type(&self) -> Option<Type> {
        unsafe {
            let t = Type {
                x: clang_getEnumDeclIntegerType(self.x),
            };
            if t.is_valid() {
                Some(t)
            } else {
                None
            }
        }
    }

    /// Get the boolean constant value for this cursor's enum variant referent.
    ///
    /// Returns None if the cursor's referent is not an enum variant.
    pub fn enum_val_boolean(&self) -> Option<bool> {
        unsafe {
            if self.kind() == CXCursor_EnumConstantDecl {
                Some(clang_getEnumConstantDeclValue(self.x) != 0)
            } else {
                None
            }
        }
    }

    /// Get the signed constant value for this cursor's enum variant referent.
    ///
    /// Returns None if the cursor's referent is not an enum variant.
    pub fn enum_val_signed(&self) -> Option<i64> {
        unsafe {
            if self.kind() == CXCursor_EnumConstantDecl {
                #[allow(clippy::unnecessary_cast)]
                Some(clang_getEnumConstantDeclValue(self.x) as i64)
            } else {
                None
            }
        }
    }

    /// Get the unsigned constant value for this cursor's enum variant referent.
    ///
    /// Returns None if the cursor's referent is not an enum variant.
    pub fn enum_val_unsigned(&self) -> Option<u64> {
        unsafe {
            if self.kind() == CXCursor_EnumConstantDecl {
                #[allow(clippy::unnecessary_cast)]
                Some(clang_getEnumConstantDeclUnsignedValue(self.x) as u64)
            } else {
                None
            }
        }
    }

    /// Does this cursor have the given attributes?
    pub fn has_attrs<const N: usize>(
        &self,
        attrs: &[Attribute; N],
    ) -> [bool; N] {
        let mut found_attrs = [false; N];
        let mut found_count = 0;

        self.visit(|cur| {
            let kind = cur.kind();
            for (idx, attr) in attrs.iter().enumerate() {
                let found_attr = &mut found_attrs[idx];
                if !*found_attr {
                    // `attr.name` and` attr.token_kind` are checked against unexposed attributes only.
                    if attr.kind.map_or(false, |k| k == kind) ||
                        (kind == CXCursor_UnexposedAttr &&
                            cur.tokens().iter().any(|t| {
                                t.kind == attr.token_kind &&
                                    t.spelling() == attr.name
                            }))
                    {
                        *found_attr = true;
                        found_count += 1;

                        if found_count == N {
                            return CXChildVisit_Break;
                        }
                    }
                }
            }

            CXChildVisit_Continue
        });

        found_attrs
    }

    /// Given that this cursor's referent is a `typedef`, get the `Type` that is
    /// being aliased.
    pub fn typedef_type(&self) -> Option<Type> {
        let inner = Type {
            x: unsafe { clang_getTypedefDeclUnderlyingType(self.x) },
        };

        if inner.is_valid() {
            Some(inner)
        } else {
            None
        }
    }

    /// Get the linkage kind for this cursor's referent.
    ///
    /// This only applies to functions and variables.
    pub fn linkage(&self) -> CXLinkageKind {
        unsafe { clang_getCursorLinkage(self.x) }
    }

    /// Get the visibility of this cursor's referent.
    pub fn visibility(&self) -> CXVisibilityKind {
        unsafe { clang_getCursorVisibility(self.x) }
    }

    /// Given that this cursor's referent is a function, return cursors to its
    /// parameters.
    ///
    /// Returns None if the cursor's referent is not a function/method call or
    /// declaration.
    pub fn args(&self) -> Option<Vec<Cursor>> {
        // match self.kind() {
        // CXCursor_FunctionDecl |
        // CXCursor_CXXMethod => {
        self.num_args().ok().map(|num| {
            (0..num)
                .map(|i| Cursor {
                    x: unsafe { clang_Cursor_getArgument(self.x, i as c_uint) },
                })
                .collect()
        })
    }

    /// Given that this cursor's referent is a function/method call or
    /// declaration, return the number of arguments it takes.
    ///
    /// Returns Err if the cursor's referent is not a function/method call or
    /// declaration.
    pub fn num_args(&self) -> Result<u32, ()> {
        unsafe {
            let w = clang_Cursor_getNumArguments(self.x);
            if w == -1 {
                Err(())
            } else {
                Ok(w as u32)
            }
        }
    }

    /// Get the access specifier for this cursor's referent.
    pub fn access_specifier(&self) -> CX_CXXAccessSpecifier {
        unsafe { clang_getCXXAccessSpecifier(self.x) }
    }

    /// Is the cursor's referrent publically accessible in C++?
    ///
    /// Returns true if self.access_specifier() is `CX_CXXPublic` or
    /// `CX_CXXInvalidAccessSpecifier`.
    pub fn public_accessible(&self) -> bool {
        let access = self.access_specifier();
        access == CX_CXXPublic || access == CX_CXXInvalidAccessSpecifier
    }

    /// Is this cursor's referent a field declaration that is marked as
    /// `mutable`?
    pub fn is_mutable_field(&self) -> bool {
        unsafe { clang_CXXField_isMutable(self.x) != 0 }
    }

    /// Get the offset of the field represented by the Cursor.
    pub fn offset_of_field(&self) -> Result<usize, LayoutError> {
        let offset = unsafe { clang_Cursor_getOffsetOfField(self.x) };

        if offset < 0 {
            Err(LayoutError::from(offset as i32))
        } else {
            Ok(offset as usize)
        }
    }

    /// Is this cursor's referent a member function that is declared `static`?
    pub fn method_is_static(&self) -> bool {
        unsafe { clang_CXXMethod_isStatic(self.x) != 0 }
    }

