deno_core 0.321.0

A modern JavaScript/TypeScript runtime built with V8, Rust, and Tokio
Documentation
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
// Copyright 2018-2024 the Deno authors. All rights reserved. MIT license.

// Think of Resources as File Descriptors. They are integers that are allocated
// by the privileged side of Deno which refer to various rust objects that need
// to be persisted between various ops. For example, network sockets are
// resources. Resources may or may not correspond to a real operating system
// file descriptor (hence the different name).

use crate::error::bad_resource_id;
use crate::error::custom_error;
use crate::error::not_supported;
use crate::io::BufMutView;
use crate::io::BufView;
use crate::io::WriteOutcome;
use anyhow::Error;
use futures::Future;
use std::any::type_name;
use std::any::Any;
use std::any::TypeId;
use std::borrow::Cow;
use std::collections::BTreeMap;
use std::io::IsTerminal;
use std::iter::Iterator;
use std::pin::Pin;
use std::rc::Rc;

/// Returned by resource read/write/shutdown methods
pub type AsyncResult<T> = Pin<Box<dyn Future<Output = Result<T, Error>>>>;

/// Represents an underlying handle for a platform. On unix, everything is an `fd`. On Windows, everything
/// is a Windows handle except for sockets (which are `SOCKET`s).
#[derive(Copy, Clone, Debug, Eq, PartialEq, Hash)]
#[allow(unused)]
pub enum ResourceHandle {
  /// A file handle/descriptor.
  Fd(ResourceHandleFd),
  /// A socket handle/file descriptor.
  Socket(ResourceHandleSocket),
}

#[cfg(unix)]
pub type ResourceHandleFd = std::os::fd::RawFd;
#[cfg(unix)]
pub type ResourceHandleSocket = std::os::fd::RawFd;
#[cfg(windows)]
pub type ResourceHandleFd = std::os::windows::io::RawHandle;
#[cfg(windows)]
pub type ResourceHandleSocket = std::os::windows::io::RawSocket;

impl ResourceHandle {
  /// Converts a file-like thing to a [`ResourceHandle`].
  #[cfg(windows)]
  pub fn from_fd_like(io: &impl std::os::windows::io::AsRawHandle) -> Self {
    Self::Fd(io.as_raw_handle())
  }

  /// Converts a file-like thing to a [`ResourceHandle`].
  #[cfg(unix)]
  pub fn from_fd_like(io: &impl std::os::unix::io::AsRawFd) -> Self {
    Self::Fd(io.as_raw_fd())
  }

  /// Converts a socket-like thing to a [`ResourceHandle`].
  #[cfg(windows)]
  pub fn from_socket_like(io: &impl std::os::windows::io::AsRawSocket) -> Self {
    Self::Socket(io.as_raw_socket())
  }

  /// Converts a socket-like thing to a [`ResourceHandle`].
  #[cfg(unix)]
  pub fn from_socket_like(io: &impl std::os::unix::io::AsRawFd) -> Self {
    Self::Socket(io.as_raw_fd())
  }

  /// Runs a basic validity check on the handle, but cannot fully determine if the handle is valid for use.
  pub fn is_valid(&self) -> bool {
    #[cfg(windows)]
    {
      match self {
        // NULL or INVALID_HANDLE_VALUE
        Self::Fd(handle) => {
          !handle.is_null()
            && *handle != -1_isize as std::os::windows::io::RawHandle
        }
        // INVALID_SOCKET
        Self::Socket(socket) => {
          *socket != -1_i64 as std::os::windows::io::RawSocket
        }
      }
    }
    #[cfg(unix)]
    {
      match self {
        Self::Fd(fd) => *fd >= 0,
        Self::Socket(fd) => *fd >= 0,
      }
    }
  }

  /// Returns this as a file-descriptor-like handle.
  pub fn as_fd_like(&self) -> Option<ResourceHandleFd> {
    match self {
      Self::Fd(fd) => Some(*fd),
      _ => None,
    }
  }

  /// Returns this as a socket-like handle.
  pub fn as_socket_like(&self) -> Option<ResourceHandleSocket> {
    match self {
      Self::Socket(socket) => Some(*socket),
      _ => None,
    }
  }

