datafusion_optimizer/
utils.rs

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
// Licensed to the Apache Software Foundation (ASF) under one
// or more contributor license agreements.  See the NOTICE file
// distributed with this work for additional information
// regarding copyright ownership.  The ASF licenses this file
// to you under the Apache License, Version 2.0 (the
// "License"); you may not use this file except in compliance
// with the License.  You may obtain a copy of the License at
//
//   http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing,
// software distributed under the License is distributed on an
// "AS IS" BASIS, WITHOUT WARRANTIES OR CONDITIONS OF ANY
// KIND, either express or implied.  See the License for the
// specific language governing permissions and limitations
// under the License.

//! Utility functions leveraged by the query optimizer rules

use std::collections::{BTreeSet, HashMap, HashSet};

use crate::{OptimizerConfig, OptimizerRule};

use crate::analyzer::type_coercion::TypeCoercionRewriter;
use arrow::array::{new_null_array, Array, RecordBatch};
use arrow::datatypes::{DataType, Field, Schema};
use datafusion_common::cast::as_boolean_array;
use datafusion_common::tree_node::{TransformedResult, TreeNode};
use datafusion_common::{Column, DFSchema, Result, ScalarValue};
use datafusion_expr::execution_props::ExecutionProps;
use datafusion_expr::expr_rewriter::replace_col;
use datafusion_expr::{logical_plan::LogicalPlan, ColumnarValue, Expr};
use datafusion_physical_expr::create_physical_expr;
use log::{debug, trace};
use std::sync::Arc;

/// Re-export of `NamesPreserver` for backwards compatibility,
/// as it was initially placed here and then moved elsewhere.
pub use datafusion_expr::expr_rewriter::NamePreserver;

/// Convenience rule for writing optimizers: recursively invoke
/// optimize on plan's children and then return a node of the same
/// type. Useful for optimizer rules which want to leave the type
/// of plan unchanged but still apply to the children.
/// This also handles the case when the `plan` is a [`LogicalPlan::Explain`].
///
/// Returning `Ok(None)` indicates that the plan can't be optimized by the `optimizer`.
#[deprecated(
    since = "40.0.0",
    note = "please use OptimizerRule::apply_order with ApplyOrder::BottomUp instead"
)]
pub fn optimize_children(
    optimizer: &impl OptimizerRule,
    plan: &LogicalPlan,
    config: &dyn OptimizerConfig,
) -> Result<Option<LogicalPlan>> {
    let mut new_inputs = Vec::with_capacity(plan.inputs().len());
    let mut plan_is_changed = false;
    for input in plan.inputs() {
        if optimizer.supports_rewrite() {
            let new_input = optimizer.rewrite(input.clone(), config)?;
            plan_is_changed = plan_is_changed || new_input.transformed;
            new_inputs.push(new_input.data);
        } else {
            #[allow(deprecated)]
            let new_input = optimizer.try_optimize(input, config)?;
            plan_is_changed = plan_is_changed || new_input.is_some();
            new_inputs.push(new_input.unwrap_or_else(|| input.clone()))
        }
    }
    if plan_is_changed {
        let exprs = plan.expressions();
        plan.with_new_exprs(exprs, new_inputs).map(Some)
    } else {
        Ok(None)
    }
}

/// Returns true if `expr` contains all columns in `schema_cols`
pub(crate) fn has_all_column_refs(expr: &Expr, schema_cols: &HashSet<Column>) -> bool {
    let column_refs = expr.column_refs();
    // note can't use HashSet::intersect because of different types (owned vs References)
    schema_cols
        .iter()
        .filter(|c| column_refs.contains(c))
        .count()
        == column_refs.len()
}

pub(crate) fn collect_subquery_cols(
    exprs: &[Expr],
    subquery_schema: &DFSchema,
) -> Result<BTreeSet<Column>> {
    exprs.iter().try_fold(BTreeSet::new(), |mut cols, expr| {
        let mut using_cols: Vec<Column> = vec![];
        for col in expr.column_refs().into_iter() {
            if subquery_schema.has_column(col) {
                using_cols.push(col.clone());
            }
        }

        cols.extend(using_cols);
        Result::<_>::Ok(cols)
    })
}

pub(crate) fn replace_qualified_name(
    expr: Expr,
    cols: &BTreeSet<Column>,
    subquery_alias: &str,
) -> Result<Expr> {
    let alias_cols: Vec<Column> = cols
        .iter()
        .map(|col| Column::new(Some(subquery_alias), &col.name))
        .collect();
    let replace_map: HashMap<&Column, &Column> =
        cols.iter().zip(alias_cols.iter()).collect();

    replace_col(expr, &replace_map)
}

/// Log the plan in debug/tracing mode after some part of the optimizer runs
pub fn log_plan(description: &str, plan: &LogicalPlan) {
    debug!("{description}:\n{}\n", plan.display_indent());
    trace!("{description}::\n{}\n", plan.display_indent_schema());
}