    /// Is this cursor's referent a member function that is declared `const`?
    pub fn method_is_const(&self) -> bool {
        unsafe { clang_CXXMethod_isConst(self.x) != 0 }
    }

    /// Is this cursor's referent a member function that is virtual?
    pub fn method_is_virtual(&self) -> bool {
        unsafe { clang_CXXMethod_isVirtual(self.x) != 0 }
    }

    /// Is this cursor's referent a member function that is pure virtual?
    pub fn method_is_pure_virtual(&self) -> bool {
        unsafe { clang_CXXMethod_isPureVirtual(self.x) != 0 }
    }

    /// Is this cursor's referent a struct or class with virtual members?
    pub fn is_virtual_base(&self) -> bool {
        unsafe { clang_isVirtualBase(self.x) != 0 }
    }

    /// Try to evaluate this cursor.
    pub fn evaluate(&self) -> Option<EvalResult> {
        EvalResult::new(*self)
    }

    /// Return the result type for this cursor
    pub fn ret_type(&self) -> Option<Type> {
        let rt = Type {
            x: unsafe { clang_getCursorResultType(self.x) },
        };
        if rt.is_valid() {
            Some(rt)
        } else {
            None
        }
    }

    /// Gets the tokens that correspond to that cursor.
    pub fn tokens(&self) -> RawTokens {
        RawTokens::new(self)
    }

    /// Gets the tokens that correspond to that cursor as  `cexpr` tokens.
    pub fn cexpr_tokens(self) -> Vec<cexpr::token::Token> {
        self.tokens()
            .iter()
            .filter_map(|token| token.as_cexpr_token())
            .collect()
    }

    /// Obtain the real path name of a cursor of InclusionDirective kind.
    ///
    /// Returns None if the cursor does not include a file, otherwise the file's full name
    pub fn get_included_file_name(&self) -> Option<String> {
        let file = unsafe { clang_sys::clang_getIncludedFile(self.x) };
        if file.is_null() {
            None
        } else {
            Some(unsafe {
                cxstring_into_string(clang_sys::clang_getFileName(file))
            })
        }
    }
}

/// A struct that owns the tokenizer result from a given cursor.
pub struct RawTokens<'a> {
    cursor: &'a Cursor,
    tu: CXTranslationUnit,
    tokens: *mut CXToken,
    token_count: c_uint,
}

impl<'a> RawTokens<'a> {
    fn new(cursor: &'a Cursor) -> Self {
        let mut tokens = ptr::null_mut();
        let mut token_count = 0;
        let range = cursor.extent();
        let tu = unsafe { clang_Cursor_getTranslationUnit(cursor.x) };
        unsafe { clang_tokenize(tu, range, &mut tokens, &mut token_count) };
        Self {
            cursor,
            tu,
            tokens,
            token_count,
        }
    }

    fn as_slice(&self) -> &[CXToken] {
        if self.tokens.is_null() {
            return &[];
        }
        unsafe { slice::from_raw_parts(self.tokens, self.token_count as usize) }
    }

    /// Get an iterator over these tokens.
    pub fn iter(&self) -> ClangTokenIterator {
        ClangTokenIterator {
            tu: self.tu,
            raw: self.as_slice().iter(),
        }
    }
}

impl<'a> Drop for RawTokens<'a> {
    fn drop(&mut self) {
        if !self.tokens.is_null() {
            unsafe {
                clang_disposeTokens(
                    self.tu,
                    self.tokens,
                    self.token_count as c_uint,
                );
            }
        }
    }
}

/// A raw clang token, that exposes only kind, spelling, and extent. This is a
/// slightly more convenient version of `CXToken` which owns the spelling
/// string and extent.
#[derive(Debug)]
pub struct ClangToken {
    spelling: CXString,
    /// The extent of the token. This is the same as the relevant member from
    /// `CXToken`.
    pub extent: CXSourceRange,
    /// The kind of the token. This is the same as the relevant member from
    /// `CXToken`.
    pub kind: CXTokenKind,
}

impl ClangToken {
    /// Get the token spelling, without being converted to utf-8.
    pub fn spelling(&self) -> &[u8] {
        let c_str = unsafe {
            CStr::from_ptr(clang_getCString(self.spelling) as *const _)
        };
        c_str.to_bytes()
    }

    /// Converts a ClangToken to a `cexpr` token if possible.
    pub fn as_cexpr_token(&self) -> Option<cexpr::token::Token> {
        use cexpr::token;

        let kind = match self.kind {
            CXToken_Punctuation => token::Kind::Punctuation,
            CXToken_Literal => token::Kind::Literal,
            CXToken_Identifier => token::Kind::Identifier,
            CXToken_Keyword => token::Kind::Keyword,
            // NB: cexpr is not too happy about comments inside
            // expressions, so we strip them down here.
            CXToken_Comment => return None,
            _ => {
                warn!("Found unexpected token kind: {:?}", self);
                return None;
            }
        };

        Some(token::Token {
            kind,
            raw: self.spelling().to_vec().into_boxed_slice(),
        })
    }
}

impl Drop for ClangToken {
    fn drop(&mut self) {
        unsafe { clang_disposeString(self.spelling) }
    }
}

/// An iterator over a set of Tokens.
pub struct ClangTokenIterator<'a> {
    tu: CXTranslationUnit,
    raw: slice::Iter<'a, CXToken>,
}

impl<'a> Iterator for ClangTokenIterator<'a> {
    type Item = ClangToken;

    fn next(&mut self) -> Option<Self::Item> {
        let raw = self.raw.next()?;
        unsafe {
            let kind = clang_getTokenKind(*raw);
            let spelling = clang_getTokenSpelling(self.tu, *raw);
            let extent = clang_getTokenExtent(self.tu, *raw);
            Some(ClangToken {
                kind,
                extent,
                spelling,
            })
        }
    }
}

