bounded_collections/lib.rs
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277
// Copyright 2023 Parity Technologies
//
// Licensed under the Apache License, Version 2.0 <LICENSE-APACHE or
// http://www.apache.org/licenses/LICENSE-2.0> or the MIT license
// <LICENSE-MIT or http://opensource.org/licenses/MIT>, at your
// option. This file may not be copied, modified, or distributed
// except according to those terms.
//! Collection types that have an upper limit on how many elements that they can contain, and
//! supporting traits that aid in defining the limit.
#![cfg_attr(not(feature = "std"), no_std)]
pub extern crate alloc;
pub mod bounded_btree_map;
pub mod bounded_btree_set;
pub mod bounded_vec;
pub mod const_int;
pub mod weak_bounded_vec;
mod test;
pub use bounded_btree_map::BoundedBTreeMap;
pub use bounded_btree_set::BoundedBTreeSet;
pub use bounded_vec::{BoundedSlice, BoundedVec};
pub use const_int::{ConstInt, ConstUint};
pub use weak_bounded_vec::WeakBoundedVec;
/// A trait for querying a single value from a type defined in the trait.
///
/// It is not required that the value is constant.
pub trait TypedGet {
/// The type which is returned.
type Type;
/// Return the current value.
fn get() -> Self::Type;
}
/// A trait for querying a single value from a type.
///
/// It is not required that the value is constant.
pub trait Get<T> {
/// Return the current value.
fn get() -> T;
}
impl<T: Default> Get<T> for () {
fn get() -> T {
T::default()
}
}
/// Implement Get by returning Default for any type that implements Default.
pub struct GetDefault;
impl<T: Default> Get<T> for GetDefault {
fn get() -> T {
T::default()
}
}
macro_rules! impl_const_get {
($name:ident, $t:ty) => {
/// Const getter for a basic type.
#[derive(Default, Clone)]
pub struct $name<const T: $t>;
#[cfg(feature = "std")]
impl<const T: $t> core::fmt::Debug for $name<T> {
fn fmt(&self, fmt: &mut core::fmt::Formatter) -> core::fmt::Result {
fmt.write_str(&format!("{}<{}>", stringify!($name), T))
}
}
#[cfg(not(feature = "std"))]
impl<const T: $t> core::fmt::Debug for $name<T> {
fn fmt(&self, fmt: &mut core::fmt::Formatter) -> core::fmt::Result {
fmt.write_str("<wasm:stripped>")
}
}
impl<const T: $t> Get<$t> for $name<T> {
fn get() -> $t {
T
}
}
impl<const T: $t> Get<Option<$t>> for $name<T> {
fn get() -> Option<$t> {
Some(T)
}
}
impl<const T: $t> TypedGet for $name<T> {
type Type = $t;
fn get() -> $t {
T
}
}
};
}
impl_const_get!(ConstBool, bool);
impl_const_get!(ConstU8, u8);
impl_const_get!(ConstU16, u16);
impl_const_get!(ConstU32, u32);
impl_const_get!(ConstU64, u64);
impl_const_get!(ConstU128, u128);
impl_const_get!(ConstI8, i8);
impl_const_get!(ConstI16, i16);
impl_const_get!(ConstI32, i32);
impl_const_get!(ConstI64, i64);
impl_const_get!(ConstI128, i128);
/// Try and collect into a collection `C`.
pub trait TryCollect<C> {
/// The error type that gets returned when a collection can't be made from `self`.
type Error;
/// Consume self and try to collect the results into `C`.
///
/// This is useful in preventing the undesirable `.collect().try_into()` call chain on
/// collections that need to be converted into a bounded type (e.g. `BoundedVec`).
fn try_collect(self) -> Result<C, Self::Error>;
}
/// Create new implementations of the [`Get`](crate::Get) trait.
///
/// The so-called parameter type can be created in four different ways:
///
/// - Using `const` to create a parameter type that provides a `const` getter. It is required that
/// the `value` is const.
///
/// - Declare the parameter type without `const` to have more freedom when creating the value.