/// Determine whether a predicate can restrict NULLs. e.g.
/// `c0 > 8` return true;
/// `c0 IS NULL` return false.
pub fn is_restrict_null_predicate<'a>(
    predicate: Expr,
    join_cols_of_predicate: impl IntoIterator<Item = &'a Column>,
) -> Result<bool> {
    if matches!(predicate, Expr::Column(_)) {
        return Ok(true);
    }

    static DUMMY_COL_NAME: &str = "?";
    let schema = Schema::new(vec![Field::new(DUMMY_COL_NAME, DataType::Null, true)]);
    let input_schema = DFSchema::try_from(schema.clone())?;
    let column = new_null_array(&DataType::Null, 1);
    let input_batch = RecordBatch::try_new(Arc::new(schema.clone()), vec![column])?;
    let execution_props = ExecutionProps::default();
    let null_column = Column::from_name(DUMMY_COL_NAME);

    let join_cols_to_replace = join_cols_of_predicate
        .into_iter()
        .map(|column| (column, &null_column))
        .collect::<HashMap<_, _>>();

    let replaced_predicate = replace_col(predicate, &join_cols_to_replace)?;
    let coerced_predicate = coerce(replaced_predicate, &input_schema)?;
    let phys_expr =
        create_physical_expr(&coerced_predicate, &input_schema, &execution_props)?;

    let result_type = phys_expr.data_type(&schema)?;
    if !matches!(&result_type, DataType::Boolean) {
        return Ok(false);
    }

    // If result is single `true`, return false;
    // If result is single `NULL` or `false`, return true;
    Ok(match phys_expr.evaluate(&input_batch)? {
        ColumnarValue::Array(array) => {
            if array.len() == 1 {
                let boolean_array = as_boolean_array(&array)?;
                boolean_array.is_null(0) || !boolean_array.value(0)
            } else {
                false
            }
        }
        ColumnarValue::Scalar(scalar) => matches!(
            scalar,
            ScalarValue::Boolean(None) | ScalarValue::Boolean(Some(false))
        ),
    })
}

fn coerce(expr: Expr, schema: &DFSchema) -> Result<Expr> {
    let mut expr_rewrite = TypeCoercionRewriter { schema };
    expr.rewrite(&mut expr_rewrite).data()
}

#[cfg(test)]
mod tests {
    use super::*;
    use datafusion_expr::{binary_expr, case, col, in_list, is_null, lit, Operator};

    #[test]
    fn expr_is_restrict_null_predicate() -> Result<()> {
        let test_cases = vec![
            // a
            (col("a"), true),
            // a IS NULL
            (is_null(col("a")), false),
            // a IS NOT NULL
            (Expr::IsNotNull(Box::new(col("a"))), true),
            // a = NULL
            (
                binary_expr(col("a"), Operator::Eq, Expr::Literal(ScalarValue::Null)),
                true,
            ),
            // a > 8
            (binary_expr(col("a"), Operator::Gt, lit(8i64)), true),
            // a <= 8
            (binary_expr(col("a"), Operator::LtEq, lit(8i32)), true),
            // CASE a WHEN 1 THEN true WHEN 0 THEN false ELSE NULL END
            (
                case(col("a"))
                    .when(lit(1i64), lit(true))
                    .when(lit(0i64), lit(false))
                    .otherwise(lit(ScalarValue::Null))?,
                true,
            ),
            // CASE a WHEN 1 THEN true ELSE false END
            (
                case(col("a"))
                    .when(lit(1i64), lit(true))
                    .otherwise(lit(false))?,
                true,
            ),
            // CASE a WHEN 0 THEN false ELSE true END
            (
                case(col("a"))
                    .when(lit(0i64), lit(false))
                    .otherwise(lit(true))?,
                false,
            ),
            // (CASE a WHEN 0 THEN false ELSE true END) OR false
            (
                binary_expr(
                    case(col("a"))
                        .when(lit(0i64), lit(false))
                        .otherwise(lit(true))?,
                    Operator::Or,
                    lit(false),
                ),
                false,
            ),
            // (CASE a WHEN 0 THEN true ELSE false END) OR false
            (
                binary_expr(
                    case(col("a"))
                        .when(lit(0i64), lit(true))
                        .otherwise(lit(false))?,
                    Operator::Or,
                    lit(false),
                ),
                true,
            ),
            // a IN (1, 2, 3)
            (
                in_list(col("a"), vec![lit(1i64), lit(2i64), lit(3i64)], false),
                true,
            ),
            // a NOT IN (1, 2, 3)
            (
                in_list(col("a"), vec![lit(1i64), lit(2i64), lit(3i64)], true),
                true,
            ),
            // a IN (NULL)
            (
                in_list(col("a"), vec![Expr::Literal(ScalarValue::Null)], false),
                true,
            ),
            // a NOT IN (NULL)
            (
                in_list(col("a"), vec![Expr::Literal(ScalarValue::Null)], true),
                true,
            ),
        ];

        let column_a = Column::from_name("a");
        for (predicate, expected) in test_cases {
            let join_cols_of_predicate = std::iter::once(&column_a);
            let actual =
                is_restrict_null_predicate(predicate.clone(), join_cols_of_predicate)?;
            assert_eq!(actual, expected, "{}", predicate);
        }

        Ok(())
    }
}