/// Checks whether the name looks like an identifier, i.e. is alphanumeric
/// (including '_') and does not start with a digit.
pub fn is_valid_identifier(name: &str) -> bool {
    let mut chars = name.chars();
    let first_valid = chars
        .next()
        .map(|c| c.is_alphabetic() || c == '_')
        .unwrap_or(false);

    first_valid && chars.all(|c| c.is_alphanumeric() || c == '_')
}

extern "C" fn visit_children<Visitor>(
    cur: CXCursor,
    _parent: CXCursor,
    data: CXClientData,
) -> CXChildVisitResult
where
    Visitor: FnMut(Cursor) -> CXChildVisitResult,
{
    let func: &mut Visitor = unsafe { &mut *(data as *mut Visitor) };
    let child = Cursor { x: cur };

    (*func)(child)
}

impl PartialEq for Cursor {
    fn eq(&self, other: &Cursor) -> bool {
        unsafe { clang_equalCursors(self.x, other.x) == 1 }
    }
}

impl Eq for Cursor {}

impl Hash for Cursor {
    fn hash<H: Hasher>(&self, state: &mut H) {
        unsafe { clang_hashCursor(self.x) }.hash(state)
    }
}

/// The type of a node in clang's AST.
#[derive(Clone, Copy)]
pub struct Type {
    x: CXType,
}

impl PartialEq for Type {
    fn eq(&self, other: &Self) -> bool {
        unsafe { clang_equalTypes(self.x, other.x) != 0 }
    }
}

impl Eq for Type {}

impl fmt::Debug for Type {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        write!(
            fmt,
            "Type({}, kind: {}, cconv: {}, decl: {:?}, canon: {:?})",
            self.spelling(),
            type_to_str(self.kind()),
            self.call_conv(),
            self.declaration(),
            self.declaration().canonical()
        )
    }
}

/// An error about the layout of a struct, class, or type.
#[derive(Debug, Copy, Clone, Eq, PartialEq, Hash)]
pub enum LayoutError {
    /// Asked for the layout of an invalid type.
    Invalid,
    /// Asked for the layout of an incomplete type.
    Incomplete,
    /// Asked for the layout of a dependent type.
    Dependent,
    /// Asked for the layout of a type that does not have constant size.
    NotConstantSize,
    /// Asked for the layout of a field in a type that does not have such a
    /// field.
    InvalidFieldName,
    /// An unknown layout error.
    Unknown,
}

impl ::std::convert::From<i32> for LayoutError {
    fn from(val: i32) -> Self {
        use self::LayoutError::*;

        match val {
            CXTypeLayoutError_Invalid => Invalid,
            CXTypeLayoutError_Incomplete => Incomplete,
            CXTypeLayoutError_Dependent => Dependent,
            CXTypeLayoutError_NotConstantSize => NotConstantSize,
            CXTypeLayoutError_InvalidFieldName => InvalidFieldName,
            _ => Unknown,
        }
    }
}

impl Type {
    /// Get this type's kind.
    pub fn kind(&self) -> CXTypeKind {
        self.x.kind
    }

    /// Get a cursor pointing to this type's declaration.
    pub fn declaration(&self) -> Cursor {
        unsafe {
            Cursor {
                x: clang_getTypeDeclaration(self.x),
            }
        }
    }

    /// Get the canonical declaration of this type, if it is available.
    pub fn canonical_declaration(
        &self,
        location: Option<&Cursor>,
    ) -> Option<CanonicalTypeDeclaration> {
        let mut declaration = self.declaration();
        if !declaration.is_valid() {
            if let Some(location) = location {
                let mut location = *location;
                if let Some(referenced) = location.referenced() {
                    location = referenced;
                }
                if location.is_template_like() {
                    declaration = location;
                }
            }
        }

        let canonical = declaration.canonical();
        if canonical.is_valid() && canonical.kind() != CXCursor_NoDeclFound {
            Some(CanonicalTypeDeclaration(*self, canonical))
        } else {
            None
        }
    }

    /// Get a raw display name for this type.
    pub fn spelling(&self) -> String {
        let s = unsafe { cxstring_into_string(clang_getTypeSpelling(self.x)) };
        // Clang 5.0 introduced changes in the spelling API so it returned the
        // full qualified name. Let's undo that here.
        if s.split("::").all(is_valid_identifier) {
            if let Some(s) = s.split("::").last() {
                return s.to_owned();
            }
        }

        s
    }

    /// Is this type const qualified?
    pub fn is_const(&self) -> bool {
        unsafe { clang_isConstQualifiedType(self.x) != 0 }
    }

    #[inline]
    fn is_non_deductible_auto_type(&self) -> bool {
        debug_assert_eq!(self.kind(), CXType_Auto);
        self.canonical_type() == *self
    }

    #[inline]
    fn clang_size_of(&self, ctx: &BindgenContext) -> c_longlong {
        match self.kind() {
            // Work-around https://bugs.llvm.org/show_bug.cgi?id=40975
            CXType_RValueReference | CXType_LValueReference => {
                ctx.target_pointer_size() as c_longlong
            }
            // Work-around https://bugs.llvm.org/show_bug.cgi?id=40813
            CXType_Auto if self.is_non_deductible_auto_type() => -6,
            _ => unsafe { clang_Type_getSizeOf(self.x) },
        }
    }