  /// Determines if this handle is a terminal. Analagous to [`std::io::IsTerminal`].
  pub fn is_terminal(&self) -> bool {
    match self {
      Self::Fd(fd) if self.is_valid() => {
        #[cfg(windows)]
        {
          // SAFETY: The resource remains open for the for the duration of borrow_raw
          unsafe {
            std::os::windows::io::BorrowedHandle::borrow_raw(*fd).is_terminal()
          }
        }
        #[cfg(unix)]
        {
          // SAFETY: The resource remains open for the for the duration of borrow_raw
          unsafe { std::os::fd::BorrowedFd::borrow_raw(*fd).is_terminal() }
        }
      }
      _ => false,
    }
  }
}

/// Resources are Rust objects that are attached to a [deno_core::JsRuntime].
/// They are identified in JS by a numeric ID (the resource ID, or rid).
/// Resources can be created in ops. Resources can also be retrieved in ops by
/// their rid. Resources are not thread-safe - they can only be accessed from
/// the thread that the JsRuntime lives on.
///
/// Resources are reference counted in Rust. This means that they can be
/// cloned and passed around. When the last reference is dropped, the resource
/// is automatically closed. As long as the resource exists in the resource
/// table, the reference count is at least 1.
///
/// ### Readable
///
/// Readable resources are resources that can have data read from. Examples of
/// this are files, sockets, or HTTP streams.
///
/// Readables can be read from from either JS or Rust. In JS one can use
/// `Deno.core.read()` to read from a single chunk of data from a readable. In
/// Rust one can directly call `read()` or `read_byob()`. The Rust side code is
/// used to implement ops like `op_slice`.
///
/// A distinction can be made between readables that produce chunks of data
/// themselves (they allocate the chunks), and readables that fill up
/// bring-your-own-buffers (BYOBs). The former is often the case for framed
/// protocols like HTTP, while the latter is often the case for kernel backed
/// resources like files and sockets.
///
/// All readables must implement `read()`. If resources can support an optimized
/// path for BYOBs, they should also implement `read_byob()`. For kernel backed
/// resources it often makes sense to implement `read_byob()` first, and then
/// implement `read()` as an operation that allocates a new chunk with
/// `len == limit`, then calls `read_byob()`, and then returns a chunk sliced to
/// the number of bytes read. Kernel backed resources can use the
/// [deno_core::impl_readable_byob] macro to implement optimized `read_byob()`
/// and `read()` implementations from a single `Self::read()` method.
///
/// ### Writable
///
/// Writable resources are resources that can have data written to. Examples of
/// this are files, sockets, or HTTP streams.
///
/// Writables can be written to from either JS or Rust. In JS one can use
/// `Deno.core.write()` to write to a single chunk of data to a writable. In
/// Rust one can directly call `write()`. The latter is used to implement ops
/// like `op_slice`.
pub trait Resource: Any + 'static {
  /// Returns a string representation of the resource which is made available
  /// to JavaScript code through `op_resources`. The default implementation
  /// returns the Rust type name, but specific resource types may override this
  /// trait method.
  fn name(&self) -> Cow<str> {
    type_name::<Self>().into()
  }

  /// Read a single chunk of data from the resource. This operation returns a
  /// `BufView` that represents the data that was read. If a zero length buffer
  /// is returned, it indicates that the resource has reached EOF.
  ///
  /// If this method is not implemented, the default implementation will error
  /// with a "not supported" error.
  ///
  /// If a readable can provide an optimized path for BYOBs, it should also
  /// implement `read_byob()`.
  fn read(self: Rc<Self>, limit: usize) -> AsyncResult<BufView> {
    _ = limit;
    Box::pin(futures::future::err(not_supported()))
  }

  /// Read a single chunk of data from the resource into the provided `BufMutView`.
  ///
  /// This operation returns the number of bytes read. If zero bytes are read,
  /// it indicates that the resource has reached EOF.
  ///
  /// If this method is not implemented explicitly, the default implementation
  /// will call `read()` and then copy the data into the provided buffer. For
  /// readable resources that can provide an optimized path for BYOBs, it is
  /// strongly recommended to override this method.
  fn read_byob(
    self: Rc<Self>,
    mut buf: BufMutView,
  ) -> AsyncResult<(usize, BufMutView)> {
    Box::pin(async move {
      let read = self.read(buf.len()).await?;
      let nread = read.len();
      buf[..nread].copy_from_slice(&read);
      Ok((nread, buf))
    })
  }

  /// Write an error state to this resource, if the resource supports it.
  fn write_error(self: Rc<Self>, _error: Error) -> AsyncResult<()> {
    Box::pin(futures::future::err(not_supported()))
  }