///
/// NOTE: A more substantial version of this macro is available in `frame_support` crate which
/// allows mutable and persistant variants.
///
/// # Examples
///
/// ```
/// # use bounded_collections::Get;
/// # use bounded_collections::parameter_types;
/// // This function cannot be used in a const context.
/// fn non_const_expression() -> u64 { 99 }
///
/// const FIXED_VALUE: u64 = 10;
/// parameter_types! {
/// pub const Argument: u64 = 42 + FIXED_VALUE;
/// /// Visibility of the type is optional
/// OtherArgument: u64 = non_const_expression();
/// }
///
/// trait Config {
/// type Parameter: Get<u64>;
/// type OtherParameter: Get<u64>;
/// }
///
/// struct Runtime;
/// impl Config for Runtime {
/// type Parameter = Argument;
/// type OtherParameter = OtherArgument;
/// }
/// ```
///
/// # Invalid example:
///
/// ```compile_fail
/// # use bounded_collections::Get;
/// # use bounded_collections::parameter_types;
/// // This function cannot be used in a const context.
/// fn non_const_expression() -> u64 { 99 }
///
/// parameter_types! {
/// pub const Argument: u64 = non_const_expression();
/// }
/// ```
#[macro_export]
macro_rules! parameter_types {
(
$( #[ $attr:meta ] )*
$vis:vis const $name:ident: $type:ty = $value:expr;
$( $rest:tt )*
) => (
$( #[ $attr ] )*
$vis struct $name;
$crate::parameter_types!(@IMPL_CONST $name , $type , $value);
$crate::parameter_types!( $( $rest )* );
);
(
$( #[ $attr:meta ] )*
$vis:vis $name:ident: $type:ty = $value:expr;
$( $rest:tt )*
) => (
$( #[ $attr ] )*
$vis struct $name;
$crate::parameter_types!(@IMPL $name, $type, $value);
$crate::parameter_types!( $( $rest )* );
);
() => ();
(@IMPL_CONST $name:ident, $type:ty, $value:expr) => {
impl $name {
/// Returns the value of this parameter type.
pub const fn get() -> $type {
$value
}
}
impl<I: From<$type>> $crate::Get<I> for $name {
fn get() -> I {
I::from(Self::get())
}
}
impl $crate::TypedGet for $name {
type Type = $type;
fn get() -> $type {
Self::get()
}
}
};
(@IMPL $name:ident, $type:ty, $value:expr) => {
impl $name {
/// Returns the value of this parameter type.
pub fn get() -> $type {
$value
}
}
impl<I: From<$type>> $crate::Get<I> for $name {
fn get() -> I {
I::from(Self::get())
}
}
impl $crate::TypedGet for $name {
type Type = $type;
fn get() -> $type {
Self::get()
}
}
};
}
/// Build a bounded vec from the given literals.
///
/// The type of the outcome must be known.
///
/// Will not handle any errors and just panic if the given literals cannot fit in the corresponding
/// bounded vec type. Thus, this is only suitable for testing and non-consensus code.
#[macro_export]
#[cfg(feature = "std")]
macro_rules! bounded_vec {
($ ($values:expr),* $(,)?) => {
{
$crate::alloc::vec![$($values),*].try_into().unwrap()
}
};
( $value:expr ; $repetition:expr ) => {
{
$crate::alloc::vec![$value ; $repetition].try_into().unwrap()
}
}
}
/// Build a bounded btree-map from the given literals.
///
/// The type of the outcome must be known.
///
/// Will not handle any errors and just panic if the given literals cannot fit in the corresponding
/// bounded vec type. Thus, this is only suitable for testing and non-consensus code.
#[macro_export]
#[cfg(feature = "std")]
macro_rules! bounded_btree_map {
($ ( $key:expr => $value:expr ),* $(,)?) => {
{
$crate::TryCollect::<$crate::BoundedBTreeMap<_, _, _>>::try_collect(
$crate::alloc::vec![$(($key, $value)),*].into_iter()
).unwrap()
}
};
}