    #[inline]
    fn clang_align_of(&self, ctx: &BindgenContext) -> c_longlong {
        match self.kind() {
            // Work-around https://bugs.llvm.org/show_bug.cgi?id=40975
            CXType_RValueReference | CXType_LValueReference => {
                ctx.target_pointer_size() as c_longlong
            }
            // Work-around https://bugs.llvm.org/show_bug.cgi?id=40813
            CXType_Auto if self.is_non_deductible_auto_type() => -6,
            _ => unsafe { clang_Type_getAlignOf(self.x) },
        }
    }

    /// What is the size of this type? Paper over invalid types by returning `0`
    /// for them.
    pub fn size(&self, ctx: &BindgenContext) -> usize {
        let val = self.clang_size_of(ctx);
        if val < 0 {
            0
        } else {
            val as usize
        }
    }

    /// What is the size of this type?
    pub fn fallible_size(
        &self,
        ctx: &BindgenContext,
    ) -> Result<usize, LayoutError> {
        let val = self.clang_size_of(ctx);
        if val < 0 {
            Err(LayoutError::from(val as i32))
        } else {
            Ok(val as usize)
        }
    }

    /// What is the alignment of this type? Paper over invalid types by
    /// returning `0`.
    pub fn align(&self, ctx: &BindgenContext) -> usize {
        let val = self.clang_align_of(ctx);
        if val < 0 {
            0
        } else {
            val as usize
        }
    }

    /// What is the alignment of this type?
    pub fn fallible_align(
        &self,
        ctx: &BindgenContext,
    ) -> Result<usize, LayoutError> {
        let val = self.clang_align_of(ctx);
        if val < 0 {
            Err(LayoutError::from(val as i32))
        } else {
            Ok(val as usize)
        }
    }

    /// Get the layout for this type, or an error describing why it does not
    /// have a valid layout.
    pub fn fallible_layout(
        &self,
        ctx: &BindgenContext,
    ) -> Result<crate::ir::layout::Layout, LayoutError> {
        use crate::ir::layout::Layout;
        let size = self.fallible_size(ctx)?;
        let align = self.fallible_align(ctx)?;
        Ok(Layout::new(size, align))
    }

    /// Get the number of template arguments this type has, or `None` if it is
    /// not some kind of template.
    pub fn num_template_args(&self) -> Option<u32> {
        let n = unsafe { clang_Type_getNumTemplateArguments(self.x) };
        if n >= 0 {
            Some(n as u32)
        } else {
            debug_assert_eq!(n, -1);
            None
        }
    }

    /// If this type is a class template specialization, return its
    /// template arguments. Otherwise, return None.
    pub fn template_args(&self) -> Option<TypeTemplateArgIterator> {
        self.num_template_args().map(|n| TypeTemplateArgIterator {
            x: self.x,
            length: n,
            index: 0,
        })
    }

    /// Given that this type is a function prototype, return the types of its parameters.
    ///
    /// Returns None if the type is not a function prototype.
    pub fn args(&self) -> Option<Vec<Type>> {
        self.num_args().ok().map(|num| {
            (0..num)
                .map(|i| Type {
                    x: unsafe { clang_getArgType(self.x, i as c_uint) },
                })
                .collect()
        })
    }

    /// Given that this type is a function prototype, return the number of arguments it takes.
    ///
    /// Returns Err if the type is not a function prototype.
    pub fn num_args(&self) -> Result<u32, ()> {
        unsafe {
            let w = clang_getNumArgTypes(self.x);
            if w == -1 {
                Err(())
            } else {
                Ok(w as u32)
            }
        }
    }

    /// Given that this type is a pointer type, return the type that it points
    /// to.
    pub fn pointee_type(&self) -> Option<Type> {
        match self.kind() {
            CXType_Pointer |
            CXType_RValueReference |
            CXType_LValueReference |
            CXType_MemberPointer |
            CXType_BlockPointer |
            CXType_ObjCObjectPointer => {
                let ret = Type {
                    x: unsafe { clang_getPointeeType(self.x) },
                };
                debug_assert!(ret.is_valid());
                Some(ret)
            }
            _ => None,
        }
    }

    /// Given that this type is an array, vector, or complex type, return the
    /// type of its elements.
    pub fn elem_type(&self) -> Option<Type> {
        let current_type = Type {
            x: unsafe { clang_getElementType(self.x) },
        };
        if current_type.is_valid() {
            Some(current_type)
        } else {
            None
        }
    }

    /// Given that this type is an array or vector type, return its number of
    /// elements.
    pub fn num_elements(&self) -> Option<usize> {
        let num_elements_returned = unsafe { clang_getNumElements(self.x) };
        if num_elements_returned != -1 {
            Some(num_elements_returned as usize)
        } else {
            None
        }
    }

    /// Get the canonical version of this type. This sees through `typedef`s and
    /// aliases to get the underlying, canonical type.
    pub fn canonical_type(&self) -> Type {
        unsafe {
            Type {
                x: clang_getCanonicalType(self.x),
            }
        }
    }

    /// Is this type a variadic function type?
    pub fn is_variadic(&self) -> bool {
        unsafe { clang_isFunctionTypeVariadic(self.x) != 0 }
    }

    /// Given that this type is a function type, get the type of its return
    /// value.
    pub fn ret_type(&self) -> Option<Type> {
        let rt = Type {
            x: unsafe { clang_getResultType(self.x) },
        };
        if rt.is_valid() {
            Some(rt)
        } else {
            None
        }
    }

    /// Given that this type is a function type, get its calling convention. If
    /// this is not a function type, `CXCallingConv_Invalid` is returned.
    pub fn call_conv(&self) -> CXCallingConv {
        unsafe { clang_getFunctionTypeCallingConv(self.x) }
    }

    /// For elaborated types (types which use `class`, `struct`, or `union` to
    /// disambiguate types from local bindings), get the underlying type.
    pub fn named(&self) -> Type {
        unsafe {
            Type {
                x: clang_Type_getNamedType(self.x),
            }
        }
    }