  /// Write a single chunk of data to the resource. The operation may not be
  /// able to write the entire chunk, in which case it should return the number
  /// of bytes written. Additionally it should return the `BufView` that was
  /// passed in.
  ///
  /// If this method is not implemented, the default implementation will error
  /// with a "not supported" error.
  fn write(self: Rc<Self>, buf: BufView) -> AsyncResult<WriteOutcome> {
    _ = buf;
    Box::pin(futures::future::err(not_supported()))
  }

  /// Write an entire chunk of data to the resource. Unlike `write()`, this will
  /// ensure the entire chunk is written. If the operation is not able to write
  /// the entire chunk, an error is to be returned.
  ///
  /// By default this method will call `write()` repeatedly until the entire
  /// chunk is written. Resources that can write the entire chunk in a single
  /// operation using an optimized path should override this method.
  fn write_all(self: Rc<Self>, view: BufView) -> AsyncResult<()> {
    Box::pin(async move {
      let mut view = view;
      let this = self;
      while !view.is_empty() {
        let resp = this.clone().write(view).await?;
        match resp {
          WriteOutcome::Partial {
            nwritten,
            view: new_view,
          } => {
            view = new_view;
            view.advance_cursor(nwritten);
          }
          WriteOutcome::Full { .. } => break,
        }
      }
      Ok(())
    })
  }

  /// The same as [`read_byob()`][Resource::read_byob], but synchronous.
  fn read_byob_sync(self: Rc<Self>, data: &mut [u8]) -> Result<usize, Error> {
    _ = data;
    Err(not_supported())
  }

  /// The same as [`write()`][Resource::write], but synchronous.
  fn write_sync(self: Rc<Self>, data: &[u8]) -> Result<usize, Error> {
    _ = data;
    Err(not_supported())
  }

  /// The shutdown method can be used to asynchronously close the resource. It
  /// is not automatically called when the resource is dropped or closed.
  ///
  /// If this method is not implemented, the default implementation will error
  /// with a "not supported" error.
  fn shutdown(self: Rc<Self>) -> AsyncResult<()> {
    Box::pin(futures::future::err(not_supported()))
  }

  /// Resources may implement the `close()` trait method if they need to do
  /// resource specific clean-ups, such as cancelling pending futures, after a
  /// resource has been removed from the resource table.
  fn close(self: Rc<Self>) {}

  /// Resources backed by a file descriptor or socket handle can let ops know
  /// to allow for low-level optimizations.
  fn backing_handle(self: Rc<Self>) -> Option<ResourceHandle> {
    #[allow(deprecated)]
    self.backing_fd().map(ResourceHandle::Fd)
  }

  /// Resources backed by a file descriptor can let ops know to allow for
  /// low-level optimizations.
  #[deprecated = "Use backing_handle"]
  fn backing_fd(self: Rc<Self>) -> Option<ResourceHandleFd> {
    None
  }

  fn size_hint(&self) -> (u64, Option<u64>) {
    (0, None)
  }
}

impl dyn Resource {
  #[inline(always)]
  fn is<T: Resource>(&self) -> bool {
    self.type_id() == TypeId::of::<T>()
  }

  #[inline(always)]
  #[allow(clippy::needless_lifetimes)]
  pub fn downcast_rc<'a, T: Resource>(self: &'a Rc<Self>) -> Option<&'a Rc<T>> {
    if self.is::<T>() {
      let ptr = self as *const Rc<_> as *const Rc<T>;
      // TODO(piscisaureus): safety comment
      #[allow(clippy::undocumented_unsafe_blocks)]
      Some(unsafe { &*ptr })
    } else {
      None
    }
  }
}

/// A `ResourceId` is an integer value referencing a resource. It could be
/// considered to be the Deno equivalent of a `file descriptor` in POSIX like
/// operating systems. Elsewhere in the code base it is commonly abbreviated
/// to `rid`.
// TODO: use `u64` instead?
pub type ResourceId = u32;

/// Map-like data structure storing Deno's resources (equivalent to file
/// descriptors).
///
/// Provides basic methods for element access. A resource can be of any type.
/// Different types of resources can be stored in the same map, and provided
/// with a name for description.
///
/// Each resource is identified through a _resource ID (rid)_, which acts as
/// the key in the map.
#[derive(Default)]
pub struct ResourceTable {
  index: BTreeMap<ResourceId, Rc<dyn Resource>>,
  next_rid: ResourceId,
}

impl ResourceTable {
  /// Returns the number of resources currently active in the resource table.
  /// Resources taken from the table do not contribute to this count.
  pub fn len(&self) -> usize {
    self.index.len()
  }