    /// Is this a valid type?
    pub fn is_valid(&self) -> bool {
        self.kind() != CXType_Invalid
    }

    /// Is this a valid and exposed type?
    pub fn is_valid_and_exposed(&self) -> bool {
        self.is_valid() && self.kind() != CXType_Unexposed
    }

    /// Is this type a fully instantiated template?
    pub fn is_fully_instantiated_template(&self) -> bool {
        // Yep, the spelling of this containing type-parameter is extremely
        // nasty... But can happen in <type_traits>. Unfortunately I couldn't
        // reduce it enough :(
        self.template_args().map_or(false, |args| args.len() > 0) &&
            !matches!(
                self.declaration().kind(),
                CXCursor_ClassTemplatePartialSpecialization |
                    CXCursor_TypeAliasTemplateDecl |
                    CXCursor_TemplateTemplateParameter
            )
    }

    /// Is this type an associated template type? Eg `T::Associated` in
    /// this example:
    ///
    /// ```c++
    /// template <typename T>
    /// class Foo {
    ///     typename T::Associated member;
    /// };
    /// ```
    pub fn is_associated_type(&self) -> bool {
        // This is terrible :(
        fn hacky_parse_associated_type<S: AsRef<str>>(spelling: S) -> bool {
            lazy_static! {
                static ref ASSOC_TYPE_RE: regex::Regex = regex::Regex::new(
                    r"typename type\-parameter\-\d+\-\d+::.+"
                )
                .unwrap();
            }
            ASSOC_TYPE_RE.is_match(spelling.as_ref())
        }

        self.kind() == CXType_Unexposed &&
            (hacky_parse_associated_type(self.spelling()) ||
                hacky_parse_associated_type(
                    self.canonical_type().spelling(),
                ))
    }
}

/// The `CanonicalTypeDeclaration` type exists as proof-by-construction that its
/// cursor is the canonical declaration for its type. If you have a
/// `CanonicalTypeDeclaration` instance, you know for sure that the type and
/// cursor match up in a canonical declaration relationship, and it simply
/// cannot be otherwise.
#[derive(Debug, Clone, Copy, PartialEq, Eq)]
pub struct CanonicalTypeDeclaration(Type, Cursor);

impl CanonicalTypeDeclaration {
    /// Get the type.
    pub fn ty(&self) -> &Type {
        &self.0
    }

    /// Get the type's canonical declaration cursor.
    pub fn cursor(&self) -> &Cursor {
        &self.1
    }
}

/// An iterator for a type's template arguments.
pub struct TypeTemplateArgIterator {
    x: CXType,
    length: u32,
    index: u32,
}

impl Iterator for TypeTemplateArgIterator {
    type Item = Type;
    fn next(&mut self) -> Option<Type> {
        if self.index < self.length {
            let idx = self.index as c_uint;
            self.index += 1;
            Some(Type {
                x: unsafe { clang_Type_getTemplateArgumentAsType(self.x, idx) },
            })
        } else {
            None
        }
    }
}

impl ExactSizeIterator for TypeTemplateArgIterator {
    fn len(&self) -> usize {
        assert!(self.index <= self.length);
        (self.length - self.index) as usize
    }
}

/// A `SourceLocation` is a file, line, column, and byte offset location for
/// some source text.
pub struct SourceLocation {
    x: CXSourceLocation,
}

impl SourceLocation {
    /// Get the (file, line, column, byte offset) tuple for this source
    /// location.
    pub fn location(&self) -> (File, usize, usize, usize) {
        unsafe {
            let mut file = mem::zeroed();
            let mut line = 0;
            let mut col = 0;
            let mut off = 0;
            clang_getSpellingLocation(
                self.x, &mut file, &mut line, &mut col, &mut off,
            );
            (File { x: file }, line as usize, col as usize, off as usize)
        }
    }
}

impl fmt::Display for SourceLocation {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        let (file, line, col, _) = self.location();
        if let Some(name) = file.name() {
            write!(f, "{}:{}:{}", name, line, col)
        } else {
            "builtin definitions".fmt(f)
        }
    }
}

impl fmt::Debug for SourceLocation {
    fn fmt(&self, f: &mut fmt::Formatter) -> fmt::Result {
        write!(f, "{}", self)
    }
}

/// A comment in the source text.
///
/// Comments are sort of parsed by Clang, and have a tree structure.
pub struct Comment {
    x: CXComment,
}

impl Comment {
    /// What kind of comment is this?
    pub fn kind(&self) -> CXCommentKind {
        unsafe { clang_Comment_getKind(self.x) }
    }

    /// Get this comment's children comment
    pub fn get_children(&self) -> CommentChildrenIterator {
        CommentChildrenIterator {
            parent: self.x,
            length: unsafe { clang_Comment_getNumChildren(self.x) },
            index: 0,
        }
    }

    /// Given that this comment is the start or end of an HTML tag, get its tag
    /// name.
    pub fn get_tag_name(&self) -> String {
        unsafe { cxstring_into_string(clang_HTMLTagComment_getTagName(self.x)) }
    }

    /// Given that this comment is an HTML start tag, get its attributes.
    pub fn get_tag_attrs(&self) -> CommentAttributesIterator {
        CommentAttributesIterator {
            x: self.x,
            length: unsafe { clang_HTMLStartTag_getNumAttrs(self.x) },
            index: 0,
        }
    }
}

/// An iterator for a comment's children
pub struct CommentChildrenIterator {
    parent: CXComment,
    length: c_uint,
    index: c_uint,
}

impl Iterator for CommentChildrenIterator {
    type Item = Comment;
    fn next(&mut self) -> Option<Comment> {
        if self.index < self.length {
            let idx = self.index;
            self.index += 1;
            Some(Comment {
                x: unsafe { clang_Comment_getChild(self.parent, idx) },
            })
        } else {
            None
        }
    }
}

/// An HTML start tag comment attribute
pub struct CommentAttribute {
    /// HTML start tag attribute name
    pub name: String,
    /// HTML start tag attribute value
    pub value: String,
}

/// An iterator for a comment's attributes
pub struct CommentAttributesIterator {
    x: CXComment,
    length: c_uint,
    index: c_uint,
}

impl Iterator for CommentAttributesIterator {
    type Item = CommentAttribute;
    fn next(&mut self) -> Option<CommentAttribute> {
        if self.index < self.length {
            let idx = self.index;
            self.index += 1;
            Some(CommentAttribute {
                name: unsafe {
                    cxstring_into_string(clang_HTMLStartTag_getAttrName(
                        self.x, idx,
                    ))
                },
                value: unsafe {
                    cxstring_into_string(clang_HTMLStartTag_getAttrValue(
                        self.x, idx,
                    ))
                },
            })
        } else {
            None
        }
    }
}

/// A source file.
pub struct File {
    x: CXFile,
}

impl File {
    /// Get the name of this source file.
    pub fn name(&self) -> Option<String> {
        if self.x.is_null() {
            return None;
        }
        Some(unsafe { cxstring_into_string(clang_getFileName(self.x)) })
    }
}

fn cxstring_to_string_leaky(s: CXString) -> String {
    if s.data.is_null() {
        return "".to_owned();
    }
    let c_str = unsafe { CStr::from_ptr(clang_getCString(s) as *const _) };
    c_str.to_string_lossy().into_owned()
}

fn cxstring_into_string(s: CXString) -> String {
    let ret = cxstring_to_string_leaky(s);
    unsafe { clang_disposeString(s) };
    ret
}

/// An `Index` is an environment for a set of translation units that will
/// typically end up linked together in one final binary.
pub struct Index {
    x: CXIndex,
}

impl Index {
    /// Construct a new `Index`.
    ///
    /// The `pch` parameter controls whether declarations in pre-compiled
    /// headers are included when enumerating a translation unit's "locals".
    ///
    /// The `diag` parameter controls whether debugging diagnostics are enabled.
    pub fn new(pch: bool, diag: bool) -> Index {
        unsafe {
            Index {
                x: clang_createIndex(pch as c_int, diag as c_int),
            }
        }
    }
}

impl fmt::Debug for Index {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        write!(fmt, "Index {{ }}")
    }
}

impl Drop for Index {
    fn drop(&mut self) {
        unsafe {
            clang_disposeIndex(self.x);
        }
    }
}

/// A translation unit (or "compilation unit").
pub struct TranslationUnit {
    x: CXTranslationUnit,
}

impl fmt::Debug for TranslationUnit {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        write!(fmt, "TranslationUnit {{ }}")
    }
}

impl TranslationUnit {
    /// Parse a source file into a translation unit.
    pub fn parse(
        ix: &Index,
        file: &str,
        cmd_args: &[String],
        unsaved: &[UnsavedFile],
        opts: CXTranslationUnit_Flags,
    ) -> Option<TranslationUnit> {
        let fname = CString::new(file).unwrap();
        let _c_args: Vec<CString> = cmd_args
            .iter()
            .map(|s| CString::new(s.clone()).unwrap())
            .collect();
        let c_args: Vec<*const c_char> =
            _c_args.iter().map(|s| s.as_ptr()).collect();
        let mut c_unsaved: Vec<CXUnsavedFile> =
            unsaved.iter().map(|f| f.x).collect();
        let tu = unsafe {
            clang_parseTranslationUnit(
                ix.x,
                fname.as_ptr(),
                c_args.as_ptr(),
                c_args.len() as c_int,
                c_unsaved.as_mut_ptr(),
                c_unsaved.len() as c_uint,
                opts,
            )
        };
        if tu.is_null() {
            None
        } else {
            Some(TranslationUnit { x: tu })
        }
    }

    /// Get the Clang diagnostic information associated with this translation
    /// unit.
    pub fn diags(&self) -> Vec<Diagnostic> {
        unsafe {
            let num = clang_getNumDiagnostics(self.x) as usize;
            let mut diags = vec![];
            for i in 0..num {
                diags.push(Diagnostic {
                    x: clang_getDiagnostic(self.x, i as c_uint),
                });
            }
            diags
        }
    }

    /// Get a cursor pointing to the root of this translation unit's AST.
    pub fn cursor(&self) -> Cursor {
        unsafe {
            Cursor {
                x: clang_getTranslationUnitCursor(self.x),
            }
        }
    }

    /// Is this the null translation unit?
    pub fn is_null(&self) -> bool {
        self.x.is_null()
    }
}

impl Drop for TranslationUnit {
    fn drop(&mut self) {
        unsafe {
            clang_disposeTranslationUnit(self.x);
        }
    }
}

/// A diagnostic message generated while parsing a translation unit.
pub struct Diagnostic {
    x: CXDiagnostic,
}

impl Diagnostic {
    /// Format this diagnostic message as a string, using the given option bit
    /// flags.
    pub fn format(&self) -> String {
        unsafe {
            let opts = clang_defaultDiagnosticDisplayOptions();
            cxstring_into_string(clang_formatDiagnostic(self.x, opts))
        }
    }

    /// What is the severity of this diagnostic message?
    pub fn severity(&self) -> CXDiagnosticSeverity {
        unsafe { clang_getDiagnosticSeverity(self.x) }
    }
}

impl Drop for Diagnostic {
    /// Destroy this diagnostic message.
    fn drop(&mut self) {
        unsafe {
            clang_disposeDiagnostic(self.x);
        }
    }
}