  /// Returns whether this table is empty.
  pub fn is_empty(&self) -> bool {
    self.index.is_empty()
  }

  /// Inserts resource into the resource table, which takes ownership of it.
  ///
  /// The resource type is erased at runtime and must be statically known
  /// when retrieving it through `get()`.
  ///
  /// Returns a unique resource ID, which acts as a key for this resource.
  pub fn add<T: Resource>(&mut self, resource: T) -> ResourceId {
    self.add_rc(Rc::new(resource))
  }

  /// Inserts a `Rc`-wrapped resource into the resource table.
  ///
  /// The resource type is erased at runtime and must be statically known
  /// when retrieving it through `get()`.
  ///
  /// Returns a unique resource ID, which acts as a key for this resource.
  pub fn add_rc<T: Resource>(&mut self, resource: Rc<T>) -> ResourceId {
    let resource = resource as Rc<dyn Resource>;
    self.add_rc_dyn(resource)
  }

  pub fn add_rc_dyn(&mut self, resource: Rc<dyn Resource>) -> ResourceId {
    let rid = self.next_rid;
    let removed_resource = self.index.insert(rid, resource);
    assert!(removed_resource.is_none());
    self.next_rid += 1;
    rid
  }

  /// Returns true if any resource with the given `rid` exists.
  pub fn has(&self, rid: ResourceId) -> bool {
    self.index.contains_key(&rid)
  }

  /// Returns a reference counted pointer to the resource of type `T` with the
  /// given `rid`. If `rid` is not present or has a type different than `T`,
  /// this function returns `None`.
  pub fn get<T: Resource>(&self, rid: ResourceId) -> Result<Rc<T>, Error> {
    self
      .index
      .get(&rid)
      .and_then(|rc| rc.downcast_rc::<T>())
      .map(Clone::clone)
      .ok_or_else(bad_resource_id)
  }

  pub fn get_any(&self, rid: ResourceId) -> Result<Rc<dyn Resource>, Error> {
    self
      .index
      .get(&rid)
      .map(Clone::clone)
      .ok_or_else(bad_resource_id)
  }

  /// Replaces a resource with a new resource.
  ///
  /// Panics if the resource does not exist.
  pub fn replace<T: Resource>(&mut self, rid: ResourceId, resource: T) {
    let result = self
      .index
      .insert(rid, Rc::new(resource) as Rc<dyn Resource>);
    assert!(result.is_some());
  }

  /// Removes a resource of type `T` from the resource table and returns it.
  /// If a resource with the given `rid` exists but its type does not match `T`,
  /// it is not removed from the resource table. Note that the resource's
  /// `close()` method is *not* called.
  ///
  /// Also note that there might be a case where
  /// the returned `Rc<T>` is referenced by other variables. That is, we cannot
  /// assume that `Rc::strong_count(&returned_rc)` is always equal to 1 on success.
  /// In particular, be really careful when you want to extract the inner value of
  /// type `T` from `Rc<T>`.
  pub fn take<T: Resource>(&mut self, rid: ResourceId) -> Result<Rc<T>, Error> {
    let resource = self.get::<T>(rid)?;
    self.index.remove(&rid);
    Ok(resource)
  }

  /// Removes a resource from the resource table and returns it. Note that the
  /// resource's `close()` method is *not* called.
  ///
  /// Also note that there might be a
  /// case where the returned `Rc<T>` is referenced by other variables. That is,
  /// we cannot assume that `Rc::strong_count(&returned_rc)` is always equal to 1
  /// on success. In particular, be really careful when you want to extract the
  /// inner value of type `T` from `Rc<T>`.
  pub fn take_any(
    &mut self,
    rid: ResourceId,
  ) -> Result<Rc<dyn Resource>, Error> {
    self.index.remove(&rid).ok_or_else(bad_resource_id)
  }

  /// Removes the resource with the given `rid` from the resource table. If the
  /// only reference to this resource existed in the resource table, this will
  /// cause the resource to be dropped. However, since resources are reference
  /// counted, therefore pending ops are not automatically cancelled. A resource
  /// may implement the `close()` method to perform clean-ups such as canceling
  /// ops.
  #[deprecated = "This method may deadlock. Use take() and close() instead."]
  pub fn close(&mut self, rid: ResourceId) -> Result<(), Error> {
    self
      .index
      .remove(&rid)
      .ok_or_else(bad_resource_id)
      .map(|resource| resource.close())
  }