/// A file which has not been saved to disk.
pub struct UnsavedFile {
    x: CXUnsavedFile,
    /// The name of the unsaved file. Kept here to avoid leaving dangling pointers in
    /// `CXUnsavedFile`.
    pub name: CString,
    contents: CString,
}

impl UnsavedFile {
    /// Construct a new unsaved file with the given `name` and `contents`.
    pub fn new(name: String, contents: String) -> UnsavedFile {
        let name = CString::new(name).unwrap();
        let contents = CString::new(contents).unwrap();
        let x = CXUnsavedFile {
            Filename: name.as_ptr(),
            Contents: contents.as_ptr(),
            Length: contents.as_bytes().len() as c_ulong,
        };
        UnsavedFile { x, name, contents }
    }
}

impl fmt::Debug for UnsavedFile {
    fn fmt(&self, fmt: &mut fmt::Formatter) -> fmt::Result {
        write!(
            fmt,
            "UnsavedFile(name: {:?}, contents: {:?})",
            self.name, self.contents
        )
    }
}

/// Convert a cursor kind into a static string.
pub fn kind_to_str(x: CXCursorKind) -> String {
    unsafe { cxstring_into_string(clang_getCursorKindSpelling(x)) }
}

/// Convert a type kind to a static string.
pub fn type_to_str(x: CXTypeKind) -> String {
    unsafe { cxstring_into_string(clang_getTypeKindSpelling(x)) }
}

/// Dump the Clang AST to stdout for debugging purposes.
pub fn ast_dump(c: &Cursor, depth: isize) -> CXChildVisitResult {
    fn print_indent<S: AsRef<str>>(depth: isize, s: S) {
        for _ in 0..depth {
            print!("    ");
        }
        println!("{}", s.as_ref());
    }

    fn print_cursor<S: AsRef<str>>(depth: isize, prefix: S, c: &Cursor) {
        let prefix = prefix.as_ref();
        print_indent(
            depth,
            format!(" {}kind = {}", prefix, kind_to_str(c.kind())),
        );
        print_indent(
            depth,
            format!(" {}spelling = \"{}\"", prefix, c.spelling()),
        );
        print_indent(depth, format!(" {}location = {}", prefix, c.location()));
        print_indent(
            depth,
            format!(" {}is-definition? {}", prefix, c.is_definition()),
        );
        print_indent(
            depth,
            format!(" {}is-declaration? {}", prefix, c.is_declaration()),
        );
        print_indent(
            depth,
            format!(
                " {}is-inlined-function? {}",
                prefix,
                c.is_inlined_function()
            ),
        );

        let templ_kind = c.template_kind();
        if templ_kind != CXCursor_NoDeclFound {
            print_indent(
                depth,
                format!(
                    " {}template-kind = {}",
                    prefix,
                    kind_to_str(templ_kind)
                ),
            );
        }
        if let Some(usr) = c.usr() {
            print_indent(depth, format!(" {}usr = \"{}\"", prefix, usr));
        }
        if let Ok(num) = c.num_args() {
            print_indent(depth, format!(" {}number-of-args = {}", prefix, num));
        }
        if let Some(num) = c.num_template_args() {
            print_indent(
                depth,
                format!(" {}number-of-template-args = {}", prefix, num),
            );
        }

        if c.is_bit_field() {
            let width = match c.bit_width() {
                Some(w) => w.to_string(),
                None => "<unevaluable>".to_string(),
            };
            print_indent(depth, format!(" {}bit-width = {}", prefix, width));
        }

        if let Some(ty) = c.enum_type() {
            print_indent(
                depth,
                format!(" {}enum-type = {}", prefix, type_to_str(ty.kind())),
            );
        }
        if let Some(val) = c.enum_val_signed() {
            print_indent(depth, format!(" {}enum-val = {}", prefix, val));
        }
        if let Some(ty) = c.typedef_type() {
            print_indent(
                depth,
                format!(" {}typedef-type = {}", prefix, type_to_str(ty.kind())),
            );
        }
        if let Some(ty) = c.ret_type() {
            print_indent(
                depth,
                format!(" {}ret-type = {}", prefix, type_to_str(ty.kind())),
            );
        }

        if let Some(refd) = c.referenced() {
            if refd != *c {
                println!();
                print_cursor(
                    depth,
                    String::from(prefix) + "referenced.",
                    &refd,
                );
            }
        }

        let canonical = c.canonical();
        if canonical != *c {
            println!();
            print_cursor(
                depth,
                String::from(prefix) + "canonical.",
                &canonical,
            );
        }

        if let Some(specialized) = c.specialized() {
            if specialized != *c {
                println!();
                print_cursor(
                    depth,
                    String::from(prefix) + "specialized.",
                    &specialized,
                );
            }
        }

        if let Some(parent) = c.fallible_semantic_parent() {
            println!();
            print_cursor(
                depth,
                String::from(prefix) + "semantic-parent.",
                &parent,
            );
        }
    }

    fn print_type<S: AsRef<str>>(depth: isize, prefix: S, ty: &Type) {
        let prefix = prefix.as_ref();

        let kind = ty.kind();
        print_indent(depth, format!(" {}kind = {}", prefix, type_to_str(kind)));
        if kind == CXType_Invalid {
            return;
        }

        print_indent(depth, format!(" {}cconv = {}", prefix, ty.call_conv()));

        print_indent(
            depth,
            format!(" {}spelling = \"{}\"", prefix, ty.spelling()),
        );
        let num_template_args =
            unsafe { clang_Type_getNumTemplateArguments(ty.x) };
        if num_template_args >= 0 {
            print_indent(
                depth,
                format!(
                    " {}number-of-template-args = {}",
                    prefix, num_template_args
                ),
            );
        }
        if let Some(num) = ty.num_elements() {
            print_indent(
                depth,
                format!(" {}number-of-elements = {}", prefix, num),
            );
        }
        print_indent(
            depth,
            format!(" {}is-variadic? {}", prefix, ty.is_variadic()),
        );

        let canonical = ty.canonical_type();
        if canonical != *ty {
            println!();
            print_type(depth, String::from(prefix) + "canonical.", &canonical);
        }

        if let Some(pointee) = ty.pointee_type() {
            if pointee != *ty {
                println!();
                print_type(depth, String::from(prefix) + "pointee.", &pointee);
            }
        }

        if let Some(elem) = ty.elem_type() {
            if elem != *ty {
                println!();
                print_type(depth, String::from(prefix) + "elements.", &elem);
            }
        }

        if let Some(ret) = ty.ret_type() {
            if ret != *ty {
                println!();
                print_type(depth, String::from(prefix) + "return.", &ret);
            }
        }

        let named = ty.named();
        if named != *ty && named.is_valid() {
            println!();
            print_type(depth, String::from(prefix) + "named.", &named);
        }
    }

    print_indent(depth, "(");
    print_cursor(depth, "", c);

    println!();
    let ty = c.cur_type();
    print_type(depth, "type.", &ty);

    let declaration = ty.declaration();
    if declaration != *c && declaration.kind() != CXCursor_NoDeclFound {
        println!();
        print_cursor(depth, "type.declaration.", &declaration);
    }

    // Recurse.
    let mut found_children = false;
    c.visit(|s| {
        if !found_children {
            println!();
            found_children = true;
        }
        ast_dump(&s, depth + 1)
    });

    print_indent(depth, ")");

    CXChildVisit_Continue
}

/// Try to extract the clang version to a string
pub fn extract_clang_version() -> String {
    unsafe { cxstring_into_string(clang_getClangVersion()) }
}

/// A wrapper for the result of evaluating an expression.
#[derive(Debug)]
pub struct EvalResult {
    x: CXEvalResult,
}

impl EvalResult {
    /// Evaluate `cursor` and return the result.
    pub fn new(cursor: Cursor) -> Option<Self> {
        // Work around https://bugs.llvm.org/show_bug.cgi?id=42532, see:
        //  * https://github.com/rust-lang/rust-bindgen/issues/283
        //  * https://github.com/rust-lang/rust-bindgen/issues/1590
        {
            let mut found_cant_eval = false;
            cursor.visit(|c| {
                if c.kind() == CXCursor_TypeRef &&
                    c.cur_type().canonical_type().kind() == CXType_Unexposed
                {
                    found_cant_eval = true;
                    return CXChildVisit_Break;
                }

                CXChildVisit_Recurse
            });

            if found_cant_eval {
                return None;
            }
        }
        Some(EvalResult {
            x: unsafe { clang_Cursor_Evaluate(cursor.x) },
        })
    }

    fn kind(&self) -> CXEvalResultKind {
        unsafe { clang_EvalResult_getKind(self.x) }
    }

    /// Try to get back the result as a double.
    pub fn as_double(&self) -> Option<f64> {
        match self.kind() {
            CXEval_Float => {
                Some(unsafe { clang_EvalResult_getAsDouble(self.x) })
            }
            _ => None,
        }
    }

    /// Try to get back the result as an integer.
    pub fn as_int(&self) -> Option<i64> {
        if self.kind() != CXEval_Int {
            return None;
        }

        if unsafe { clang_EvalResult_isUnsignedInt(self.x) } != 0 {
            let value = unsafe { clang_EvalResult_getAsUnsigned(self.x) };
            if value > i64::max_value() as c_ulonglong {
                return None;
            }

            return Some(value as i64);
        }

        let value = unsafe { clang_EvalResult_getAsLongLong(self.x) };
        if value > i64::max_value() as c_longlong {
            return None;
        }
        if value < i64::min_value() as c_longlong {
            return None;
        }
        #[allow(clippy::unnecessary_cast)]
        Some(value as i64)
    }

    /// Evaluates the expression as a literal string, that may or may not be
    /// valid utf-8.
    pub fn as_literal_string(&self) -> Option<Vec<u8>> {
        match self.kind() {
            CXEval_StrLiteral => {
                let ret = unsafe {
                    CStr::from_ptr(clang_EvalResult_getAsStr(self.x))
                };
                Some(ret.to_bytes().to_vec())
            }
            _ => None,
        }
    }
}

impl Drop for EvalResult {
    fn drop(&mut self) {
        unsafe { clang_EvalResult_dispose(self.x) };
    }
}

/// Target information obtained from libclang.
#[derive(Debug)]
pub struct TargetInfo {
    /// The target triple.
    pub triple: String,
    /// The width of the pointer _in bits_.
    pub pointer_width: usize,
}

impl TargetInfo {
    /// Tries to obtain target information from libclang.
    pub fn new(tu: &TranslationUnit) -> Self {
        let triple;
        let pointer_width;
        unsafe {
            let ti = clang_getTranslationUnitTargetInfo(tu.x);
            triple = cxstring_into_string(clang_TargetInfo_getTriple(ti));
            pointer_width = clang_TargetInfo_getPointerWidth(ti);
            clang_TargetInfo_dispose(ti);
        }
        assert!(pointer_width > 0);
        assert_eq!(pointer_width % 8, 0);
        TargetInfo {
            triple,
            pointer_width: pointer_width as usize,
        }
    }
}