  /// Returns an iterator that yields a `(id, name)` pair for every resource
  /// that's currently in the resource table. This can be used for debugging
  /// purposes or to implement the `op_resources` op. Note that the order in
  /// which items appear is not specified.
  ///
  /// # Example
  ///
  /// ```
  /// # use deno_core::ResourceTable;
  /// # let resource_table = ResourceTable::default();
  /// let resource_names = resource_table.names().collect::<Vec<_>>();
  /// ```
  pub fn names(&self) -> impl Iterator<Item = (ResourceId, Cow<str>)> {
    self
      .index
      .iter()
      .map(|(&id, resource)| (id, resource.name()))
  }

  /// Retrieves the [`ResourceHandleFd`] for a given resource, for potential optimization
  /// purposes within ops.
  pub fn get_fd(&self, rid: ResourceId) -> Result<ResourceHandleFd, Error> {
    let Some(handle) = self.get_any(rid)?.backing_handle() else {
      return Err(bad_resource_id());
    };
    let Some(fd) = handle.as_fd_like() else {
      return Err(bad_resource_id());
    };
    if !handle.is_valid() {
      return Err(custom_error("ReferenceError", "null or invalid handle"));
    }
    Ok(fd)
  }

  /// Retrieves the [`ResourceHandleSocket`] for a given resource, for potential optimization
  /// purposes within ops.
  pub fn get_socket(
    &self,
    rid: ResourceId,
  ) -> Result<ResourceHandleSocket, Error> {
    let Some(handle) = self.get_any(rid)?.backing_handle() else {
      return Err(bad_resource_id());
    };
    let Some(socket) = handle.as_socket_like() else {
      return Err(bad_resource_id());
    };
    if !handle.is_valid() {
      return Err(custom_error("ReferenceError", "null or invalid handle"));
    }
    Ok(socket)
  }

  /// Retrieves the [`ResourceHandle`] for a given resource, for potential optimization
  /// purposes within ops.
  pub fn get_handle(
    &self,
    rid: ResourceId,
  ) -> ::std::result::Result<ResourceHandle, ::anyhow::Error> {
    let Some(handle) = self.get_any(rid)?.backing_handle() else {
      return Err(bad_resource_id());
    };
    if !handle.is_valid() {
      return Err(custom_error("ReferenceError", "null or invalid handle"));
    }
    Ok(handle)
  }
}

#[macro_export]
macro_rules! impl_readable_byob {
  () => {
    fn read(
      self: ::std::rc::Rc<Self>,
      limit: ::core::primitive::usize,
    ) -> AsyncResult<$crate::BufView> {
      ::std::boxed::Box::pin(async move {
        let mut vec = ::std::vec![0; limit];
        let nread = self.read(&mut vec).await?;
        if nread != vec.len() {
          vec.truncate(nread);
        }
        let view = $crate::BufView::from(vec);
        ::std::result::Result::Ok(view)
      })
    }

    fn read_byob(
      self: ::std::rc::Rc<Self>,
      mut buf: $crate::BufMutView,
    ) -> AsyncResult<(::core::primitive::usize, $crate::BufMutView)> {
      ::std::boxed::Box::pin(async move {
        let nread = self.read(buf.as_mut()).await?;
        ::std::result::Result::Ok((nread, buf))
      })
    }
  };
}

#[macro_export]
macro_rules! impl_writable {
  (__write) => {
    fn write(
      self: ::std::rc::Rc<Self>,
      view: $crate::BufView,
    ) -> $crate::AsyncResult<$crate::WriteOutcome> {
      ::std::boxed::Box::pin(async move {
        let nwritten = self.write(&view).await?;
        ::std::result::Result::Ok($crate::WriteOutcome::Partial {
          nwritten,
          view,
        })
      })
    }
  };
  (__write_all) => {
    fn write_all(
      self: ::std::rc::Rc<Self>,
      view: $crate::BufView,
    ) -> $crate::AsyncResult<()> {
      ::std::boxed::Box::pin(async move {
        self.write_all(&view).await?;
        ::std::result::Result::Ok(())
      })
    }
  };
  () => {
    $crate::impl_writable!(__write);
  };
  (with_all) => {
    $crate::impl_writable!(__write);
    $crate::impl_writable!(__write_all);
  };
}